Classical Be stars

Rapidly rotating B stars with viscous Keplerian decretion disks
  • Thomas RiviniusEmail author
  • Alex C. Carciofi
  • Christophe Martayan
Review Article


In the past decade, a consensus has emerged regarding the nature of classical Be stars: They are very rapidly rotating main sequence B stars, which, through a still unknown, but increasingly constrained process, form an outwardly diffusing gaseous, dust-free Keplerian disk. In this work, first the definition of Be stars is contrasted to similar classes, and common observables obtained for Be stars are introduced and the respective formation mechanisms explained. We then review the current state of knowledge concerning the central stars as non-radially pulsating objects and non-magnetic stars, as far as it concerns large-scale, i.e., mostly dipolar, global fields. Localized, weak magnetic fields remain possible, but are as of yet unproven. The Be-phenomenon, linked with one or more mass-ejection processes, acts on top of a rotation rate of about 75 % of critical or above. The properties of the process can be well constrained, leaving only few options, most importantly, but not exclusively, non-radial pulsation and small-scale magnetic fields. Of these, it is well possible that all are realized: In different stars, different processes may be acting. Once the material has been lifted into Keplerian orbit, memory of the details of the ejection process is lost, and the material is governed by viscosity. The disks are fairly well understood in the theoretical framework of the viscous decretion disk model. This is not only true for the disk structure, but as well for its variability, both cyclic and secular. Be binaries are reviewed under the aspect of the various types of interactions a companion can have with the circumstellar disk. Finally, extragalactic Be stars, at lower metallicities, seem more common and more rapidly rotating.


Stars: emission-line, Be Stars: rotation Stars: oscillations Stars: winds, outflows Stars: circumstellar matter 



We dedicate this review to the memory of the late John Porter. John was an outstanding colleague, scientifically as well as personally. He passed away Tuesday, June 7, 2005.

We are grateful to the Organizing Committee of the IAU Working Group on Active B stars for endorsing this review.

Valuable comments on the draft manuscript were provided by Dietrich Baade, Armando Domiciano de Souza, Jason Grunhut, Carol Jones, Ronald Mennickent, Florentin Millour, Coralie Neiner, Atsuo Okazaki, Stan Owocki, Geraldine Peters, Myron Smith, Philippe Stee, Richard Townsend, and Gregg Wade.

We thank Carol Jones, Armando Domiciano de Souza, Cyril Escolano, Daniel M. Faes, Robbie Halonen, Xavier Haubois, Anne-Marie Hubert, Stefan Keller, Bruno C. Mota, Coralie Neiner, Atsuo Okazaki, Stan Owocki, Gail Schaefer, and Richard Townsend for providing data for figures.

For this work we made use of NASA’s ADS, the ESO Science Archive Facility, the AMBER data reduction package of the Jean-Marie Mariotti Center, the pgfplots package by Ch. Feuersänger, and the computing facilities of the Laboratory of Astroinformatics (IAG/USP, NAT/Unicsul), whose purchase was made possible by the Brazilian agency Fapesp (grant 2009/54006-4) and the INCT-A.

TRi acknowledges ESO’s support in the form of a temporary re-assignment to the Office for Science to complete this review. ACa acknowledges support from CNPq (grant 307076/2012-1) and Fapesp (grant 2010/19029-0).


  1. Abt HA, Levy SG (1978) Binaries among B2-B5 IV, V absorption and emission stars. Astrophys J Suppl Ser 36:241–258. doi: 10.1086/190498 ADSGoogle Scholar
  2. Adams FC, Lada CJ, Shu FH (1987) Spectral evolution of young stellar objects. Astrophys J 312:788–806. doi: 10.1086/164924 ADSGoogle Scholar
  3. Aerts C, Christensen-Dalsgaard J, Kurtz DW (2010) Asteroseismology. Springer, Berlin. doi: 10.1007/978-1-4020-5803-5 Google Scholar
  4. Ahmed A, Sigut TAA (2012) The temperature structure of Be star disks in the Small Magellanic Cloud. Astrophys J 744:191. doi: 10.1088/0004-637X/744/2/191 ADSGoogle Scholar
  5. Alecian E (2011) Activity of Herbig Be stars and their environment. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 354–365. doi: 10.1017/S1743921311010775 Google Scholar
  6. Baade D (1988) Nonradial pulsations and the be phenomenon. In: Cayrel de Strobel G, Spite M (eds) The impact of very high S/N spectroscopy on stellar physics. IAU symposium, vol 132, p 217 Google Scholar
  7. Baade D (1992) Binary Be-stars and Be-binaries. In: Kondo Y, Sistero R, Polidan RS (eds) Evolutionary processes in interacting binary stars. IAU symposium, vol 151, p 147 Google Scholar
  8. Baade D, Rivinius T, Štefl S, Kaufer A (2002) A spectroscopic search for variability of Be stars in the SMC. Astron Astrophys 383:L31–L34. doi: 10.1051/0004-6361:20020090 ADSGoogle Scholar
  9. Bagnulo S, Szeifert T, Wade GA, Landstreet JD, Mathys G (2002) Measuring magnetic fields of early-type stars with FORS1 at the VLT. Astron Astrophys 389:191–201. doi: 10.1051/0004-6361:20020606 ADSGoogle Scholar
  10. Bagnulo S, Landstreet JD, Fossati L, Kochukhov O (2012) Magnetic field measurements and their uncertainties: the FORS1 legacy. Astron Astrophys 538:A129. doi: 10.1051/0004-6361/201118098 ADSzbMATHGoogle Scholar
  11. Balbus SA (2003) Enhanced angular momentum transport in accretion disks. Annu Rev Astron Astrophys 41:555–597. doi: 10.1146/annurev.astro.41.081401.155207 ADSGoogle Scholar
  12. Balbus SA, Hawley JF (1998) Instability, turbulence, and enhanced transport in accretion disks. Rev Mod Phys 70:1–53. doi: 10.1103/RevModPhys.70.1 ADSGoogle Scholar
  13. Ballot J, Lignières F, Reese DR, Rieutord M (2010) Gravity modes in rapidly rotating stars. Limits of perturbative methods. Astron Astrophys 518:A30. doi: 10.1051/0004-6361/201014426 ADSGoogle Scholar
  14. Balona LA (2013) Rotational modulation in Be stars. In: Suárez JC, Garrido R, Balona LA, Christensen-Dalsgaard J (eds) Stellar pulsations: impact of new instrumentation and new insights. Astrophysics and space science proceedings, vol 31, p 247. doi: 10.1007/978-3-642-29630-7_45 Google Scholar
  15. Balona LA, Cuypers J, Marang F (1992) Intensive photometry of southern Be variables. II—Summer objects. Astron Astrophys Suppl Ser 92:533–563 ADSGoogle Scholar
  16. Balona LA, Henrichs HF, Medupe R (eds) (2003) Magnetic fields in O, B and A stars: origin and connection to pulsation, rotation and mass loss. Astronomical society of the pacific conference series, vol 305 Google Scholar
  17. Balona LA, Pigulski A, Cat PD, Handler G, Gutiérrez-Soto J, Engelbrecht CA, Frescura F, Briquet M, Cuypers J, Daszyńska-Daszkiewicz J, Degroote P, Dukes RJ, Garcia RA, Green EM, Heber U, Kawaler SD, Lehmann H, Leroy B, Molenda-Zaaowicz J, Neiner C, Noels A, Nuspl J, Østensen R, Pricopi D, Roxburgh I, Salmon S, Smith MA, Suárez JC, Suran M, Szabó R, Uytterhoeven K, Christensen-Dalsgaard J, Kjeldsen H, Caldwell DA, Girouard FR, Sanderfer DT (2011) Kepler observations of the variability in B-type stars. Mon Not R Astron Soc 413:2403–2420. doi: 10.1111/j.1365-2966.2011.18311.x ADSGoogle Scholar
  18. Barnsley RM, Steele IA (2013) A representative sample of Be stars. V: Hα variability. Astron Astrophys 556:A81. doi: 10.1051/0004-6361/201220419 ADSGoogle Scholar
  19. Bisikalo DV, Boyarchuk AA, Harmanec P, Kaigorodov PV, Kuznetsov OA (2006) Disc formation in binary Be stars. In: Fridman AM, Marov MY, Kovalenko IG (eds) Astrophysics and space science library, vol 337, p 75 Google Scholar
  20. Bjorkman JE (1997) Circumstellar disks. In: de Greve JP, Blomme R, Hensberge H (eds) Stellar atmospheres: theory and observations. Lecture notes in physics, vol 497. Springer, Berlin, p 239. doi: 10.1007/BFb0113487 Google Scholar
  21. Bjorkman JE (2000) The formation and structure of circumstellar disks. In: Smith MA, Henrichs HF, Fabregat J (eds) IAU colloq 175: the Be phenomenon in early-type stars. Astronomical society of the pacific conference series, vol 214, p 435 Google Scholar
  22. Bjorkman JE, Bjorkman KS (1994) The effects of gravity darkening on the ultraviolet continuum polarization produced by circumstellar disks. Astrophys J 436:818–830. doi: 10.1086/174958 ADSGoogle Scholar
  23. Bjorkman JE, Carciofi AC (2005) Modeling the structure of hot star disks. In: Ignace R, Gayley KG (eds) The nature and evolution of disks around hot stars. Astronomical society of the pacific conference series, vol 337, p 75 Google Scholar
  24. Bjorkman JE, Cassinelli JP (1993) Equatorial disk formation around rotating stars due to ram pressure confinement by the stellar wind. Astrophys J 409:429–449. doi: 10.1086/172676 ADSGoogle Scholar
  25. Bjorkman KS, Nordsieck KH, Code AD, Anderson CM, Babler BL, Clayton GC, Magalhaes AM, Meade MR, Nook MA, Schulte-Ladbeck RE, Taylor M, Whitney BA (1991) First ultraviolet spectropolarimetry of Be stars from the Wisconsin ultraviolet photo-polarimeter experiment. Astrophys J Lett 383:L67–L70. doi: 10.1086/186243 ADSGoogle Scholar
  26. Bjorkman KS, Miroshnichenko AS, McDavid D, Pogrosheva TM (2002) A study of π Aquarii during a quasi-normal star phase: refined fundamental parameters and evidence for binarity. Astrophys J 573:812–824. doi: 10.1086/340751 ADSGoogle Scholar
  27. Bonanos AZ, Massa DL, Sewilo M, Lennon DJ, Panagia N, Smith LJ, Meixner M, Babler BL, Bracker S, Meade MR, Gordon KD, Hora JL, Indebetouw R, Whitney BA (2009) Spitzer SAGE infrared photometry of massive stars in the Large Magellanic Cloud. Astron J 138:1003–1021. doi: 10.1088/0004-6256/138/4/1003 ADSGoogle Scholar
  28. Bonanos AZ, Lennon DJ, Köhlinger F, van Loon JT, Massa DL, Sewilo M, Evans CJ, Panagia N, Babler BL, Block M, Bracker S, Engelbracht CW, Gordon KD, Hora JL, Indebetouw R, Meade MR, Meixner M, Misselt KA, Robitaille TP, Shiao B, Whitney BA (2010) Spitzer SAGE-SMC infrared photometry of massive stars in the Small Magellanic Cloud. Astron J 140:416–429. doi: 10.1088/0004-6256/140/2/416 ADSGoogle Scholar
  29. Bouret JC, Lanz T, Hillier DJ, Heap SR, Hubeny I, Lennon DJ, Smith LJ, Evans CJ (2003) Quantitative spectroscopy of o stars at low metallicity: o dwarfs in NGC 346. Astrophys J 595:1182–1205. doi: 10.1086/377368 ADSGoogle Scholar
  30. Bresolin F, Urbaneja MA, Gieren W, Pietrzyński G, Kudritzki RP (2007) VLT spectroscopy of blue supergiants in IC 1613. Astrophys J 671:2028–2039. doi: 10.1086/522571 ADSGoogle Scholar
  31. Brown JC, McLean IS (1977) Polarisation by Thomson scattering in optically thin stellar envelopes. I. Source star at centre of axisymmetric envelope. Astron Astrophys 57:141 ADSGoogle Scholar
  32. Brown JC, Telfer D, Li Q, Hanuschik R, Cassinelli JP, Kholtygin A (2004) The effect of rotational gravity darkening on magnetically torqued Be star discs. Mon Not R Astron Soc 352:1061–1072. doi: 10.1111/j.1365-2966.2004.07997.x ADSGoogle Scholar
  33. Brown JC, Cassinelli JP, Maheswaran M (2008) Magnetically fed hot star Keplerian disks with slow outflow. Astrophys J 688:1320–1325. doi: 10.1086/592558 ADSGoogle Scholar
  34. Cameron C, Saio H, Kuschnig R, Walker GAH, Matthews JM, Guenther DB, Moffat AFJ, Rucinski SM, Sasselov D, Weiss WW (2008) MOST detects SPBe pulsations in HD 127756 and HD 217543: asteroseismic rotation rates independent of vsini. Astrophys J 685:489–507. doi: 10.1086/590369 ADSGoogle Scholar
  35. Cantiello M, Braithwaite J (2011) Magnetic spots on hot massive stars. Astron Astrophys 534:A140. doi: 10.1051/0004-6361/201117512 ADSGoogle Scholar
  36. Cantiello M, Yoon SC, Langer N, Livio M (2007) Binary star progenitors of long gamma-ray bursts. Astron Astrophys 465:L29–L33. doi: 10.1051/0004-6361:20077115 ADSGoogle Scholar
  37. Carciofi AC, Bjorkman JE (2006) Non-LTE Monte Carlo radiative transfer. I. The thermal properties of Keplerian disks around classical Be stars. Astrophys J 639:1081–1094. doi: 10.1086/499483 ADSGoogle Scholar
  38. Carciofi AC, Bjorkman JE (2008) Non-LTE Monte Carlo radiative transfer. II. Nonisothermal solutions for viscous Keplerian disks. Astrophys J 684:1374–1383. doi: 10.1086/589875 ADSGoogle Scholar
  39. Carciofi AC, Rivinius T (eds) (2012) Circumstellar dynamics at high resolution. Astronomical society of the pacific conference series, vol 464 Google Scholar
  40. Carciofi AC, Miroshnichenko AS, Kusakin AV, Bjorkman JE, Bjorkman KS, Marang F, Kuratov KS, García-Lario P, Calderón JVP, Fabregat J, Magalhães AM (2006) Properties of the δ Scorpii circumstellar disk from continuum modeling. Astrophys J 652:1617–1625. doi: 10.1086/507935 ADSGoogle Scholar
  41. Carciofi AC, Magalhães AM, Leister NV, Bjorkman JE, Levenhagen RS (2007) Achernar: rapid polarization variability as evidence of photospheric and circumstellar activity. Astrophys J Lett 671:L49–L52. doi: 10.1086/524772 ADSGoogle Scholar
  42. Carciofi AC, Domiciano de Souza A, Magalhães AM, Bjorkman JE, Vakili F (2008) On the determination of the rotational oblateness of Achernar. Astrophys J Lett 676:L41–L44. doi: 10.1086/586895 ADSGoogle Scholar
  43. Carciofi AC, Okazaki AT, Le Bouquin JB, Štefl S, Rivinius T, Baade D, Bjorkman JE, Hummel CA (2009) Cyclic variability of the circumstellar disk of the Be star Open image in new window Tauri. II. Testing the 2D global disk oscillation model. Astron Astrophys 504:915–927. doi: 10.1051/0004-6361/200810962 ADSGoogle Scholar
  44. Carciofi AC, Bjorkman JE, Otero SA, Okazaki AT, Štefl S, Rivinius T, Baade D, Haubois X (2012) The first determination of the viscosity parameter in the circumstellar disk of a Be star. Astrophys J Lett 744:L15. doi: 10.1088/2041-8205/744/1/L15 ADSGoogle Scholar
  45. Casini R, Landi Degl’Innocenti E (1994) Properties of the first-order moments of the polarization profiles of hydrogen lines. Astron Astrophys 291:668–678 ADSGoogle Scholar
  46. Cassinelli JP, Brown JC, Maheswaran M, Miller NA, Telfer DC (2002) A magnetically torqued disk model for Be stars. Astrophys J 578:951–966. doi: 10.1086/342654 ADSGoogle Scholar
  47. Chauville J, Zorec J, Ballereau D, Morrell N, Cidale L, Garcia A (2001) High and intermediate-resolution spectroscopy of Be stars. Astron Astrophys 378:861–882. doi: 10.1051/0004-6361:20011202 ADSGoogle Scholar
  48. Che X, Monnier JD, Tycner C, Kraus S, Zavala RT, Baron F, Pedretti E, ten Brummelaar T, McAlister H, Ridgway ST, Sturmann J, Sturmann L, Turner N (2012) Imaging disk distortion of Be binary system δ Scorpii near periastron. Astrophys J 757:29. doi: 10.1088/0004-637X/757/1/29 ADSGoogle Scholar
  49. Chesneau O, Meilland A, Rivinius T, Stee P, Jankov S, Domiciano de Souza A, Graser U, Herbst T, Janot-Pacheco E, Koehler R, Leinert C, Morel S, Paresce F, Richichi A, Robbe-Dubois S (2005) First VLTI/MIDI observations of a Be star: alpha Arae. Astron Astrophys 435:275–287. doi: 10.1051/0004-6361:20041954 ADSGoogle Scholar
  50. Chiappini C, Hirschi R, Meynet G, Ekström S, Maeder A, Matteucci F (2006) A strong case for fast stellar rotation at very low metallicities. Astron Astrophys 449:L27–L30. doi: 10.1051/0004-6361:20064866 ADSGoogle Scholar
  51. Coe MJ, Bird AJ, Buckley DAH, Corbet RHD, Dean AJ, Finger M, Galache JL, Haberl F, McBride VA, Negueruela I, Schurch M, Townsend LJ, Udalski A, Wilms J, Zezas A (2010) INTEGRAL deep observations of the Small Magellanic Cloud. Mon Not R Astron Soc 406:2533–2539. doi: 10.1111/j.1365-2966.2010.16844.x ADSGoogle Scholar
  52. Collins GW II (1963) Continuum emission from a rapidly rotating stellar atmosphere. Astrophys J 138:1134. doi: 10.1086/147712 ADSGoogle Scholar
  53. Collins GW II (1987) The use of terms and definitions in the study of Be stars. In: IAU Colloq 92: physics of Be stars, p 3 Google Scholar
  54. Collins GW II, Harrington JP (1966) Theoretical H-beta line profiles and related parameters for rotating B stars. Astrophys J 146:152. doi: 10.1086/148866 ADSGoogle Scholar
  55. Conti PS, Leep EM (1974) Spectroscopic observations of O-type stars. V. The hydrogen lines and λ4686 He ii. Astrophys J 193:113–124. doi: 10.1086/153135 ADSGoogle Scholar
  56. Cranmer SR (1996) Dynamical models of winds from rotating hot stars. Dissertation, Bartol Research Institute, University of Delaware. Available at
  57. Cranmer SR (2005) A statistical study of threshold rotation rates for the formation of disks around Be stars. Astrophys J 634:585–601. doi: 10.1086/491696 ADSGoogle Scholar
  58. Cranmer SR (2009) A pulsational mechanism for producing Keplerian disks around Be stars. Astrophys J 701:396–413. doi: 10.1088/0004-637X/701/1/396 ADSGoogle Scholar
  59. Curtiss RH (1926) Statistical studies of stars with spectra in class Be. J R Astron Soc Can 20:19 MathSciNetADSGoogle Scholar
  60. Cuypers J, Balona LA, Marang F (1989) Intensive photometry of southern Be variables. I—Winter objects. Astron Astrophys Suppl Ser 81:151–186 ADSGoogle Scholar
  61. Delaa O, Stee P, Meilland A, Zorec J, Mourard D, Bério P, Bonneau D, Chesneau O, Clausse JM, Cruzalebes P, Perraut K, Marcotto A, Roussel A, Spang A, McAlister H, ten Brummelaar T, Sturmann J, Sturmann L, Turner N, Farrington C, Goldfinger PJ (2011) Kinematics and geometrical study of the Be stars 48 Persei and ψ Persei with the VEGA/CHARA interferometer. Astron Astrophys 529:A87. doi: 10.1051/0004-6361/201015639 ADSGoogle Scholar
  62. de Mink SE, Langer N, Izzard RG, Sana H, de Koter A (2013) The rotation rates of massive stars: the role of binary interaction through tides, mass transfer, and mergers. Astrophys J 764:166. doi: 10.1088/0004-637X/764/2/166 ADSGoogle Scholar
  63. de Wit WJ, Lamers HJGLM, Marquette JB, Beaulieu JP (2006) The remarkable light and colour variability of Small Magellanic Cloud Be stars. Astron Astrophys 456:1027–1035. doi: 10.1051/0004-6361:20065137 ADSGoogle Scholar
  64. Diago PD, Gutiérrez-Soto J, Fabregat J, Martayan C (2008) Pulsating B and Be stars in the Small Magellanic Cloud. Astron Astrophys 480:179–186. doi: 10.1051/0004-6361:20078754 ADSGoogle Scholar
  65. Diago PD, Gutiérrez-Soto J, Auvergne M, Fabregat J, Hubert AM, Floquet M, Frémat Y, Garrido R, Andrade L, de Batz B, Emilio M, Espinosa Lara F, Huat AL, Janot-Pacheco E, Leroy B, Martayan C, Neiner C, Semaan T, Suso J, Catala C, Poretti E, Rainer M, Uytterhoeven K, Michel E, Samadi R (2009a) Pulsations in the late-type Be star HD 50209 detected by CoRoT. Astron Astrophys 506:125–131. doi: 10.1051/0004-6361/200911901 ADSGoogle Scholar
  66. Diago PD, Gutiérrez-Soto J, Fabregat J, Martayan C (2009b) More on pulsating B-type stars in the Magellanic Clouds. Commun Asteroseismol 158:184 ADSGoogle Scholar
  67. Doazan V, Marlborough JM, Morossi C, Peters GJ, Rusconi L, Sedmak G, Stalio R, Thomas RN, Willis A (1986) Ultraviolet and visual variability of ϑ CrB during a normal B-phase following a shell phase (1980–1985). Astron Astrophys 158:1–13 ADSGoogle Scholar
  68. Doazan V, Bourdonneau B, Rusconi L, Sedmak G, Thomas RN (1987) Long-term variability of the far-UV high-velocity components in γ Cas (1978–1986). Astron Astrophys 182:L25–L28 ADSGoogle Scholar
  69. Domiciano de Souza A, Kervella P, Jankov S, Abe L, Vakili F, di Folco E, Paresce F (2003) The spinning-top Be star Achernar from VLTI-VINCI. Astron Astrophys 407:L47–L50. doi: 10.1051/0004-6361:20030786 ADSGoogle Scholar
  70. Domiciano de Souza A, Hadjara M, Vakili F, Bendjoya P, Millour F, Abe L, Carciofi AC, Faes DM, Kervella P, Lagarde S, Marconi A, Monin JL, Niccolini G, Petrov RG, Weigelt G (2012a) Beyond the diffraction limit of optical/IR interferometers. I. Angular diameter and rotation parameters of Achernar from differential phases. Astron Astrophys 545:A130. doi: 10.1051/0004-6361/201218782 ADSGoogle Scholar
  71. Domiciano de Souza A, Zorec J, Vakili F (2012b) CHARRON: code for high angular resolution of rotating objects in nature. In: Boissier S, de Laverny P, Nardetto N, Samadi R, Valls-Gabaud D, Wozniak H (eds) SF2A-2012: proceedings of the annual meeting of the French society of astronomy and astrophysics, pp 321–324 Google Scholar
  72. Donati JF, Semel M, Carter BD, Rees DE, Collier Cameron A (1997) Spectropolarimetric observations of active stars. Mon Not R Astron Soc 291:658 ADSGoogle Scholar
  73. Dougherty SM, Taylor AR (1992) Resolution of the circumstellar gas around the Be star ψ Persei. Nature 359:808–810. doi: 10.1038/359808a0 ADSGoogle Scholar
  74. Draper ZH, Wisniewski JP, Bjorkman KS, Haubois X, Carciofi AC, Bjorkman JE, Meade MR, Okazaki A (2011) A new diagnostic of the radial density structure of Be disks. Astrophys J Lett 728:L40. doi: 10.1088/2041-8205/728/2/L40 ADSGoogle Scholar
  75. Dunstall PR, Brott I, Dufton PL, Lennon DJ, Evans CJ, Smartt SJ, Hunter I (2011) The VLT-FLAMES survey of massive stars: nitrogen abundances for Be-type stars in the Magellanic Clouds. Astron Astrophys 536:A65. doi: 10.1051/0004-6361/201117588 ADSGoogle Scholar
  76. Ekström S, Meynet G, Maeder A, Barblan F (2008) Evolution towards the critical limit and the origin of Be stars. Astron Astrophys 478:467–485. doi: 10.1051/0004-6361:20078095 ADSGoogle Scholar
  77. Emilio M, Andrade L, Janot-Pacheco E, Baglin A, Gutiérrez-Soto J, de Suárez JC, Batz B, Diago P, Fabregat J, Floquet M, Frémat Y, Huat AL, Hubert AM, Espinosa Lara F, Leroy B, Martayan C, Neiner C, Semaan T, Suso J (2010) Photometric variability of the Be star CoRoT-ID 102761769. Astron Astrophys 522:A43. doi: 10.1051/0004-6361/201014081 ADSGoogle Scholar
  78. Espinosa Lara F, Rieutord M (2011) Gravity darkening in rotating stars. Astron Astrophys 533:A43. doi: 10.1051/0004-6361/201117252 ADSGoogle Scholar
  79. Faes DM, Carciofi AC, Rivinius T, Štefl S, Baade D, Domiciano de Souza A (2013) Differential interferometric phases at high spectral resolution as a sensitive physical diagnostic of circumstellar disks. Astron Astrophys 555:A76. doi: 10.1051/0004-6361/201321313 ADSGoogle Scholar
  80. Floquet M, Hubert AM, Huat AL, Frémat Y, Janot-Pacheco E, Gutiérrez-Soto J, Neiner C, de Batz B, Leroy B, Poretti E, Amado P, Catala C, Rainer M, Diaz D, Uytterhoeven K, Andrade L, Diago PD, Emilio M, Espinosa Lara F, Fabregat J, Martayan C, Semaan T, Suso J (2009) The B0.5 IVe CoRoT target HD 49330. II. Spectroscopic ground-based observations. Astron Astrophys 506:103–110. doi: 10.1051/0004-6361/200911927 ADSGoogle Scholar
  81. Fox GK (1991) Stellar occultation of polarized light from circumstellar electrons. III—General axisymmetric envelopes. Astrophys J 379:663–675. doi: 10.1086/170540 ADSGoogle Scholar
  82. Frémat Y, Zorec J, Hubert AM, Floquet M (2005) Effects of gravitational darkening on the determination of fundamental parameters in fast-rotating B-type stars. Astron Astrophys 440:305–320. doi: 10.1051/0004-6361:20042229 ADSGoogle Scholar
  83. Gehrz RD, Hackwell JA, Jones TW (1974) Infrared observations of Be stars from 2.3 to 19.5 microns. Astrophys J 191:675–684. doi: 10.1086/153008 ADSGoogle Scholar
  84. Georgy C, Meynet G, Walder R, Folini D, Maeder A (2009) The different progenitors of type Ib, Ic SNe, and of GRB. Astron Astrophys 502:611–622. doi: 10.1051/0004-6361/200811339 ADSGoogle Scholar
  85. Gies DR, Bagnuolo WG Jr, Ferrara EC, Kaye AB, Thaller ML, Penny LR, Peters GJ (1998) Hubble space telescope Goddard high resolution spectrograph observations of the Be + sdO binary φ Persei. Astrophys J 493:440. doi: 10.1086/305113 ADSGoogle Scholar
  86. Gies DR, Bagnuolo WG Jr, Baines EK, ten Brummelaar TA, Farrington CD, Goldfinger PJ, Grundstrom ED, Huang W, McAlister HA, Mérand A, Sturmann J, Sturmann L, Touhami Y, Turner NH, Wingert DW, Berger DH, McSwain MV, Aufdenberg JP, Ridgway ST, Cochran AL, Lester DF, Sterling NC, Bjorkman JE, Bjorkman KS, Koubský P (2007) CHARA array K’-band measurements of the angular dimensions of Be star disks. Astrophys J 654:527–543. doi: 10.1086/509144 ADSGoogle Scholar
  87. Goss KJF, Karoff C, Chaplin WJ, Elsworth Y, Stevens IR (2011) Variations of the amplitudes of oscillation of the Be star Achernar. Mon Not R Astron Soc 411:162–166. doi: 10.1111/j.1365-2966.2010.17665.x ADSGoogle Scholar
  88. Grady CA, Bjorkman KS, Snow TP (1987) Highly ionized stellar winds in Be stars—the evidence for aspect dependence. Astrophys J 320:376–397. doi: 10.1086/165551 ADSGoogle Scholar
  89. Grady CA, Bjorkman KS, Snow TP, Sonneborn G, Shore SN, Barker PK (1989) Highly ionized stellar winds in Be stars. II—Winds in B6-B9.5e stars. Astrophys J 339:403–419. doi: 10.1086/167306 ADSGoogle Scholar
  90. Granada A, Ekström S, Georgy C, Krticka J, Owocki S, Meynet G, Maeder A (2013) Populations of rotating stars II. Rapid rotators and their link to Be-type stars. Astron Astrophys 553:A25. doi: 10.1051/0004-6361/201220559 ADSGoogle Scholar
  91. Groh JH, Damineli A, Hillier DJ, Barbá R, Fernández-Lajús E, Gamen RC, Moisés AP, Solivella G, Teodoro M (2009) Bona fide, strong-variable galactic luminous blue variable stars are fast rotators: detection of a high rotational velocity in HR Carinae. Astrophys J Lett 705:L25–L30. doi: 10.1088/0004-637X/705/1/L25 ADSGoogle Scholar
  92. Grundstrom ED, Gies DR (2006) Estimating Be star disk radii using Hα emission equivalent widths. Astrophys J Lett 651:L53–L56. doi: 10.1086/509635 ADSGoogle Scholar
  93. Grunhut JH, Rivinius T, Wade GA, Townsend RHD, Marcolino WLF, Bohlender DA, Szeifert T, Petit V, Matthews JM, Rowe JF, Moffat AFJ, Kallinger T, Kuschnig R, Guenther DB, Rucinski SM, Sasselov D, Weiss WW (2012) HR 5907: discovery of the most rapidly rotating magnetic early B-type star by the MiMeS collaboration. Mon Not R Astron Soc 419:1610–1627. doi: 10.1111/j.1365-2966.2011.19824.x ADSGoogle Scholar
  94. Guinan EF, Hayes DP (1984) The abrupt onset of a major ω Orionis mass loss episode. Astrophys J Lett 287:L39–L42. doi: 10.1086/184393 ADSGoogle Scholar
  95. Gutiérrez-Soto J, Fabregat J, Suso J, Suárez JC, Moya A, Garrido R, Hubert AM, Floquet M, Neiner C, Frémat Y (2007) Multiperiodic pulsations in the Be stars NW Serpentis and V1446 Aquilae. Astron Astrophys 472:565–570. doi: 10.1051/0004-6361:20077414 ADSGoogle Scholar
  96. Gutiérrez-Soto J, Floquet M, Samadi R, Neiner C, Garrido R, Fabregat J, Frémat Y, Diago PD, Huat AL, Leroy B, Emilio M, Hubert AM, de Andrade OTL, Batz B, Janot-Pacheco E, Espinosa Lara F, Martayan C, Semaan T, Suso J, Auvergne M, Chaintreuil S, Michel E, Catala C (2009) Low-amplitude variations detected by CoRoT in the B8 IIIe star HD 175869. Astron Astrophys 506:133–141. doi: 10.1051/0004-6361/200911915 ADSGoogle Scholar
  97. Gutiérrez-Soto J, Semaan T, Garrido R, Baudin F, Hubert AM, Neiner C (2010) Amplitude variations of the CoRoT Be star 102719279. Astron Nachr 331:P51 Google Scholar
  98. Gutiérrez-Soto J, Neiner C, Fabregat J, Lanza AF, Semaan T, Rainer M, Poretti E (2011) Short-term variations in Be stars observed by the CoRoT and Kepler space missions. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 451–456. doi: 10.1017/S1743921311011094 Google Scholar
  99. Haberl F, Sturm R, Ballet J, Bomans DJ, Buckley DAH, Coe MJ, Corbet R, Ehle M, Filipovic MD, Gilfanov M, Hatzidimitriou D, La Palombara N, Mereghetti S, Pietsch W, Snowden S, Tiengo A (2012) The XMM-Newton survey of the Small Magellanic Cloud. Astron Astrophys 545:A128. doi: 10.1051/0004-6361/201219758 ADSGoogle Scholar
  100. Halonen RJ, Jones CE (2013) On the intrinsic continuum linear polarization of classical Be stars during disk growth and dissipation. Astrophys J 765:17. doi: 10.1088/0004-637X/765/1/17 ADSGoogle Scholar
  101. Hanuschik RW (1995) Shell lines in disks around Be stars. 1: Simple approximations for Keplerian disks. Astron Astrophys 295:423–434 ADSGoogle Scholar
  102. Hanuschik RW (1996) On the structure of Be star disks. Astron Astrophys 308:170–179 ADSGoogle Scholar
  103. Hanuschik RW, Vrancken M (1996) Shell lines in 48 Lib: the discovery of narrow optical absorption components (NOACs). Astron Astrophys 312:L17–L20 ADSGoogle Scholar
  104. Hanuschik RW, Dachs J, Baudzus M, Thimm G (1993) Hα outbursts of μ Centauri—a clue to the Be phenomenon. Astron Astrophys 274:356 ADSGoogle Scholar
  105. Harmanec P (1983) Review of observational facts about Be stars. Hvar Obs Bull 7:55–88 ADSGoogle Scholar
  106. Harmanec P, Bisikalo DV, Boyarchuk AA, Kuznetsov OA (2002a) On the role of duplicity in the Be phenomenon. I. General considerations and the first attempt at a 3-D gas-dynamical modelling of gas outflow from hot and rapidly rotating OB stars in binaries. Astron Astrophys 396:937–948. doi: 10.1051/0004-6361:20021534 ADSGoogle Scholar
  107. Harmanec P, Bozić H, Percy JR, Yang S, Ruzdjak D, Sudar D, Wolf M, Iliev L, Huang L, Buil C, Eenens P (2002b) Properties and nature of Be stars. XXI. The long-term and the orbital variations of V832 Cyg=59 Cyg. Astron Astrophys 387:580–594. doi: 10.1051/0004-6361:20020453 ADSGoogle Scholar
  108. Harrington DM, Kuhn JR (2009a) Spectropolarimetric observations of herbig Ae/Be stars. II. Comparison of spectropolarimetric surveys: HAeBe, Be and other emission-line stars. Astrophys J Suppl Ser 180:138–181. doi: 10.1088/0067-0049/180/1/138 ADSGoogle Scholar
  109. Harrington DM, Kuhn JR (2009b) Ubiquitous Hα-polarized line profiles: absorptive spectropolarimetric effects and temporal variability in post-AGB, herbig Ae/Be, and other stellar types. Astrophys J 695:238–247. doi: 10.1088/0004-637X/695/1/238 ADSGoogle Scholar
  110. Hartmann L, Calvet N, Gullbring E, D’Alessio P (1998) Accretion and the evolution of T Tauri disks. Astrophys J 495:385. doi: 10.1086/305277 ADSGoogle Scholar
  111. Haubois X, Carciofi AC, Rivinius T, Okazaki AT, Bjorkman JE (2012) Dynamical evolution of viscous disks around Be stars. I. Photometry. Astrophys J 756:156. doi: 10.1088/0004-637X/756/2/156 ADSGoogle Scholar
  112. Henrichs HF, de Jong JA, Donati JF, Catala C, Wade GA, Shorlin SLS, Veen PM, Nichols JS, Kaper L (2000) The magnetic field of β Cep and the Be phenomenon. In: Smith MA, Henrichs HF, Fabregat J (eds) IAU colloq 175: the Be phenomenon in early-type stars. Astronomical society of the pacific conference series, vol 214, p 324 Google Scholar
  113. Henry GW, Smith MA (2012) Rotational and cyclical variability in γ Cassiopeiae. II. Fifteen seasons. Astrophys J 760:10. doi: 10.1088/0004-637X/760/1/10 ADSGoogle Scholar
  114. Hirata R (2007) Disk precession in Pleione. In: Štefl S, Owocki SP, Okazaki AT (eds) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361, p 267 Google Scholar
  115. Hoffleit D, Jaschek C (1991) The bright star catalogue. Yale University Observatory, New Haven Google Scholar
  116. Hoffman JL, Bjorkman J, Whitney B (eds) (2012) Stellar polarimetry: from birth to death. American institute of physics conference series, vol 1429 Google Scholar
  117. Howarth ID (2007) Rotation and the circumstellar environment. In: Štefl S, Owocki SP, Okazaki AT (eds) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361, p 15 Google Scholar
  118. Huang W, Gies DR, McSwain MV (2010) A stellar rotation census of B stars: from ZAMS to TAMS. Astrophys J 722:605–619. doi: 10.1088/0004-637X/722/1/605 ADSGoogle Scholar
  119. Huat AL, Hubert AM, Baudin F, Floquet M, Neiner C, Frémat Y, Gutiérrez-Soto J, Andrade L, de Batz B, Diago PD, Emilio M, Espinosa Lara F, Fabregat J, Janot-Pacheco E, Leroy B, Martayan C, Semaan T, Suso J, Auvergne M, Catala C, Michel E, Samadi R (2009) The B0.5 IVe CoRoT target HD 49330. I. Photometric analysis from CoRoT data. Astron Astrophys 506:95–101. doi: 10.1051/0004-6361/200911928 ADSGoogle Scholar
  120. Hubert AM, Floquet M (1998) Investigation of the variability of bright Be stars using HIPPARCOS photometry. Astron Astrophys 335:565–572 ADSGoogle Scholar
  121. Hubrig S, Yudin RV, Pogodin M, Schöller M, Peters GJ (2007) Evidence for weak magnetic fields in early-type emission stars. Astron Nachr 328:1133. doi: 10.1002/asna.200710877 ADSGoogle Scholar
  122. Hubrig S, Schöller M, Savanov I, Yudin RV, Pogodin MA, Štefl S, Rivinius T, Curé M (2009) Magnetic survey of emission line B-type stars with FORS 1 at the VLT. Astron Nachr 330:708. doi: 10.1002/asna.200911236 ADSGoogle Scholar
  123. Hummel W (1994) Line formation in Be star envelopes. 1: inhomogeneous density distributions. Astron Astrophys 289:458–468 ADSGoogle Scholar
  124. Hummel W (1998) On the spectacular variations of Be stars. Evidence for a temporarily tilted circumstellar disk. Astron Astrophys 330:243–252 ADSGoogle Scholar
  125. Hummel W, Štefl S (2001) The circumstellar structure of the Be shell star φ Persei. II. Modeling. Astron Astrophys 368:471–483. doi: 10.1051/0004-6361:20000559 ADSGoogle Scholar
  126. Hummel W, Vrancken M (2000) Line formation in Be star circumstellar disks Shear broadening, shell absorption, stellar obscuration and rotational parameter. Astron Astrophys 359:1075–1084 ADSGoogle Scholar
  127. Hunter I, Brott I, Lennon DJ, Langer N, Dufton PL, Trundle C, de Smartt SJ, Koter A, Evans CJ, Ryans RSI (2008) The VLT FLAMES survey of massive stars: rotation and nitrogen enrichment as the key to understanding massive star evolution. Astrophys J Lett 676:L29–L32. doi: 10.1086/587436 ADSGoogle Scholar
  128. Hunter I, Brott I, Langer N, Lennon DJ, Dufton PL, Howarth ID, Ryans RSI, Trundle C, de Evans CJ, Koter A, Smartt SJ (2009) The VLT-FLAMES survey of massive stars: constraints on stellar evolution from the chemical compositions of rapidly rotating galactic and Magellanic cloud B-type stars. Astron Astrophys 496:841–853. doi: 10.1051/0004-6361/200809925 ADSGoogle Scholar
  129. Ignace R, Gayley KG (eds) (2005) The nature and evolution of disks around hot stars. Astronomical society of the pacific conference series, vol 337 Google Scholar
  130. Jackson S, MacGregor KB, Skumanich A (2004) Models for the rapidly rotating Be star Achernar. Astrophys J 606:1196–1199. doi: 10.1086/383197 ADSGoogle Scholar
  131. Jaschek M, Slettebak A, Jaschek C (1981) Be star terminology. Be Star Newsl 4:9 ADSGoogle Scholar
  132. Jones CE, Sigut TAA, Marlborough JM (2004) Iron line cooling of Be star circumstellar discs. Mon Not R Astron Soc 352:841–846. doi: 10.1111/j.1365-2966.2004.07970.x ADSGoogle Scholar
  133. Jones CE, Sigut TAA, Porter JM (2008a) The circumstellar envelopes of Be stars: viscous disc dynamics. Mon Not R Astron Soc 386:1922–1930. doi: 10.1111/j.1365-2966.2008.13206.x ADSGoogle Scholar
  134. Jones CE, Tycner C, Sigut TAA, Benson JA, Hutter DJ (2008b) A parameter study of classical Be star disk models constrained by optical interferometry. Astrophys J 687:598–607. doi: 10.1086/591726 ADSGoogle Scholar
  135. Jones CE, Tycner C, Smith AD (2011) The variability of Hα equivalent widths in Be stars. Astron J 141:150. doi: 10.1088/0004-6256/141/5/150 ADSGoogle Scholar
  136. Jones CE, Wiegert P, Tycner C, Henry GW, Halonen R, Muterspaugh MW (2013) Using photometry to probe the environment of δ Scorpii. Astron J 145:142. doi: 10.1088/0004-6256/145/5/142 ADSGoogle Scholar
  137. Kaiser D (1989) Spectral energy distributions of Be stars. II—Determination of Be star parameters by comparison between measured and model spectra. Astron Astrophys 222:187–199 ADSGoogle Scholar
  138. Kanaan S, Meilland A, Stee P, Zorec J, Domiciano de Souza A, Frémat Y, Briot D (2008) Disk and wind evolution of Achernar: the breaking of the fellowship. Astron Astrophys 486:785–798. doi: 10.1051/0004-6361:20078868 ADSGoogle Scholar
  139. Kato S (1983) Low-frequency, one-armed oscillations of Keplerian gaseous disks. Publ Astron Soc Jpn 35:249–261 ADSGoogle Scholar
  140. Kaufer A, Stahl O, Prinja RK, Witherick D (2006) Multi-periodic photospheric pulsations and connected wind structures in HD 64760. Astron Astrophys 447:325–341. doi: 10.1051/0004-6361:20053847 ADSGoogle Scholar
  141. Keller SC (2004) Rotation of early B-type stars in the Large Magellanic Cloud: the role of evolution and metallicity. Publ Astron Soc Aust 21:310–317. doi: 10.1071/AS04024 ADSGoogle Scholar
  142. Keller SC, Bessell MS, Cook KH, Geha M, Syphers D (2002) Blue variable stars from the MACHO database. I. Photometry and spectroscopy of the Large Magellanic Cloud sample. Astron J 124:2039–2044. doi: 10.1086/342548 ADSGoogle Scholar
  143. Kervella P, Domiciano de Souza A (2006) The polar wind of the fast rotating Be star Achernar. VINCI/VLTI interferometric observations of an elongated polar envelope. Astron Astrophys 453:1059–1066. doi: 10.1051/0004-6361:20054771 ADSGoogle Scholar
  144. King AR, Pringle JE, Livio M (2007) Accretion disc viscosity: how big is alpha? Mon Not R Astron Soc 376:1740–1746. doi: 10.1111/j.1365-2966.2007.11556.x ADSGoogle Scholar
  145. Kochukhov O, Sudnik N (2013) Detectability of small-scale magnetic fields in early-type stars. Astron Astrophys 554:A93. doi: 10.1051/0004-6361/201321583 ADSGoogle Scholar
  146. Kogure T, Hirata R (1982) The Be star phenomena I. General properties. Bull Astron Soc India 10:281 ADSGoogle Scholar
  147. Koubský P, Harmanec P, Kubát J, Hubert AM, Božić H, Floquet M, Hadrava P, Hill G, Percy JR (1997) Properties and nature of Be stars. XVIII. Spectral, light and colour variations of 4 Herculis. Astron Astrophys 328:551–564 ADSGoogle Scholar
  148. Koubský P, Hummel CA, Harmanec P, Tycner C, van Leeuwen F, Yang S, Šlechta M, Božić H, Zavala RT, Ruždjak D, Sudar D (2010) Properties and nature of Be stars. 28. Implications of systematic observations for the nature of the multiple system with the Be star o Cassiopeæ and its circumstellar environment. Astron Astrophys 517:A24. doi: 10.1051/0004-6361/201014477 ADSGoogle Scholar
  149. Kraus S, Monnier JD, Che X, Schaefer G, Touhami Y, Gies DR, Aufdenberg JP, Baron F, Thureau N, ten Brummelaar TA, McAlister HA, Turner NH, Sturmann J, Sturmann L (2012) Gas distribution, kinematics, and excitation structure in the disks around the classical Be stars β Canis Minoris and Open image in new window Tauri. Astrophys J 744:19. doi: 10.1088/0004-637X/744/1/19 ADSGoogle Scholar
  150. Kříž S, Harmanec P (1975) A hypothesis of the binary origin of Be stars. Bull Astron Inst Czechoslov 26:65–81 ADSGoogle Scholar
  151. Kroll P (1995) Dreidimensionale Simulationen zirkumstellarer Strukturen in Symbiotischen Doppelsternen und Be-Sternen mit der Methode der Smoothed-Particle-Hydrodynamics auf Parallelrechnern. Dissertation, Univ. Tübingen Google Scholar
  152. Kroll P, Hanuschik RW (1997) Dynamics of self-accreting disks in Be stars. In: Wickramasinghe DT, Bicknell GV, Ferrario L (eds) IAU Colloq 163: accretion phenomena and related outflows. Astronomical society of the pacific conference series, vol 121, p 494 Google Scholar
  153. Krtička J, Owocki SP, Meynet G (2011) Mass and angular momentum loss via decretion disks. Astron Astrophys 527:A84. doi: 10.1051/0004-6361/201015951 ADSGoogle Scholar
  154. Lachaume R (2003) On marginally resolved objects in optical interferometry. Astron Astrophys 400:795–803. doi: 10.1051/0004-6361:20030072 ADSGoogle Scholar
  155. Lamers HJGLM, de Zickgraf FJ, Winter D, Houziaux L, Zorec J (1998) An improved classification of B[e]-type stars. Astron Astrophys 340:117–128 ADSGoogle Scholar
  156. Landstreet JD, Borra EF (1978) The magnetic field of Sigma Orionis E. Astrophys J Lett 224:L5–L8. doi: 10.1086/182746 ADSGoogle Scholar
  157. Lee U (2012) Amplitudes of low-frequency modes in rotating B-type stars. Mon Not R Astron Soc 420:2387–2398. doi: 10.1111/j.1365-2966.2011.20204.x ADSGoogle Scholar
  158. Lee U, Osaki Y, Saio H (1991) Viscous excretion discs around Be stars. Mon Not R Astron Soc 250:432–437 ADSGoogle Scholar
  159. Levenhagen RS, Leister NV, Künzel R (2011) Spectroscopic variabilities in λ Pavonis. Astron Astrophys 533:A75. doi: 10.1051/0004-6361/201116590 ADSGoogle Scholar
  160. Lubow SH, Seibert M, Artymowicz P (1999) Disk accretion onto high-mass planets. Astrophys J 526:1001–1012. doi: 10.1086/308045 ADSGoogle Scholar
  161. Lucy LB (1967) Gravity-darkening for stars with convective envelopes. Z Astrophys 65:89 ADSGoogle Scholar
  162. Maeder A (2009) Physics, formation and evolution of rotating stars. Astronomy and astrophysics library. Springer, Berlin. doi: 10.1007/978-3-540-76949-1 Google Scholar
  163. Maeder A, Meynet G (2000) Stellar evolution with rotation. VI. The Eddington and Omega limits, the rotational mass loss for OB and LBV stars. Astron Astrophys 361:159–166 ADSGoogle Scholar
  164. Maeder A, Meynet G (2001) Stellar evolution with rotation. VII. Low metallicity models and the blue to red supergiant ratio in the SMC. Astron Astrophys 373:555–571. doi: 10.1051/0004-6361:20010596 ADSGoogle Scholar
  165. Maeder A, Meynet G (2010) Evolution of massive stars with mass loss and rotation. New Astron Rev 54:32–38. doi: 10.1016/j.newar.2010.09.017 ADSGoogle Scholar
  166. Maeder A, Meynet G (2012) Rotating massive stars: from first stars to gamma ray bursts. Rev Mod Phys 84:25–63. doi: 10.1103/RevModPhys.84.25 ADSGoogle Scholar
  167. Maeder A, Grebel EK, Mermilliod JC (1999) Differences in the fractions of Be stars in galaxies. Astron Astrophys 346:459–464 ADSGoogle Scholar
  168. Maheswaran M (2003) Magnetic rotator winds and Keplerian disks of hot stars. Astrophys J 592:1156–1172. doi: 10.1086/375797 ADSGoogle Scholar
  169. Maintz M, Rivinius T, Štefl S, Baade D, Wolf B, Townsend RHD (2003) Stellar and circumstellar activity of the Be star ω CMa. III. Multiline non-radial pulsation modeling. Astron Astrophys 411:181–191. doi: 10.1051/0004-6361:20031375 ADSGoogle Scholar
  170. Martayan C, Frémat Y, Hubert AM, Floquet M, Zorec J, Neiner C (2006a) Effects of metallicity, star-formation conditions, and evolution in B and Be stars. I. Large Magellanic Cloud, field of NGC 2004. Astron Astrophys 452:273–284. doi: 10.1051/0004-6361:20053859 ADSGoogle Scholar
  171. Martayan C, Hubert AM, Floquet M, Fabregat J, Frémat Y, Neiner C, Stee P, Zorec J (2006b) A study of the B and Be star population in the field of the LMC open cluster NGC 2004 with VLT-FLAMES. Astron Astrophys 445:931–937. doi: 10.1051/0004-6361:20052760 ADSGoogle Scholar
  172. Martayan C, Floquet M, Hubert AM, Gutiérrez-Soto J, Fabregat J, Neiner C, Mekkas M (2007a) Be stars and binaries in the field of the SMC open cluster NGC 330 with VLT-FLAMES. Astron Astrophys 472:577–586. doi: 10.1051/0004-6361:20077390 ADSGoogle Scholar
  173. Martayan C, Frémat Y, Hubert AM, Floquet M, Zorec J, Neiner C (2007b) Effects of metallicity, star-formation conditions, and evolution in B and Be stars. II. Small Magellanic Cloud, field of NGC 330. Astron Astrophys 462:683–694. doi: 10.1051/0004-6361:20065076 ADSGoogle Scholar
  174. Martayan C, Floquet M, Hubert AM, Neiner C, Frémat Y, Baade D, Fabregat J (2008) Early-type objects in NGC 6611 and the eagle nebula. Astron Astrophys 489:459–480. doi: 10.1051/0004-6361:200809358 ADSGoogle Scholar
  175. Martayan C, Baade D, Fabregat J (2010a) A slitless spectroscopic survey for Hα emission-line objects in SMC clusters. Astron Astrophys 509:A11. doi: 10.1051/0004-6361/200911672 ADSGoogle Scholar
  176. Martayan C, Zorec J, Frémat Y, Ekström S (2010b) Can massive Be/Oe stars be progenitors of long gamma ray bursts? Astron Astrophys 516:A103. doi: 10.1051/0004-6361/200913079 ADSGoogle Scholar
  177. Martayan C, Rivinius T, Baade D, Hubert AM, Zorec J (2011) Populations of Be stars: stellar evolution of extreme stars. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 242–253. doi: 10.1017/S1743921311010489 Google Scholar
  178. Martin RG, Pringle JE, Tout CA, Lubow SH (2011) Tidal warping and precession of Be star decretion discs. Mon Not R Astron Soc 416:2827–2839. doi: 10.1111/j.1365-2966.2011.19231.x ADSGoogle Scholar
  179. Mathew B, Subramaniam A, Bhatt BC (2008) Be phenomenon in open clusters: results from a survey of emission-line stars in young open clusters. Mon Not R Astron Soc 388:1879–1888. doi: 10.1111/j.1365-2966.2008.13533.x ADSGoogle Scholar
  180. Mathis S, Neiner C, Tran Minh N (2013) Impact of rotation on stochastic excitation of gravity and gravito-inertial waves in stars. Astron Astrophys (in press) Google Scholar
  181. McAlister HA, ten Brummelaar TA, Gies DR, Huang W, Bagnuolo WG Jr, Shure MA, Sturmann J, Sturmann L, Turner NH, Taylor SF, Berger DH, Baines EK, Grundstrom E, Ogden C, Ridgway ST, van Belle G (2005) First results from the CHARA array. I. An interferometric and spectroscopic study of the fast rotator α Leonis (Regulus). Astrophys J 628:439–452. doi: 10.1086/430730 ADSGoogle Scholar
  182. McBride VA, Coe MJ, Negueruela I, Schurch MPE, McGowan KE (2008) Spectral distribution of Be/X-ray binaries in the Small Magellanic Cloud. Mon Not R Astron Soc 388:1198–1204. doi: 10.1111/j.1365-2966.2008.13410.x ADSGoogle Scholar
  183. McBride VA, Bird AJ, Coe MJ, Townsend LJ, Corbet RHD, Haberl F (2010) The Magellanic bridge: evidence for a population of X-ray binaries. Mon Not R Astron Soc 403:709–713. doi: 10.1111/j.1365-2966.2009.16178.x ADSGoogle Scholar
  184. McDavid D, Bjorkman KS, Bjorkman JE, Okazaki AT (2000) A connection between V/R and polarization in Be stars. In: Smith MA, Henrichs HF, Fabregat J (eds) IAU colloq 175: the Be phenomenon in early-type stars. Astronomical society of the pacific conference series, vol 214, p 460 Google Scholar
  185. McGill MA, Sigut TAA, Jones CE (2011) The thermal structure of gravitationally darkened classical Be star disks. Astrophys J 743:111. doi: 10.1088/0004-637X/743/2/111 ADSGoogle Scholar
  186. McGill MA, Sigut TAA, Jones CE (2013) The effect of density on the thermal structure of gravitationally darkened Be star disks. Astrophys J Suppl Ser 204:2. doi: 10.1088/0067-0049/204/1/2 ADSGoogle Scholar
  187. McSwain MV, Gies DR (2005) The evolutionary status of Be stars: results from a photometric study of southern open clusters. Astrophys J Suppl Ser 161:118–146. doi: 10.1086/432757 ADSGoogle Scholar
  188. McSwain MV, Huang W, Gies DR, Grundstrom ED, Townsend RHD (2008) The B and Be star population of NGC 3766. Astrophys J 672:590–603. doi: 10.1086/523934 ADSGoogle Scholar
  189. Meilland A, Millour F, Stee P, Domiciano de Souza A, Petrov RG, Mourard D, Jankov S, Robbe-Dubois S, Spang A, Aristidi E, Antonelli P, Beckmann U, Bresson Y, Chelli A, Dugué M, Duvert G, Gennari S, Glück L, Kern P, Lagarde S, Le Coarer E, Lisi F, Malbet F, Perraut K, Puget P, Rantakyrö F, Roussel A, Tatulli E, Weigelt G, Zins G, Accardo M, Acke B, Agabi K, Altariba E, Arezki B, Baffa C, Behrend J, Blöcker T, Bonhomme S, Busoni S, Cassaing F, Clausse JM, Colin J, Connot C, Delboulbé A, Driebe T, Feautrier P, Ferruzzi D, Forveille T, Fossat E, Foy R, Fraix-Burnet D, Gallardo A, Giani E, Gil C, Glentzlin A, Heiden M, Heininger M, Hernandez Utrera O, Hofmann KH, Kamm D, Kiekebusch M, Kraus S, Le Contel D, Le Contel JM, Lesourd T, Lopez B, Lopez M, Magnard Y, Marconi A, Mars G, Martinot-Lagarde G, Mathias P, Mège P, Monin JL, Mouillet D, Nussbaum E, Ohnaka K, Pacheco J, Perrier C, Rabbia Y, Rebattu S, Reynaud F, Richichi A, Robini A, Sacchettini M, Schertl D, Schöller M, Solscheid W, Stefanini P, Tallon M, Tallon-Bosc I, Tasso D, Testi L, Vakili F, von der Lühe O, Valtier JC, Vannier M, Ventura N (2007a) An asymmetry detected in the disk of κ Canis Majoris with AMBER/VLTI. Astron Astrophys 464:73–79. doi: 10.1051/0004-6361:20065410 ADSGoogle Scholar
  190. Meilland A, Stee P, Vannier M, Millour F, Domiciano de Souza A, Malbet F, Martayan C, Paresce F, Petrov RG, Richichi A, Spang A (2007b) First direct detection of a Keplerian rotating disk around the Be star α Arae using AMBER/VLTI. Astron Astrophys 464:59–71. doi: 10.1051/0004-6361:20064848 ADSGoogle Scholar
  191. Meilland A, Stee P, Chesneau O, Jones C (2009) VLTI/MIDI observations of 7 classical Be stars. Astron Astrophys 505:687–693. doi: 10.1051/0004-6361/200911960 ADSGoogle Scholar
  192. Meilland A, Millour F, Kanaan S, Stee P, Petrov R, Hofmann KH, Natta A, Perraut K (2012) First spectro-interferometric survey of Be stars. I. Observations and constraints on the disk geometry and kinematics. Astron Astrophys 538:A110. doi: 10.1051/0004-6361/201117955 ADSGoogle Scholar
  193. Mennickent RE, Sterken C, Vogt N (1997) Coupled long-term photometric and V/R variations in Be stars: evidence for prograde global one-armed disk oscillations. Astron Astrophys 326:1167–1175 ADSGoogle Scholar
  194. Mennickent RE, Pietrzyński G, Gieren W, Szewczyk O (2002) On Be star candidates and possible blue pre-main sequence objects in the Small Magellanic Cloud. Astron Astrophys 393:887–896. doi: 10.1051/0004-6361:20020916 ADSGoogle Scholar
  195. Meynet G, Maeder A (2002) Stellar evolution with rotation. VIII. Models at Z=10−5 and CNO yields for early galactic evolution. Astron Astrophys 390:561–583. doi: 10.1051/0004-6361:20020755 ADSGoogle Scholar
  196. Meynet G, Georgy C, Revaz Y, Walder R, Ekström S, Maeder A (2010) Models of stars rotating near the critical limit. In: Revista Mexicana de astronomia y astrofisica conference series, vol 38, pp 113–116 Google Scholar
  197. Millar CE, Marlborough JM (1998) Rates of energy gain and loss in the circumstellar envelopes of Be stars: the Poeckert-Marlborough model. Astrophys J 494:715. doi: 10.1086/305229 ADSGoogle Scholar
  198. Millar CE, Marlborough JM (1999) Rates of energy gain and loss in the circumstellar envelopes of Be stars: diffuse radiation. Astrophys J 516:276–279. doi: 10.1086/307098 ADSGoogle Scholar
  199. Miroshnichenko AS, Fabregat J, Bjorkman KS, Knauth DC, Morrison ND, Tarasov AE, Reig P, Negueruela I, Blay P (2001) Spectroscopic observations of the δ Scorpii binary during its recent periastron passage. Astron Astrophys 377:485–495. doi: 10.1051/0004-6361:20010911 ADSGoogle Scholar
  200. Mokiem MR, de Koter A, Vink JS, Puls J, Evans CJ, Smartt SJ, Crowther PA, Herrero A, Langer N, Lennon DJ, Najarro F, Villamariz MR (2007) The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars. Astron Astrophys 473:603–614. doi: 10.1051/0004-6361:20077545 ADSGoogle Scholar
  201. Moujtahid A, Zorec J, Hubert AM, Garcia A, Burki G (1998) Long-term visual spectrophotometric behaviour of Be stars. Astron Astrophys Suppl Ser 129:289–311. doi: 10.1051/aas:1998186 ADSGoogle Scholar
  202. Negueruela I, Steele IA, Bernabeu G (2004) On the class of Oe stars. Astron Nachr 325:749–760. doi: 10.1002/ansa.200310258 ADSGoogle Scholar
  203. Neiner C, Hubert AM, Frémat Y, Floquet M, Jankov S, Preuss O, Henrichs HF, Zorec J (2003) Rotation and magnetic field in the Be star ω Orionis. Astron Astrophys 409:275–286. doi: 10.1051/0004-6361:20031086 ADSGoogle Scholar
  204. Neiner C, Gutiérrez-Soto J, de Baudin F, Batz B, Frémat Y, Huat AL, Floquet M, Hubert AM, Leroy B, Diago PD, Poretti E, Carrier F, Rainer M, Catala C, Thizy O, Buil C, Ribeiro J, Andrade L, Emilio M, Espinosa Lara F, Fabregat J, Janot-Pacheco E, Martayan C, Semaan T, Suso J, Baglin A, Michel E, Samadi R (2009) The pulsations of the B5 IVe star HD 181231 observed with CoRoT and ground-based spectroscopy. Astron Astrophys 506:143–151. doi: 10.1051/0004-6361/200911971 ADSGoogle Scholar
  205. Neiner C, de Batz B, Cochard F, Floquet M, Mekkas A, Desnoux V (2011a) The Be star spectra (BeSS) database. Astron J 142:149. doi: 10.1088/0004-6256/142/5/149 ADSGoogle Scholar
  206. Neiner C, Wade G, Meynet G, Peters G (eds) (2011b) Active OB stars: structure, evolution, mass loss, and critical limits. IAU symposium, vol 272 Google Scholar
  207. Neiner C, Floquet M, Samadi R, Espinosa Lara F, Frémat Y, Mathis S, de Leroy B, Batz B, Rainer M, Poretti E, Mathias P, Guarro Fló J, Buil C, Ribeiro J, Alecian E, Andrade L, Briquet M, Diago PD, Emilio M, Fabregat J, Gutiérrez-Soto J, Hubert AM, Janot-Pacheco E, Martayan C, Semaan T, Suso J, Zorec J (2012a) Stochastic gravito-inertial modes discovered by CoRoT in the hot Be star HD 51452. Astron Astrophys 546:A47. doi: 10.1051/0004-6361/201219820 ADSGoogle Scholar
  208. Neiner C, Grunhut JH, Petit V, ud-Doula A, Wade GA, Landstreet J, de Batz B, Cochard F, Gutiérrez-Soto J, Huat AL (2012b) An investigation of the magnetic properties of the classical Be star ω Ori by the MiMeS collaboration. Mon Not R Astron Soc 426:2738–2750. doi: 10.1111/j.1365-2966.2012.21833.x ADSGoogle Scholar
  209. Neiner C, Mathis S, Saio H, Lee U (2013) Be star outbursts: transport of angular momentum by waves. In: Shibahashi H, Lynas-Gray AE (eds) Progress in physics of the sun and stars: a new era in helio- and asteroseismology. Astronomical society of the pacific conference series (in press) Google Scholar
  210. Nelson RP, Papaloizou JCB, Masset F, Kley W (2000) The migration and growth of protoplanets in protostellar discs. Mon Not R Astron Soc 318:18–36. doi: 10.1046/j.1365-8711.2000.03605.x ADSGoogle Scholar
  211. Nemravová J, Harmanec P, Kubát J, Koubský P, Iliev L, Yang S, Ribeiro J, Šlechta M, Kotková L, Wolf M, Škoda P (2010) Properties and nature of Be stars. 27. Orbital and recent long-term variations of the pleiades Be star Pleione = BU Tauri. Astron Astrophys 516:A80. doi: 10.1051/0004-6361/200913885 ADSGoogle Scholar
  212. Ogilvie GI (2008) 3D eccentric discs around Be stars. Mon Not R Astron Soc 388:1372–1380. doi: 10.1111/j.1365-2966.2008.13484.x ADSGoogle Scholar
  213. Okazaki AT (1991) Long-term V/R variations of Be stars due to global one-armed oscillations of equatorial disks. Publ Astron Soc Jpn 43:75–94 ADSGoogle Scholar
  214. Okazaki AT (1997) On the confinement of one-armed oscillations in discs of Be stars. Astron Astrophys 318:548–560 ADSGoogle Scholar
  215. Okazaki AT (2001) Viscous transsonic decretion in disks of Be stars. Publ Astron Soc Jpn 53:119–125 ADSGoogle Scholar
  216. Okazaki AT (2007) Theory vs observation of circumstellar disks and their formation. In: Štefl S, Owocki SP, Okazaki AT (eds) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361, p 230 Google Scholar
  217. Okazaki AT, Bate MR, Ogilvie GI, Pringle JE (2002) Viscous effects on the interaction between the coplanar decretion disc and the neutron star in Be/X-ray binaries. Mon Not R Astron Soc 337:967–980. doi: 10.1046/j.1365-8711.2002.05960.x ADSGoogle Scholar
  218. Oudmaijer RD, Parr AM (2010) The binary fraction and mass ratio of Be and B stars: a comparative very large Telescope/NACO study. Mon Not R Astron Soc 405:2439–2446. doi: 10.1111/j.1365-2966.2010.16609.x ADSGoogle Scholar
  219. Owocki SP (2006) Formation and evolution of disks around classical Be stars. In: Kraus M, Miroshnichenko AS (eds) Stars with the B[e] phenomenon. Astronomical society of the pacific conference series, vol 355, p 219 Google Scholar
  220. Owocki SP, Cranmer SR, Gayley KG (1996) Inhibition of wind compressed disk formation by nonradial line-forces in rotating hot-star winds. Astrophys J Lett 472:L115. doi: 10.1086/310372 ADSGoogle Scholar
  221. Papaloizou JCB, Lin DNC (1995) Theory of accretion disks I: angular momentum transport processes. Annu Rev Astron Astrophys 33:505–540. doi: 10.1146/annurev.aa.33.090195.002445 ADSGoogle Scholar
  222. Papaloizou JCB, Savonije GJ (2006) One-armed oscillations in Be star discs. Astron Astrophys 456:1097–1104. doi: 10.1051/0004-6361:20065407 ADSGoogle Scholar
  223. Papaloizou JCB, Savonije GJ, Henrichs HF (1992) On the long-term periodicities in Be stars. Astron Astrophys 265:L45–L48 ADSGoogle Scholar
  224. Pápics PI, Briquet M, Auvergne M, Aerts C, Degroote P, Niemczura E, Vučković M, Smolders K, Poretti E, Rainer M, Hareter M, Baglin A, Baudin F, Catala C, Michel E, Samadi R (2011) CoRoT high-precision photometry of the B0.5 IV star HD 51756. Astron Astrophys 528:A123. doi: 10.1051/0004-6361/201016131 ADSGoogle Scholar
  225. Paul KT, Subramaniam A, Mathew B, Mennickent RE, Sabogal B (2012) Study of candidate Be stars in the Magellanic Clouds using near-infrared photometry and optical spectroscopy. Mon Not R Astron Soc 421:3622–3640. doi: 10.1111/j.1365-2966.2012.20591.x ADSGoogle Scholar
  226. Peters GJ (1986) Observation of the onset of an emission episode in the Be star μ Centauri. Astrophys J Lett 301:L61–L65. doi: 10.1086/184624 ADSGoogle Scholar
  227. Peters GJ (2001) HR 2142, thirty years after it was hypothesized to be an interacting binary. Publ Astron Inst Czech Acad Sci 89:30–35 Google Scholar
  228. Peters GJ, Gies DR (2002) The interacting binary Be star HR 2142. In: Tout CA, van Hamme W (eds) Exotic stars as challenges to evolution. Astronomical society of the pacific conference series, vol 279, p 149 Google Scholar
  229. Peters GJ, Gies DR, Grundstrom ED, McSwain MV (2008) Detection of a hot subdwarf companion to the Be star FY Canis Majoris. Astrophys J 686:1280–1291. doi: 10.1086/591145 ADSGoogle Scholar
  230. Peters GJ, Pewett TD, Gies DR, Touhami YN, Grundstrom ED (2013) Far-ultraviolet detection of the suspected subdwarf companion to the Be star 59 Cygni. Astrophys J 765:2. doi: 10.1088/0004-637X/765/1/2 ADSGoogle Scholar
  231. Petit V, Owocki SP, Wade GA, Cohen DH, Sundqvist JO, Gagné M, Maíz Apellániz J, Oksala ME, Bohlender DA, Rivinius T, Henrichs HF, Alecian E, Townsend RHD, ud-Doula A (MiMeS Collaboration) (2013) A magnetic confinement versus rotation classification of massive-star magnetospheres. Mon Not R Astron Soc 429:398–422. doi: 10.1093/mnras/sts344 ADSGoogle Scholar
  232. Petrov HG, Lagarde S, N’guyen van Ky M (1996) Differential interferometry imaging. In: Strassmeier KG, Linsky JL (eds) Stellar surface structure. IAU symposium, vol 176, p 181 Google Scholar
  233. Podsiadlowski P, Rappaport S, Han Z (2003) On the formation and evolution of black hole binaries. Mon Not R Astron Soc 341:385–404. doi: 10.1046/j.1365-8711.2003.06464.x ADSGoogle Scholar
  234. Poeckert R (1981) A spectroscopic study of the binary Be star φ Persei. Publ Astron Soc Pac 93:297–317. doi: 10.1086/130828 ADSGoogle Scholar
  235. Pollmann E (2012) Period analysis of the Hα line profile variation of the Be binary star π Aqr. Inf Bull Var Stars 6023:1 ADSGoogle Scholar
  236. Pols OR, Cote J, Waters LBFM, Heise J (1991) The formation of Be stars through close binary evolution. Astron Astrophys 241:419–438 ADSGoogle Scholar
  237. Porter JM (1996) On the rotational velocities of Be and Be-shell stars. Mon Not R Astron Soc 280:L31–L35 ADSGoogle Scholar
  238. Porter JM (1997) Continuum IR emission of Be star wind-compressed discs. Astron Astrophys 324:597–605 ADSGoogle Scholar
  239. Porter JM (1999) On outflowing viscous disc models for Be stars. Astron Astrophys 348:512–518 ADSGoogle Scholar
  240. Porter JM, Rivinius T (2003) Classical Be stars. Publ Astron Soc Pac 115:1153–1170. doi: 10.1086/378307 ADSGoogle Scholar
  241. Pott JU, Woillez J, Ragland S, Wizinowich PL, Eisner JA, Monnier JD, Akeson RL, Ghez AM, Graham JR, Hillenbrand LA, Millan-Gabet R, Appleby E, Berkey B, Colavita MM, Cooper A, Felizardo C, Herstein J, Hrynevych M, Medeiros D, Morrison D, Panteleeva T, Smith B, Summers K, Tsubota K, Tyau C, Wetherell E (2010) Probing local density inhomogeneities in the circumstellar disk of a Be star using the new spectro-astrometry mode at the Keck interferometer. Astrophys J 721:802–808. doi: 10.1088/0004-637X/721/1/802 ADSGoogle Scholar
  242. Pringle JE (1981) Accretion discs in astrophysics. Annu Rev Astron Astrophys 19:137–162. doi: 10.1146/annurev.aa.19.090181.001033 ADSGoogle Scholar
  243. Pringle JE (1991) The properties of external accretion discs. Mon Not R Astron Soc 248:754–759 ADSGoogle Scholar
  244. Pringle JE (1992) Circumstellar discs. In: Drissen L, Leitherer C, Nota A (eds) Nonisotropic and variable outflows from stars. Astronomical society of the pacific conference series, vol 22, p 14 Google Scholar
  245. Puls J, Vink JS, Najarro F (2008) Mass loss from hot massive stars. Astron Astrophys Rev 16:209–325. doi: 10.1007/s00159-008-0015-8 ADSGoogle Scholar
  246. Quirrenbach A, Buscher DF, Mozurkewich D, Hummel CA, Armstrong JT (1994) Maximum-entropy maps of the Be shell star Open image in new window Tauri from optical long-baseline interferometry. Astron Astrophys 283:L13–L16 ADSGoogle Scholar
  247. Quirrenbach A, Bjorkman KS, Bjorkman JE, Hummel CA, Buscher DF, Armstrong JT, Mozurkewich D, Elias NM II, Babler BL (1997) Constraints on the geometry of circumstellar envelopes: optical interferometric and spectropolarimetric observations of seven Be stars. Astrophys J 479:477. doi: 10.1086/303854 ADSGoogle Scholar
  248. Rauw G, Nazé Y, Spano M, Morel T, ud-Doula A (2013) HD45314: a new γ Cas analog among Oe stars. Astron Astrophys 555:L9. doi: 10.1051/0004-6361/201321774 ADSGoogle Scholar
  249. Reese DR, MacGregor KB, Jackson S, Skumanich A, Metcalfe TS (2009) Pulsation modes in rapidly rotating stellar models based on the self-consistent field method. Astron Astrophys 506:189–201. doi: 10.1051/0004-6361/200811510 ADSGoogle Scholar
  250. Reese DR, Prat V, Barban C, van ’t Veer-Menneret C, MacGregor KB (2013) Mode visibilities in rapidly rotating stars. Astron Astrophys 550:A77. doi: 10.1051/0004-6361/201220506 ADSGoogle Scholar
  251. Reid WA, Parker QA (2012) Emission-line stars discovered in the UKST Hα survey of the Large Magellanic Cloud—I. Hot stars. Mon Not R Astron Soc 425:355–404. doi: 10.1111/j.1365-2966.2012.21471.x ADSGoogle Scholar
  252. Reig P (2011) Be/X-ray binaries. Astrophys Space Sci 332:1–29. doi: 10.1007/s10509-010-0575-8 ADSGoogle Scholar
  253. Reig P, Roche P (1999) Discovery of two new persistent Be/X-ray pulsar systems. Mon Not R Astron Soc 306:100–106. doi: 10.1046/j.1365-8711.1999.02473.x ADSGoogle Scholar
  254. Rivinius T, Curé M (eds) (2010) The interferometric view on hot stars. Revista Mexicana de astronomía y astrofísica conference series, vol 38 Google Scholar
  255. Rivinius T, Baade D, Štefl S et al. (1998b) Predicting the outbursts of the Be star μ Cen. In: Kaper L, Fullerton AW (eds) Cyclical variability in stellar winds, p 207 Google Scholar
  256. Rivinius T, Baade D, Stefl S, Stahl O, Wolf B, Kaufer A (1998a) Stellar and circumstellar activity of the Be star μ Centauri. I. Line emission outbursts. Astron Astrophys 333:125–140 ADSGoogle Scholar
  257. Rivinius T, Štefl S, Baade D (1999) Central quasi-emission peaks in shell spectra and the rotation of disks of Be stars. Astron Astrophys 348:831–842 ADSGoogle Scholar
  258. Rivinius T, Baade D, Štefl S, Maintz M (2001) Evolution in circumstellar envelopes of Be stars: from disks to rings? Astron Astrophys 379:257–269. doi: 10.1051/0004-6361:20011335 ADSGoogle Scholar
  259. Rivinius T, Baade D, Štefl S (2003) Non-radially pulsating Be stars. Astron Astrophys 411:229–247. doi: 10.1051/0004-6361:20031285 ADSGoogle Scholar
  260. Rivinius T, Štefl S, Baade D (2006) Bright Be-shell stars. Astron Astrophys 459:137–145. doi: 10.1051/0004-6361:20053008 ADSGoogle Scholar
  261. Rivinius T, Szeifert T, Barrera L, Townsend RHD, Štefl S, Baade D (2010) Magnetic field detection in the B2Vn star HR 7355. Mon Not R Astron Soc 405:L46–L50. doi: 10.1111/j.1745-3933.2010.00856.x ADSGoogle Scholar
  262. Rivinius T, Baade D, Townsend RHD, Carciofi AC, Štefl S (2013) Variable rotational line broadening in the Be star Achernar. Astron Astrophys (letter in press). doi: 10.1051/0004-6361/201322515 Google Scholar
  263. Robinson RD, Smith MA, Henry GW (2002) X-ray and optical variations in the classical Be star γ Cassiopeia: the discovery of a possible magnetic dynamo. Astrophys J 575:435–448. doi: 10.1086/341141 ADSGoogle Scholar
  264. Rogers TM, Lin DNC, McElwaine JN, Lau HHB (2013) Internal gravity waves in massive stars: angular momentum transport. Astrophys J 772:21. doi: 10.1088/0004-637X/772/1/21 ADSGoogle Scholar
  265. Ruždjak D, Božić H, Harmanec P, Fiřt R, Chadima P, Bjorkman K, Gies DR, Kaye AB, Koubský P, McDavid D, Richardson N, Sudar D, Šlechta M, Wolf M, Yang S (2009) Properties and nature of Be stars. 26. Long-term and orbital changes of Open image in new window Tauri. Astron Astrophys 506:1319–1333. doi: 10.1051/0004-6361/200810526 ADSGoogle Scholar
  266. Saad SM, Kubát J, Koubský P, Harmanec P, Škoda P, Korčáková D, Krtička J, Šlechta M, Božić H, Ak H, Hadrava P, Votruba V (2004) Properties and nature of Be stars Dra. XXIII. Long-term variations and physical properties of Open image in new window Dra. Astron Astrophys 419:607–621. doi: 10.1051/0004-6361:20034241 ADSGoogle Scholar
  267. Saad SM, Kubát J, Hadrava P, Harmanec P, Koubský P, Škoda P, Šlechta M, Korčáková D, Yang S (2005) Spectrum disentangling and orbital solution for Open image in new window Dra. Astrophys Space Sci 296:173–177. doi: 10.1007/s10509-005-4438-7 ADSGoogle Scholar
  268. Saio H (2013) Prospects for asteroseismology of rapidly rotating B-type stars. In: Goupil M, Belkacem K, Neiner C, Lignières F, Green JJ (eds) Lecture notes in physics, vol 865. Springer, Berlin, p 159. doi: 10.1007/978-3-642-33380-4_8 Google Scholar
  269. Saio H, Cameron C, Kuschnig R, Walker GAH, Matthews JM, Rowe JF, Lee U, Huber D, Weiss WW, Guenther DB, Moffat AFJ, Rucinski SM, Sasselov D (2007) MOST detects g-modes in the late-type Be star β Canis Minoris (B8 ve). Astrophys J 654:544–550. doi: 10.1086/509315 ADSGoogle Scholar
  270. Sana H, de Mink SE, de Koter A, Langer N, Evans CJ, Gieles M, Gosset E, Izzard RG, Le Bouquin JB, Schneider FRN (2012) Binary interaction dominates the evolution of massive stars. Science 337:444. doi: 10.1126/science.1223344 ADSGoogle Scholar
  271. Savonije GJ (2005) Unstable quasi g-modes in rotating main-sequence stars. Astron Astrophys 443:557–570. doi: 10.1051/0004-6361:20053328 ADSGoogle Scholar
  272. Savonije GJ (2007) Non-radial oscillations of the rapidly rotating Be star HD 163868. Astron Astrophys 469:1057–1062. doi: 10.1051/0004-6361:20077377 ADSGoogle Scholar
  273. Schaefer GH, Gies DR, Monnier JD, Richardson ND, Touhami Y, Zhao M, Che X, Pedretti E, Thureau N, ten Brummelaar T, McAlister HA, Ridgway ST, Sturmann J, Sturmann L, Turner NH, Farrington CD, Goldfinger PJ (2010) Multi-epoch near-infrared interferometry of the spatially resolved disk around the Be star Open image in new window Tau. Astron J 140:1838–1849. doi: 10.1088/0004-6256/140/6/1838 ADSGoogle Scholar
  274. Schnerr RS, Henrichs HF, Oudmaijer RD, Telting JH (2006) On the Hα emission from the β Cephei system. Astron Astrophys 459:L21–L24. doi: 10.1051/0004-6361:20066392 ADSGoogle Scholar
  275. Secchi A (1866) Schreiben des Herrn Prof. Secchi, Directors der Sternwarte des Collegio Romano, an den Herausgeber. Astron Nachr 68:63. doi: 10.1002/asna.18670680405 ADSGoogle Scholar
  276. Semaan T (2012) Caractéristiques spectrales et pulsationelles d’etoiles Be á l’aide de données sol (VLT/GIRAFFE et X-SHOOTER) et espace (CoRoT). Dissertation, École Doctorale d’Astronomie & Astrophysisque d’Île-de-France Google Scholar
  277. Semaan T, Martayan C, Frémat Y, Hubert AM, Soto JG, Neiner C, Zorec J (2011) Spectral and photometric study of Be stars in the first exoplanet fields of CoRoT. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 547–548. doi: 10.1017/S1743921311011409 Google Scholar
  278. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355 ADSGoogle Scholar
  279. Sigut TAA, Jones CE (2007) The thermal structure of the circumstellar disk surrounding the classical Be star γ Cassiopeiae. Astrophys J 668:481–491. doi: 10.1086/521209 ADSGoogle Scholar
  280. Sigut TAA, Patel P (2013) The correlation between Hα emission and visual magnitude during long-term variations in classical Be stars. Astrophys J 765:41. doi: 10.1088/0004-637X/765/1/41 ADSGoogle Scholar
  281. Sigut TAA, McGill MA, Jones CE (2009) Be star disk models in consistent vertical hydrostatic equilibrium. Astrophys J 699:1973–1981. doi: 10.1088/0004-637X/699/2/1973 ADSGoogle Scholar
  282. Silaj J, Jones CE, Tycner C, Sigut TAA, Smith AD (2010) A systematic study of Hα profiles of Be stars. Astrophys J Suppl Ser 187:228–250. doi: 10.1088/0067-0049/187/1/228 ADSGoogle Scholar
  283. Silvester J, Neiner C, Henrichs HF, Wade GA, Petit V, Alecian E, Huat AL, Martayan C, Power J, Thizy O (2009) On the incidence of magnetic fields in slowly pulsating B, β Cephei and B-type emission-line stars. Mon Not R Astron Soc 398:1505–1511. doi: 10.1111/j.1365-2966.2009.15208.x ADSGoogle Scholar
  284. Slettebak A (1986) Hα and near-infrared spectra of late-type Be and A F-type shell stars. Publ Astron Soc Pac 98:867–871. doi: 10.1086/131836 ADSGoogle Scholar
  285. Slettebak A (1988) The Be stars. Publ Astron Soc Pac 100:770–784. doi: 10.1086/132234 ADSGoogle Scholar
  286. Smith MA (2006) Variations of the He ii λ1640 line in B0e-B2.5e stars. Astron Astrophys 459:215–227. doi: 10.1051/0004-6361:20065055 ADSGoogle Scholar
  287. Smith MA, Robinson RD (1999) A multiwavelength campaign on γ Cassiopeiae. III. The case for magnetically controlled circumstellar kinematics. Astrophys J 517:866–882. doi: 10.1086/307216 ADSGoogle Scholar
  288. Smith MA, Plett K, Johns-Krull CM, Basri GS, Thomson JR, Aufdenberg JP (1996) Dynamic processes in Be star atmospheres. IV. Common attributes of line profile “Dimples”. Astrophys J 469:336. doi: 10.1086/177783 ADSGoogle Scholar
  289. Smith MA, Lopes de Oliveira R, Motch C (2012a) Characterization of the X-ray light curve of the γ Cas-like B1e star HD 110432. Astrophys J 755:64. doi: 10.1088/0004-637X/755/1/64 ADSGoogle Scholar
  290. Smith MA, Lopes de Oliveira R, Motch C, Henry GW, Richardson ND, Bjorkman KS, Stee P, Mourard D, Monnier JD, Che X, Bücke R, Pollmann E, Gies DR, Schaefer GH, ten Brummelaar T, McAlister HA, Turner NH, Sturmann J, Sturmann L, Ridgway ST (2012b) The relationship between γ Cassiopeiae’s X-ray emission and its circumstellar environment. Astron Astrophys 540:A53. doi: 10.1051/0004-6361/201118342 ADSGoogle Scholar
  291. Sonneborn G, Grady CA, Wu CC, Hayes DP, Guinan EF, Barker PK, Henrichs HF (1988) Mass loss in a B2 IIIe star—ω Orionis 1978-1984. Astrophys J 325:784–794. doi: 10.1086/166049 ADSGoogle Scholar
  292. Stee P (2011) Observations of circumstellar disks. In: Neiner C, Wade G, Meynet G, Peters G (eds) Active OB stars. IAU symposium, vol 272, pp 313–324. doi: 10.1017/S1743921311010726 Google Scholar
  293. Stee P, de Araujo FX (1994) Line profiles and intensity maps from an axi-symmetric radiative wind model for Be stars. Astron Astrophys 292:221–238 ADSGoogle Scholar
  294. Stee P, de Araujo FX, Vakili F, Mourard D, Arnold L, Bonneau D, Morand F, Tallon-Bosc I (1995) γ Cassiopeiae revisited by spectrally resolved interferometry. Astron Astrophys 300:219 ADSGoogle Scholar
  295. Stee P, Delaa O, Monnier JD, Meilland A, Perraut K, Mourard D, Che X, Schaefer GH, Pedretti E, Smith MA, Lopes de Oliveira R, Motch C, Henry GW, Richardson ND, Bjorkman KS, Bücke R, Pollmann E, Zorec J, Gies DR, ten Brummelaar T, McAlister HA, Turner NH, Sturmann J, Sturmann L, Ridgway ST (2012) The relationship between γ Cassiopeiae’s X-ray emission and its circumstellar environment. II. Geometry and kinematics of the disk from MIRC and VEGA instruments on the CHARA array. Astron Astrophys 545:A59. doi: 10.1051/0004-6361/201219234 ADSGoogle Scholar
  296. Stee P, Meilland A, Bendjoya P, Millour F, Smith M, Spang A, Duvert G, Hofmann KH, Massi F (2013) Evidence of an asymmetrical Keplerian disk in the Brγ and He i emission lines around the Be star HD 110432. Astron Astrophys 550:A65. doi: 10.1051/0004-6361/201220302 ADSGoogle Scholar
  297. Štefl S, Baade D, Rivinius T, Stahl O, Wolf B, Kaufer A (1998) Circumstellar quasi-periods accompanying stellar periods of Be stars. In: Bradley PA, Guzik JA (eds) A half century of stellar pulsation interpretation. Astronomical society of the pacific conference series, vol 135, p 348 Google Scholar
  298. Štefl S, Baade D, Rivinius T, Otero S, Stahl O, Budovičová A, Kaufer A, Maintz M (2003a) Stellar and circumstellar activity of the Be star ω CMa. I. Line and continuum emission in 1996–2002. Astron Astrophys 402:253–265. doi: 10.1051/0004-6361:20030224 ADSGoogle Scholar
  299. Štefl S, Baade D, Rivinius T, Stahl O, Budovičová A, Kaufer A, Maintz M (2003b) Stellar and circumstellar activity of the Be star ω CMa. II. Periodic line-profile variability. Astron Astrophys 411:167–180. doi: 10.1051/0004-6361:20031179 ADSGoogle Scholar
  300. Štefl S, Okazaki AT, Rivinius T, Baade D (2007) V/R variations of binary Be stars. In: Štefl S, Owocki SP, Okazaki AT (eds) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361, p 274 Google Scholar
  301. Štefl S, Owocki SP, Okazaki AT (eds) (2007) Active OB-stars: laboratories for stellar and circumstellar physics. Astronomical society of the pacific conference series, vol 361 Google Scholar
  302. Štefl S, Rivinius T, Carciofi AC, Le Bouquin JB, Baade D, Bjorkman KS, Hesselbach E, Hummel CA, Okazaki AT, Pollmann E, Rantakyrö F, Wisniewski JP (2009) Cyclic variability of the circumstellar disk of the Be star Open image in new window Tauri. I. Long-term monitoring observations. Astron Astrophys 504:929–944. doi: 10.1051/0004-6361/200811573 ADSGoogle Scholar
  303. Štefl S, Le Bouquin JB, Carciofi AC, Rivinius T, Baade D, Rantakyrö F (2012a) New activity in the large circumstellar disk of the Be-shell star 48 Librae. Astron Astrophys 540:A76. doi: 10.1051/0004-6361/201118054 Google Scholar
  304. Štefl S, Le Bouquin JB, Rivinius T, Baade D, Carciofi AC, Haubois X, Corder S, Curé M, Kanaan S (2012b) δ Sco 2011 periastron passage: near-IR interferometry and radio mm observations. In: Carciofi AC, Rivinius T (eds) Astronomical society of the pacific conference series, vol 464, p 197 Google Scholar
  305. Stoeckley TR (1968) Distribution of rotational velocities in Be stars. Mon Not R Astron Soc 140:141 ADSGoogle Scholar
  306. Struve O (1931) On the origin of bright lines in spectra of stars of class B. Astrophys J 73:94 ADSGoogle Scholar
  307. Sturm R, Haberl F, Rau A, Bartlett ES, Zhang XL, Schady P, Pietsch W, Greiner J, Coe MJ, Udalski A (2012) Discovery of the neutron star spin and a possible orbital period from the Be/X-ray binary IGR J05414-6858 in the LMC. Astron Astrophys 542:A109. doi: 10.1051/0004-6361/201219093 ADSGoogle Scholar
  308. Suárez JC, Garrido R, Balona LA, Christensen-Dalsgaard J (eds) (2013) Stellar pulsations. Astrophysics and space science proceedings, vol 31. doi: 10.1007/978-3-642-29630-7 Google Scholar
  309. Tallon-Bosc I, Tallon M, Thiébaut E, Béchet C, Mella G, Lafrasse S, Chesneau O, Domiciano de Souza A, Duvert G, Mourard D, Petrov R, Vannier M (2008) LITpro: a model fitting software for optical interferometry. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7013. doi: 10.1117/12.788871 Google Scholar
  310. Tanaka K, Sadakane K, Narusawa SY, Naito H, Kambe E, Katahira JI, Hirata R (2007) Dramatic spectral and photometric changes of Pleione (28 Tau) between 2005 November and 2007 April. Publ Astron Soc Jpn 59:L35 ADSGoogle Scholar
  311. Telting JH, Kaper L (1994) Long-term periodic variability in UV absorption lines of the Be star γ Cassiopeiae: on the relation with V/R variations in the Hβ line. Astron Astrophys 284:515–529 ADSGoogle Scholar
  312. Telting JH, Heemskerk MHM, Henrichs HF, Savonije GJ (1994) Observational evidence for a prograde one-armed density structure in the equatorial disc of a Be star. Astron Astrophys 288:558–560 ADSGoogle Scholar
  313. Thaller ML, Bagnuolo WG Jr, Gies DR, Penny LR (1995) Tomographic separation of composite spectra. III. Ultraviolet detection of the hot companion of φ Persei. Astrophys J 448:878. doi: 10.1086/176016 ADSGoogle Scholar
  314. Torrejón JM, Schulz NS, Nowak MA (2012) Chandra and Suzaku observations of the Be/X-ray star HD110432. Astrophys J 750:75. doi: 10.1088/0004-637X/750/1/75 ADSGoogle Scholar
  315. Touhami Y, Gies DR, Schaefer GH (2011) The infrared continuum sizes of Be star disks. Astrophys J 729:17. doi: 10.1088/0004-637X/729/1/17 ADSGoogle Scholar
  316. Touhami Y, Gies DR, Schaefer GH, McAlister HA, Ridgway ST, Richardson ND, Matson R, Grundstrom ED, ten Brummelaar TA, Goldfinger PJ, Sturmann L, Sturmann J, Turner NH, Farrington C (2013) A CHARA array survey of circumstellar disks around nearby Be-type stars. Astrophys J 768:128. doi: 10.1088/0004-637X/768/2/128 ADSGoogle Scholar
  317. Townsend RHD (2005) κ-mechanism excitation of retrograde mixed modes in rotating B-type stars. Mon Not R Astron Soc 364:573–582. doi: 10.1111/j.1365-2966.2005.09585.x ADSGoogle Scholar
  318. Townsend RHD (2007) The coupling between pulsation and mass loss in massive stars. In: Stancliffe RJ, Houdek G, Martin RG, Tout CA (eds) Unsolved problems in stellar physics: a conference in honor of Douglas Gough. American institute of physics conference series, vol 948, pp 345–356. doi: 10.1063/1.2818992 Google Scholar
  319. Townsend RHD, Owocki SP, Howarth ID (2004) Be-star rotation: how close to critical? Mon Not R Astron Soc 350:189–195. doi: 10.1111/j.1365-2966.2004.07627.x ADSGoogle Scholar
  320. Tutukov AV, Fedorova AV (2007) Formation and evolution of Ae and Be stars. Astron Rep 51:847–862. doi: 10.1134/S1063772907100095 ADSGoogle Scholar
  321. Tycner C, Hajian AR, Armstrong JT, Benson JA, Gilbreath GC, Hutter DJ, Lester JB, Mozurkewich D, Pauls TA (2004) The circumstellar envelope of Open image in new window Tauri through optical interferometry. Astron J 127:1194–1203. doi: 10.1086/381068 ADSGoogle Scholar
  322. Tycner C, Lester JB, Hajian AR, Armstrong JT, Benson JA, Gilbreath GC, Hutter DJ, Pauls TA, White NM (2005) Properties of the Hα-emitting circumstellar regions of Be stars. Astrophys J 624:359–371. doi: 10.1086/429126 ADSGoogle Scholar
  323. Tycner C, Gilbreath GC, Zavala RT, Armstrong JT, Benson JA, Hajian AR, Hutter DJ, Jones CE, Pauls TA, White NM (2006) Constraining disk parameters of Be stars using narrowband Hα interferometry with the navy prototype optical interferometer. Astron J 131:2710–2721. doi: 10.1086/502679 ADSGoogle Scholar
  324. Tycner C, Jones CE, Sigut TAA, Schmitt HR, Benson JA, Hutter DJ, Zavala RT (2008) Constraining the physical parameters of the circumstellar disk of χ Ophiuchi. Astrophys J 689:461–470. doi: 10.1086/592097 ADSGoogle Scholar
  325. ud-Doula A, Owocki SP, Townsend RHD (2008) Dynamical simulations of magnetically channelled line-driven stellar winds—II. The effects of field-aligned rotation. Mon Not R Astron Soc 385:97–108. doi: 10.1111/j.1365-2966.2008.12840.x ADSGoogle Scholar
  326. Underhill A, Doazan V (1982) B Stars with and without emission lines. NASA Google Scholar
  327. Uytterhoeven K, Poretti E, Rodríguez E, De Cat P, Mathias P, Telting JH, Costa V, Miglio A (2007) Multiperiodicity in the newly discovered mid-late Be star V2104 Cygni. Astron Astrophys 470:1051–1057. doi: 10.1051/0004-6361:20077657 ADSGoogle Scholar
  328. Vakili F, Mourard D, Stee P, Bonneau D, Berio P, Chesneau O, Thureau N, Morand F, Labeyrie A, Tallon-Bosc I (1998) Evidence for one-armed oscillations in the equatorial disk of Open image in new window Tauri from GI2T spectrally resolved interferometry. Astron Astrophys 335:261–265 ADSGoogle Scholar
  329. van Belle GT (2012) Interferometric observations of rapidly rotating stars. Astron Astrophys Rev 20:51. doi: 10.1007/s00159-012-0051-2 ADSGoogle Scholar
  330. Vanzi L, Chacon J, Helminiak KG, Baffico M, Rivinius T, Štefl S, Baade D, Avila G, Guirao C (2012) PUCHEROS: a cost-effective solution for high-resolution spectroscopy with small telescopes. Mon Not R Astron Soc 424:2770–2777. doi: 10.1111/j.1365-2966.2012.21382.x ADSGoogle Scholar
  331. Vink JS, Harries TJ, Drew JE (2005) Polarimetric line profiles for scattering off rotating disks. Astron Astrophys 430:213–222. doi: 10.1051/0004-6361:20041463 ADSGoogle Scholar
  332. Vink JS, Davies B, Harries TJ, Oudmaijer RD, Walborn NR (2009) On the presence and absence of disks around O-type stars. Astron Astrophys 505:743–753. doi: 10.1051/0004-6361/200912610 ADSGoogle Scholar
  333. von Zeipel H (1924) The radiative equilibrium of a slightly oblate rotating star. Mon Not R Astron Soc 84:684–701 ADSGoogle Scholar
  334. Wade GA, Grunhut JF (MiMeS Collaboration) (2012) The MiMeS survey of magnetism in massive stars. In: Carciofi AC, Rivinius T (eds) Circumstellar dynamics at high resolution. Astronomical society of the pacific conference series, vol 464, p p 405 Google Scholar
  335. Walker GAH, Kuschnig R, Matthews JM, Cameron C, Saio H, Lee U, Kambe E, Masuda S, Guenther DB, Moffat AFJ, Rucinski SM, Sasselov D, Weiss WW (2005) MOST detects g-modes in the Be star HD 163868. Astrophys J Lett 635:L77–L80. doi: 10.1086/499362 ADSGoogle Scholar
  336. Walker GAH, Kuschnig R, Matthews JM, Reegen P, Kallinger T, Kambe E, Saio H, Harmanec P, Guenther DB, Moffat AFJ, Rucinski SM, Sasselov D, Weiss WW, Bohlender DA, Božić H, Hashimoto O, Koubský P, Mann R, Ruždjak D, Škoda P, Šlechta M, Sudar D, Wolf M, Yang S (2005) Pulsations of the Oe star Open image in new window Ophiuchi from MOST satellite photometry and ground-based spectroscopy. Astrophys J Lett 623:L145–L148. doi: 10.1086/430254 ADSGoogle Scholar
  337. Waters LBFM (1986) The density structure of discs around Be stars derived from IRAS observations. Astron Astrophys 162:121–139 ADSGoogle Scholar
  338. Waters LBFM, van Kerkwijk MH (1989) The relation between orbital and spin periods in massive X-ray binaries. Astron Astrophys 223:196–206 ADSGoogle Scholar
  339. Waters LBFM, Waelkens C (1998) Herbig Ae/Be stars. Annu Rev Astron Astrophys 36:233–266. doi: 10.1146/annurev.astro.36.1.233 ADSGoogle Scholar
  340. Waters LBFM, Cote J, Geballe TR (1988) 51 Ophiuchi (B9.5 Ve)—a Be star in the class of Beta Pictoris stars? Astron Astrophys 203:348–354 ADSGoogle Scholar
  341. Waters LBFM, Marlborough JM, van der Veen WEC, Taylor AR, Dougherty SM (1991) The structure of circumstellar discs of Be stars—millimeter observations. Astron Astrophys 244:120–130 ADSGoogle Scholar
  342. Westerlund BE (1997) The Magellanic Clouds. Springer, Berlin Google Scholar
  343. Wheelwright HE, Bjorkman JE, Oudmaijer RD, Carciofi AC, Bjorkman KS, Porter JM (2012) Probing the properties of Be star discs with spectroastrometry and NLTE radiative transfer modelling: β CMi. Mon Not R Astron Soc 423:L11–L15. doi: 10.1111/j.1745-3933.2012.01241.x ADSGoogle Scholar
  344. Wisniewski JP, Bjorkman KS (2006) The role of evolutionary age and metallicity in the formation of classical Be circumstellar disks. I. new candidate Be stars in the LMC, SMC, and Milky Way. Astrophys J 652:458–471. doi: 10.1086/507260 ADSGoogle Scholar
  345. Wisniewski JP, Bjorkman KS, Magalhães AM, Bjorkman JE, Meade MR, Pereyra A (2007a) The role of evolutionary age and metallicity in the formation of classical Be circumstellar disks. II. Assessing the evolutionary nature of candidate disk systems. Astrophys J 671:2040–2058. doi: 10.1086/522293 ADSGoogle Scholar
  346. Wisniewski JP, Kowalski AF, Bjorkman KS, Bjorkman JE, Carciofi AC (2007) Toward mapping the detailed density structure of classical Be circumstellar disks. Astrophys J Lett 656:L21–L24. doi: 10.1086/512123 ADSGoogle Scholar
  347. Wisniewski JP, Draper ZH, Bjorkman KS, Meade MR, Bjorkman JE, Kowalski AF (2010) Disk-loss and disk-renewal phases in classical Be stars. I. Analysis of long-term spectropolarimetric data. Astrophys J 709:1306–1320. doi: 10.1088/0004-637X/709/2/1306 ADSGoogle Scholar
  348. Wood K, Brown JC, Fox GK (1993) Polarimetric line profiles from optically thin Thomson scattering circumstellar envelopes. Astron Astrophys 271:492 ADSGoogle Scholar
  349. Wood K, Bjorkman JE, Whitney B, Code A (1996a) The effect of multiple scattering on the polarization from axisymmetric circumstellar envelopes. II. Thomson scattering in the presence of absorptive opacity sources. Astrophys J 461:847. doi: 10.1086/177106 ADSGoogle Scholar
  350. Wood K, Bjorkman JE, Whitney BA, Code AD (1996b) The effect of multiple scattering on the polarization from axisymmetric circumstellar envelopes. I. Pure Thomson scattering envelopes. Astrophys J 461:828. doi: 10.1086/177105 ADSGoogle Scholar
  351. Wood K, Bjorkman KS, Bjorkman JE (1997) Deriving the geometry of Be star circumstellar envelopes from continuum spectropolarimetry. I. The case of Open image in new window Tauri. Astrophys J 477:926. doi: 10.1086/303747 ADSGoogle Scholar
  352. Woosley SE (1993) Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys J 405:273–277. doi: 10.1086/172359 ADSGoogle Scholar
  353. Woosley SE, Bloom JS (2006) The supernova gamma-ray burst connection. Annu Rev Astron Astrophys 44:507–556. doi: 10.1146/annurev.astro.43.072103.150558 ADSGoogle Scholar
  354. Yoon SC, Langer N, Norman C (2006) Single star progenitors of long gamma-ray bursts. I. Model grids and redshift dependent GRB rate. Astron Astrophys 460:199–208. doi: 10.1051/0004-6361:20065912 ADSGoogle Scholar
  355. Yudin RV (2001) Statistical analysis of intrinsic polarization, IR excess and projected rotational velocity distributions of classical Be stars. Astron Astrophys 368:912–931. doi: 10.1051/0004-6361:20000577 ADSGoogle Scholar
  356. Zaal PA, de Koter A, Waters LBFM, Marlborough JM, Geballe TR, Oliveira JM, Foing BH (1999) On the nature of the HI infrared emission lines of tau Scorpii. Astron Astrophys 349:573–587 ADSGoogle Scholar
  357. Zorec J, Briot D (1997) Critical study of the frequency of Be stars taking into account their outstanding characteristics. Astron Astrophys 318:443–460 ADSGoogle Scholar
  358. Zorec J, Frémat Y (2005) On the frequency of field galactic Be stars. In: Casoli F, Contini T, Hameury JM, Pagani L (eds) SF2A-2005: Semaine de l’Astrophysique Francaise, p 361 Google Scholar
  359. Zorec J, Frémat Y, Cidale L (2005) On the evolutionary status of Be stars. I. Field Be stars near the Sun. Astron Astrophys 441:235–248. doi: 10.1051/0004-6361:20053051 ADSGoogle Scholar
  360. Zorec J, Arias ML, Cidale L, Ringuelet AE (2007) Be star disc characteristics near the central object. Astron Astrophys 470:239–247. doi: 10.1051/0004-6361:20066615 ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Rivinius
    • 1
    Email author
  • Alex C. Carciofi
    • 2
  • Christophe Martayan
    • 1
  1. 1.European Organisation for Astronomical Research in the Southern HemisphereCasillaChile
  2. 2.Instituto de Astronomia, Geofísica e Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil

Personalised recommendations