Advertisement

Dark energy and fundamental physics

  • P. Binétruy
REVIEW ARTICLE

Abstract

The acceleration of the expansion of the Universe which has been identified in recent years has deep connections with some of the most central issues in fundamental physics. At present, the most plausible explanation is some form of vacuum energy. The puzzle of vacuum energy is a central question which lies at the interface between quantum theory and general relativity. Solving it will presumably require to construct a quantum theory of gravity and a correspondingly consistent picture of spacetime. To account for the acceleration of the expansion, one may also think of more dynamical forms of energy, what is known as dark energy, or modifications of gravity. In what follows, we review the vacuum energy problem as well as the basic models for dark energy or modification of gravity. We emphasize the conceptual aspects rather than the techniques involved. We also discuss the difficulties encountered in each approach. This review is intended for astrophysicists or physicists not specialized in particle physics, who are interested in apprehending the issues at stake in fundamental physics.

Keywords

Dark energy Cosmological constant Vacuum energy Scalar field Universe expansion Acceleration Modification of gravity 

References

  1. Amendola L (2000) Coupled quintessence. Phys Rev D 62:043511. arXiv:astro-ph/9908023 ADSCrossRefGoogle Scholar
  2. Amendola L (2003) Mon Not R Astron Soc 342:221. arXiv:astro-ph/0209494 ADSCrossRefGoogle Scholar
  3. Amendola L, Gannouji R, Polarski D, Tsujikawa S (2007) Phys Rev D 75:083504 ADSCrossRefGoogle Scholar
  4. Amendola L, Tocchini-Valentini D (2001) Phys Rev D 64:043509. arXiv:astro-ph/0011243 ADSCrossRefGoogle Scholar
  5. Anderson GW, Carroll SM (1997). arXiv:astro-ph/9711288
  6. Arkani-Hamed N, Antoniadis I, Dimopoulos S, Dvali G (1998) New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys Lett B 436:257–263. arXiv:hep-ph/9804398 ADSCrossRefGoogle Scholar
  7. Arkani-Hamed N, Dimopoulos S, Dvali G (1999) Phys Rev D 59:086004. arXiv:hep-ph/9807344 ADSCrossRefGoogle Scholar
  8. Arkani-Hamed N, Georgi H, Schwartz MD (2003) Effective field theory for massive gravitons and gravity in theory space. Ann Phys 305:96–118. arXiv:hep-th/0210184 MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. Armendariz-Picon C, Mukhanov V, Steinhardt PJ (2000) A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys Rev Lett 85:4438–4441 ADSCrossRefGoogle Scholar
  10. Bean R, Flanagan E, Trodden M (2008) Probing dark energy perturbations: the dark energy equation of state and speed of sound as measured by WMAP. Phys Rev D 78:023009. arXiv:0709.1128 [astro-ph] ADSCrossRefGoogle Scholar
  11. Binétruy P (1999) Models of dynamical supersymmetry breaking and quintessence. Phys Rev D 60:063502. arXiv:hep-ph/9810553 ADSCrossRefGoogle Scholar
  12. Binétruy P (2012) Vacuum energy, holography and a quantum portrait of the visible universe. arXiv:1208.4645 [gr-qc]
  13. Binétruy P, Deffayet C, Ellwanger U, Langlois D (2000a) Brane cosmological evolution in a bulk with cosmological constant. Phys Lett B 477:285–291. arXiv:hep-th/9910219 ADSCrossRefGoogle Scholar
  14. Binétruy P, Deffayet C, Langlois D (2000b) Nonconventional cosmology from a brane universe. Nucl Phys B 565:269–287. arXiv:hep-th/9905012 ADSCrossRefzbMATHGoogle Scholar
  15. Bjaelde OE, Brookfield AW, van de Bruck C, Hannestad S, Mota DF, Schrempp L, Tocchini-Valentini D (2008) Neutrino dark energy: revisiting the stability issue. J Cosmol Astropart Phys 0801:026. arXiv:0705.2018 [astro-ph] CrossRefGoogle Scholar
  16. Bjaelde OE, Hannestad S (2010) Neutrino dark energy with more than one neutrino species. Phys Rev D 81:063001. arXiv:0806.2146 [astro-ph] ADSCrossRefGoogle Scholar
  17. Boulware DG, Deser S (1972) Can gravitation have a finite range? Phys Rev D 6:3368–3382 ADSCrossRefGoogle Scholar
  18. Bousso R, Polchinski J (2000) Quantization of four-form fluxes and dynamical neutralization of the cosmological constant. J High Energy Phys 0006:006. arXiv:hep-th/0004134 MathSciNetADSCrossRefGoogle Scholar
  19. Brax P, van de Bruck C, Davis AC, Khoury J, Weltman A (2004) Detecting dark energy in orbit: the cosmological chameleon. Phys Rev D 70:123518. arXiv:astro-ph/0408415 ADSCrossRefGoogle Scholar
  20. Brown JD, Teitelboim JC (1987) Dynamical neutralization of the cosmological constant. Phys Lett B 195:177–182 ADSCrossRefGoogle Scholar
  21. Brown JD, Teitelboim JC (1988) Neutralization of the cosmological constant by membrane creation. Nucl Phys B 297:787–836 MathSciNetADSCrossRefGoogle Scholar
  22. Caldwell RR, Dave R, Steinhardt PJ (1998) Cosmological imprint of an energy component with general equation of state. Phys Rev Lett 80:1582–1585. arXiv:astro-ph/9708069 ADSCrossRefGoogle Scholar
  23. Carroll SM (1998) Quintessence and the rest of the world. Phys Rev Lett 81:3067–3070. arXiv:astro-ph/9806099 ADSCrossRefGoogle Scholar
  24. Casas JA, García-Bellido J, Quirós M (1992) Scalar-tensor theories of gravity with phi dependent masses. Class Quantum Gravity 9:1371–1384. arXiv:hep-ph/9204213 ADSCrossRefzbMATHGoogle Scholar
  25. Cline JM, Grojean C, Servant G (1999) Cosmological expansion in the presence of extra dimensions. Phys Rev Lett 83:4245. arXiv:hep-ph/9906523 MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. Comelli D, Pietroni M, Riotto A (2003) Dark energy and dark matter. Phys Lett B 571:115. arXiv:hep-ph/0302080 MathSciNetADSCrossRefGoogle Scholar
  27. Copeland E, Liddle AR, Wands D (1998) Exponential potentials and cosmic scaling solutions. Phys Rev D 57:4686–4690. arXiv:gr-qc/9711068 ADSCrossRefGoogle Scholar
  28. Copeland EJ, Sami M, Tsujikawa S (2006) Dynamics of dark energy. arXiv:hep-th/0603057
  29. Supernova Cosmology Project (1999) Astrophys J 577:565 Google Scholar
  30. Csáki C, Graesser M, Kolda C, Terning J (1999) Cosmology of one extra dimension with localized gravity. Phys Lett B 462:34–40. arXiv:hep-ph/9906513 MathSciNetADSCrossRefzbMATHGoogle Scholar
  31. Damour T, Esposito-Farese G (1992) Tensor multi-scalar theories of gravitation. Class Quantum Gravity 9:2093–2176 MathSciNetADSCrossRefzbMATHGoogle Scholar
  32. Deffayet C (2001) Cosmology on a brane in a Minkowski bulk. Phys Lett B 502:199–208. arXiv:hep-th/0010186 ADSCrossRefzbMATHGoogle Scholar
  33. Deffayet C, Dvali GR, Gabadadze G (2002a) Accelerated universe from gravity leaking to extra dimensions. Phys Rev D 65:044023. arXiv:astro-ph/0105068 MathSciNetADSCrossRefGoogle Scholar
  34. Deffayet C, Dvali GR, Gabadadze G, Vainshtein A (2002b) Nonperturbative continuity in graviton mass versus perturbative discontinuity. Phys Rev D 65:044026. arXiv:astro-ph/0106001 ADSCrossRefGoogle Scholar
  35. Deffayet C, Gao X, Steer DA, Zahariade G (2011) From k-essence to generalized Galileons. Phys Rev D 84:064039. arXiv:1103.3260 [hep-th] ADSCrossRefGoogle Scholar
  36. Dvali G, Gomez C (2010) Self-completeness of Einstein gravity. arXiv:1005.3497 [hep-th]
  37. Dvali GR, Gabadadze G, Porrati M (2000) Phys Lett B 485:208. arXiv:hep-th/0005016 MathSciNetADSCrossRefzbMATHGoogle Scholar
  38. Riess AG et al. (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J 116:1009–1038 ADSCrossRefGoogle Scholar
  39. Kapner D et al. (2007) Phys Rev Lett 98:021101. arXiv:hep-ph/0611184 ADSCrossRefGoogle Scholar
  40. Einsenstein DJ et al. (2005) Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J 633:560–574 ADSCrossRefGoogle Scholar
  41. Sullivan M et al (2011) SNLS3: constraints on dark energy combining the Supernova Legacy Survey three-year data with other probes. arXiv:1104.1444 [astro-ph]
  42. Lehnert MD et al. (2010) Spectroscopic confirmation of a galaxy at redshift z=8.6. Nature 467:940–942. arXiv:hep-th/0005025 ADSCrossRefGoogle Scholar
  43. Ade PAR et al (Planck collaboration) (2013) Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076 [astro-ph.CO]
  44. Fardon R, Nelson AE, Weiner N (2004) J Cosmol Astropart Phys 0410:005. arXiv:astro-ph/0309800 ADSCrossRefGoogle Scholar
  45. Farrar GR, Peebles PJE (2004) Astrophys J 604:1. arXiv:astro-ph/0307316 ADSCrossRefGoogle Scholar
  46. Ferreira P, Joyce M (1998) Cosmology with a primordial scaling field. Phys Rev D 58:023503 ADSCrossRefGoogle Scholar
  47. Fierz M (1939) Force-free particles with any spin. Helv Phys Acta 12:3–37 CrossRefGoogle Scholar
  48. Fierz M, Pauli W (1939) On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc R Soc Lond A 173:211–232 MathSciNetADSCrossRefGoogle Scholar
  49. Friedman AS, Bloom JS (2005) Towards a more standardized candle using GRB energetics and spectra. Astrophys J 627:1–25. arXiv:astro-ph/0407497 ADSCrossRefGoogle Scholar
  50. Friedmann A (1922) Z Phys 10:377 ADSCrossRefGoogle Scholar
  51. Frieman J, Hill C, Stebbins A, Waga I (1995) Phys Rev Lett 75:2077 ADSCrossRefGoogle Scholar
  52. Garriga J, Mukhanov VF (1999) Perturbations in k-inflation. Phys Lett B 458:219–225. arXiv:hep-th/9904176 MathSciNetADSCrossRefzbMATHGoogle Scholar
  53. Gasser J, Leutwyler H (1982) Phys Rep 87:77 ADSCrossRefGoogle Scholar
  54. Ghirlanda G, Ghisellini G, Lazzati D (2004a) The collimation-corrected GRB energies correlate with the peak energy of their νf ν spectrum. Astrophys J 616:331–338. arXiv:astro-ph/0405602 ADSCrossRefGoogle Scholar
  55. Ghirlanda G, Ghisellini G, Lazzati D, Firmani C (2004b) Gamma ray bursts: new rulers to measure the universe. Astrophys J 613:L13–L16. arXiv:astro-ph/0408350 ADSCrossRefGoogle Scholar
  56. Gorbunov D, Koyama K, Sibiryakov S (2006) More on ghosts in DGP model. Phys Rev D 73:044016. arXiv:hep-th/0512097 ADSCrossRefGoogle Scholar
  57. Gu P, Wang X, Zhang X (2003) Phys Rev D 68:087301 ADSCrossRefGoogle Scholar
  58. Hogan C (2008) Phys Rev D 77:104031. arXiv:0712.3419 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  59. Holz DE, Hughes SA (2002) Gravitational wave standard candles. arXiv:astro-ph/0212218
  60. Hubble E (1929) Proc Natl Acad Sci USA 15:168 ADSCrossRefzbMATHGoogle Scholar
  61. Hui L, Nicolis A, Stubbs C (2009) Equivalence principle implications of modified gravity models. Phys Rev D 80:104002. arXiv:0905.2966 [astro-ph.CO] ADSCrossRefGoogle Scholar
  62. Hung PQ (2000) Sterile neutrino and accelerating universe. arXiv:hep-ph/0010126
  63. Iwasaki Y (1970) Phys Rev D 2:2255 ADSCrossRefGoogle Scholar
  64. Khoury J, Weltman A (2004a) Chameleon fields: awaiting surprises for tests of gravity in space. Phys Rev Lett 93:171104. arXiv:astro-ph/0309300 ADSCrossRefGoogle Scholar
  65. Khoury J, Weltman A (2004b) Chameleon cosmology. Phys Rev D 69:044026. arXiv:astro-ph/0309411 MathSciNetADSCrossRefGoogle Scholar
  66. Kolda C, Lyth D (1999) Phys Lett B 458:197 ADSCrossRefGoogle Scholar
  67. Lemaître G (1927) Ann Soc Sci Brux Sér a : Sci Math 47:49 Google Scholar
  68. Linder EV (2005) Phys Rev D 72:043529. arXiv:astro-ph/0507263 ADSCrossRefGoogle Scholar
  69. Loeb A (2006) An observational test for the anthropic orgin of the cosmological constant. J Cosmol Astropart Phys 0605:009. arXiv:astro-ph/0604242 ADSCrossRefGoogle Scholar
  70. Luty M, Porrati M, Rattazzi R (2003) Strong interactions and stability in the DGP model. J High Energy Phys 0309:029. arXiv:hep-th/0303116 MathSciNetADSCrossRefGoogle Scholar
  71. Martel H, Shapiro PH, Weinberg S (1998) Likely values of the cosmological constant. Astrophys J 492:29. arXiv:astro-ph/9701099 ADSCrossRefGoogle Scholar
  72. Mellier Y (1999) Annu Rev Astron Astrophys 37:127 ADSCrossRefGoogle Scholar
  73. Nicolis A, Rattazzi R (2004) Classical and quantum consistency of the DGP model. J High Energy Phys 0406:059. arXiv:hep-th/0404159 MathSciNetADSCrossRefGoogle Scholar
  74. Nicolis A, Rattazzi R, Trincherini E (2009) The Galileon as a local modification of gravity. Phys Rev D 79:064036. arXiv:0811.2197 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  75. Nordtvedt K (2002) Space-time variation of physical constants and the equivalence principle. Int J Mod Phys A 17:2711–2715. arXiv:gr-qc/0212044 MathSciNetADSCrossRefzbMATHGoogle Scholar
  76. Padmanabhan T (2008) Dark energy and gravity. Gen Relativ Gravit 40:529. arXiv:0705.2533 [gr-qc] MathSciNetADSCrossRefzbMATHGoogle Scholar
  77. Pais A (1982) Subtle is the Lord… The science and life of Albert Einstein. Oxford University Press, Oxford Google Scholar
  78. Peebles PJE, Ratra B (1988) Cosmology with a time-variable cosmological constant. Astrophys J 325:L17–L20 ADSCrossRefGoogle Scholar
  79. Petiteau A, Babak S, Sesana A (2011) Constraining the dark energy equation of state using LISA observations of spinning massive black hole binaries. Astrophys J 732:82. arXiv:1102.0769 [astro-ph.CO] ADSCrossRefGoogle Scholar
  80. Randall L, Sundrum R (1999) An alternative to compactification. Phys Rev Lett 83:4690–4693. arXiv:hep-th/9906064 MathSciNetADSCrossRefzbMATHGoogle Scholar
  81. Ratra B, Peebles PJE (1988) Phys Rev D 37:3406 ADSCrossRefGoogle Scholar
  82. Schutz BF (1985) A first course in general relativity. Cambridge University Press, Cambridge Google Scholar
  83. Schutz BF (1986) Nature 323:310 ADSCrossRefGoogle Scholar
  84. Sen A (2002a) Rolling tachyon. J High Energy Phys 0204:048. arXiv:hep-th/0203211 ADSCrossRefGoogle Scholar
  85. Sen A (2002b) Tachyon matter. J High Energy Phys 0207:065. arXiv:hep-th/0203265 ADSCrossRefGoogle Scholar
  86. Starobinsky AA (1980) Phys Lett B 91:99 ADSCrossRefGoogle Scholar
  87. Tsujikawa S (2008) Phys Rev D 77:023507 MathSciNetADSCrossRefGoogle Scholar
  88. Upadhye A, Hu W, Khoury J (2012) Quantum stability of chameleon field theories. Phys Rev Lett 109:041301. arXiv:1204.3906 [hep-ph] ADSCrossRefGoogle Scholar
  89. Uzan J-P (2003) The fundamental constants and their variation: observational status and theoretical motivations. Rev Mod Phys 75:403. arXiv:hep-ph/0205340 MathSciNetADSCrossRefzbMATHGoogle Scholar
  90. Vainshtein AI (1972) To the problem of nonvanishing gravitation mass. Phys Lett B 39:393–394 ADSCrossRefGoogle Scholar
  91. van Dam H, Veltman MJG (1970) Massive and massless Yang–Mills and gravitational fields. Nucl Phys B 22:397–411 ADSCrossRefGoogle Scholar
  92. Wambsganss L, Cen R, Ostriker JP, Turner EL (1995) Science 268:274 ADSCrossRefGoogle Scholar
  93. Wang L, Steinhardt PJ (1998) Cluster abundance constraints on quintessence models. Astrophys J 508:483–490. arXiv:astro-ph/9804015 ADSCrossRefGoogle Scholar
  94. Weinberg S (1987) Anthropic bound on the cosmological constant. Phys Rev Lett 59:2607–2610 ADSCrossRefGoogle Scholar
  95. Weinberg S (1989) The cosmological constant. Rev Mod Phys 61:1 MathSciNetADSCrossRefzbMATHGoogle Scholar
  96. Wetterich C (1988) Cosmology and the fate of dilatation symmetry. Nucl Phys B 302:668 ADSCrossRefGoogle Scholar
  97. Wetterich C (2003) Probing quintessence with time variation of couplings. J Cosmol Astropart Phys 0310:002. arXiv:hep-ph/0203266 ADSCrossRefGoogle Scholar
  98. Will CM (2006) The confrontation between general relativity and experiment. Living Rev Relativ 9:3. http://www.livingreviews.org/lrr-2006-3 ADSGoogle Scholar
  99. Zakharov VI (1970) Linearized gravitation theory and the graviton mass. JETP Lett 12:312 ADSGoogle Scholar
  100. Zel’dovich YaB (1968) Sov Phys Usp 11:381 ADSCrossRefGoogle Scholar
  101. Liang EW, Dai ZG, Xu D (2004) Constraining ω m and dark energy with gamma-ray bursts. Astrophys J 612:L101–L104. arXiv:astro-ph/0407497 ADSCrossRefGoogle Scholar
  102. Zlatev I, Wang L, Steinhardt PJ (1999) Phys Rev Lett 82:896 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.AstroParticule et CosmologieUniversité Paris Diderot, CNRS, CEA, Observatoire de Paris and Sorbonne Paris CitéParis Cedex 13France

Personalised recommendations