Advertisement

Solar magnetic fields as revealed by Stokes polarimetry

  • J. O. Stenflo
REVIEW ARTICLE

Abstract

Observational astrophysics started when spectroscopy could be applied to astronomy. Similarly, observational work on stellar magnetic fields became possible with the application of spectro-polarimetry. In recent decades there have been dramatic advances in the observational tools for spectro-polarimetry. The four Stokes parameters that provide a complete representation of partially polarized light can now be simultaneously imaged with megapixel array detectors with high polarimetric precision (10−5 in the degree of polarization). This has led to new insights about the nature and properties of the magnetic field, and has helped pave the way for the use of the Hanle effect as a diagnostic tool beside the Zeeman effect. The magnetic structuring continues on scales orders of magnitudes smaller than the resolved ones, but various types of spectro-polarimetric signatures can be identified, which let us determine the field strengths and angular distributions of the field vectors in the spatially unresolved domain. Here we review the observational properties of the magnetic field, from the global patterns to the smallest scales at the magnetic diffusion limit, and relate them to the global and local dynamos.

Keywords

Sun: atmosphere Magnetic fields Polarization Dynamo Magnetohydrodynamics (MHD) 

References

  1. Altschuler MD, Trotter DE, Newkirk G Jr, Howard R (1974) The large-scale solar magnetic field. Sol Phys 39:3–17. doi: 10.1007/BF00154967 ADSGoogle Scholar
  2. Anusha LS, Nagendra KN, Bianda M, Stenflo JO, Holzreuter R, Sampoorna M, Frisch H, Ramelli R, Smitha HN (2011) Analysis of the Forward-scattering Hanle Effect in the Ca I 4227 Å Line. Astrophys J 737:95. doi: 10.1088/0004-637X/737/2/95 ADSGoogle Scholar
  3. Asensio Ramos A (2009) Evidence for quasi-isotropic magnetic fields from Hinode quiet-Sun observations. Astrophys J 701:1032. doi: 10.1088/0004-637X/701/2/1032 ADSGoogle Scholar
  4. Auer LH, Heasley JN (1978) The origin of broad-band circular polarization in sunspots. Astron Astrophys 64:67–71 ADSGoogle Scholar
  5. Babcock HW (1953) The solar magnetograph. Astrophys J 118:387 ADSGoogle Scholar
  6. Babcock HW (1961) The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys J 133:572–587. doi: 10.1086/147060 ADSGoogle Scholar
  7. Baur TG, House LL, Hull HK (1980) A spectrum scanning Stokes polarimeter. Sol Phys 65:111–146. doi: 10.1007/BF00151388 ADSGoogle Scholar
  8. Berdyugina SV, Fluri DM (2004) Evidence for the Hanle effect in molecular lines. Astron Astrophys 417:775–784. doi: 10.1051/0004-6361:20034452 ADSGoogle Scholar
  9. Berdyugina SV, Nagendra KN, Ramelli R (eds) (2009) In: Solar polarization 5: in honor of Jan Olof Stenflo. Astronomical society of the pacific conference series, vol 405 Google Scholar
  10. Bianda M, Ramelli R, Anusha LS, Stenflo JO, Nagendra KN, Holzreuter R, Sampoorna M, Frisch H, Smitha HN (2011) Observations of the forward scattering Hanle effect in the Ca I 4227 Å line. Astron Astrophys 530:L13. doi: 10.1051/0004-6361/201117047 ADSGoogle Scholar
  11. Bommier V, Sahal-Brechot S (1978) Quantum theory of the Hanle effect—calculations of the Stokes parameters of the D3 helium line for quiescent prominences. Astron Astrophys 69:57–64 ADSGoogle Scholar
  12. Brandenburg A (2005) The case for a distributed solar dynamo shaped by near-surface shear. Astrophys J 625:539. doi: 10.1086/429584. arXiv:astro-ph/0502275 ADSGoogle Scholar
  13. Brandenburg A, Subramanian K (2005) Astrophysical magnetic fields and nonlinear dynamo theory. Phys Rep 417:1–209. doi: 10.1016/j.physrep.2005.06.005. arXiv:astro-ph/0405052 MathSciNetADSGoogle Scholar
  14. Buehler D, Lagg A, Solanki SK (2013) Quiet Sun magnetic fields observed by Hinode: support for a local dynamo. Astron Astrophys 555:A33. doi: 10.1051/0004-6361/201321152 ADSGoogle Scholar
  15. Casini R, Lites BW (eds) (2006) In: Solar polarization 4. Astronomical society of the pacific conference series, vol 358 Google Scholar
  16. Cattaneo F (1999) On the origin of magnetic fields in the quiet photosphere. Astrophys J Lett 515:L39–L42. doi: 10.1086/311962 ADSGoogle Scholar
  17. Charbonneau P (2010) Dynamo models of the solar cycle. Living Rev Sol Phys 7:3. doi: 10.12942/lrsp-2010-3 ADSGoogle Scholar
  18. Danilovic S, Schüssler M, Solanki SK (2010) Magnetic field intensification: comparison of 3D MHD simulations with Hinode/SP results. Astron Astrophys 509:A76. doi: 10.1051/0004-6361/200912283 ADSGoogle Scholar
  19. Dasi-Espuig M, Solanki SK, Krivova NA, Cameron R, Peñuela T (2010) Sunspot group tilt angles and the strength of the solar cycle. Astron Astrophys 518:A7. doi: 10.1051/0004-6361/201014301 ADSGoogle Scholar
  20. del Toro Iniesta JC (2003) Introduction to spectropolarimetry. Cambridge University Press, Cambridge Google Scholar
  21. DeRosa ML, Brun AS, Hoeksema JT (2012) Solar magnetic field reversals and the role of dynamo families. Astrophys J 757:96. doi: 10.1088/0004-637X/757/1/96 ADSGoogle Scholar
  22. Elsasser WM (1946) Induction effects in terrestrial magnetism. Part I. Theory. Phys Rev 69:106–116 MathSciNetADSzbMATHGoogle Scholar
  23. Elsasser WM (1956) Hydromagnetic dynamo theory. Rev Mod Phys 28:135–163 MathSciNetADSzbMATHGoogle Scholar
  24. Faurobert-Scholl M (1993) Investigation of microturbulent magnetic fields in the solar photosphere by their Hanle effect in the Sr I 4607 A line. Astron Astrophys 268:765–774 ADSGoogle Scholar
  25. Faurobert-Scholl M, Feautrier N, Machefert F, Petrovay K, Spielfiedel A (1995) Turbulent magnetic fields in the solar photosphere: diagnostics and interpretation. Astron Astrophys 298:289 ADSGoogle Scholar
  26. Fischer CE, de Wijn AG, Centeno R, Lites BW, Keller CU (2009) Statistics of convective collapse events in the photosphere and chromosphere observed with the Hinode SOT. Astron Astrophys 504:583–588. doi: 10.1051/0004-6361/200912445 ADSGoogle Scholar
  27. Frazier EN, Stenflo JO (1972) On the small-scale structure of solar magnetic fields. Sol Phys 27:330–346. doi: 10.1007/BF00153105 ADSGoogle Scholar
  28. Gandorfer A (2000) The second solar spectrum: a high spectral resolution polarimetric survey of scattering polarization at the solar limb in graphical representation. Volume I: 4625 Å to 6995 Å. vdf Hochschulverlag, Zurich Google Scholar
  29. Gandorfer A (2002) The second solar spectrum: a high spectral resolution polarimetric survey of scattering polarization at the solar limb in graphical representation. Volume II: 3910 Å to 4630 Å. vdf Hochschulverlag, Zurich Google Scholar
  30. Gandorfer A (2005) The second solar spectrum: a high spectral resolution polarimetric survey of scattering polarization at the solar limb in graphical representation. Volume III: 3160 Å to 3915 Å. vdf Hochschulverlag, Zurich Google Scholar
  31. Gandorfer AM, Steiner P, Povel HP, Aebersold F, Egger U, Feller A, Gisler D, Hagenbuch S, Stenflo JO (2004) Solar polarimetry in the near UV with the Zurich Imaging Polarimeter ZIMPOL II. Astron Astrophys 422:703–708. doi: 10.1051/0004-6361:20040254 ADSGoogle Scholar
  32. Giovanelli RG (1980) An exploratory two-dimensional study of the coarse structure of network magnetic fields. Sol Phys 68:49–69. doi: 10.1007/BF00153266 ADSGoogle Scholar
  33. Hale GE (1908) On the probable existence of a magnetic field in sun-spots. Astrophys J 28:315. doi: 10.1086/141602 ADSGoogle Scholar
  34. Hale GE, Seares FH, van Maanen A, Ellerman F (1918) The general magnetic field of the Sun. Apparent variation of field-strength with level in the solar atmosphere. Astrophys J 47:206–254. doi: 10.1086/142403 ADSGoogle Scholar
  35. Hale GE, Ellerman F, Nicholson SB, Joy AH (1919) The magnetic polarity of sun-spots. Astrophys J 49:153–178. doi: 10.1086/142452 ADSGoogle Scholar
  36. Hanle W (1924) Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z Phys 30:93–105 ADSGoogle Scholar
  37. Harvey J, Livingston W, Slaughter C (1972) A line-profile Stokesmeter: preliminary results on non-sunspot fields. In: Line formation in the presence of magnetic fields. HAO/NCAR, Boulder, pp 227–250 Google Scholar
  38. Harvey JW, Branston D, Henney CJ, Keller CU (SOLIS and GONG Teams) (2007) Seething horizontal magnetic fields in the quiet solar photosphere. Astrophys J Lett 659:L177–L180. doi: 10.1086/518036. arXiv:astro-ph/0702415 ADSGoogle Scholar
  39. Harvey KL (1993) Magnetic bipoles on the Sun. PhD thesis, Univ Utrecht Google Scholar
  40. Harvey KL, Martin SF (1973) Ephemeral active regions. Sol Phys 32:389–402. doi: 10.1007/BF00154951 ADSGoogle Scholar
  41. Harvey KL, Zwaan C (1993) Properties and emergence of bipolar active regions. Sol Phys 148:85–118. doi: 10.1007/BF00675537 ADSGoogle Scholar
  42. Harvey KL, Harvey JW, Martin SF (1975) Ephemeral active regions in 1970 and 1973. Sol Phys 40:87–102. doi: 10.1007/BF00183154 ADSGoogle Scholar
  43. Hasan SS, Rutten RJ (eds) (2010) Magnetic coupling between the interior and atmosphere of the Sun. doi: 10.1007/978-3-642-02859-5
  44. House LL (1970a) The resonance fluorescence of polarized radiation. I. The general scattering function. J Quant Spectrosc Radiat Transf 10:909–928. doi: 10.1016/0022-4073(70)90033-6 ADSGoogle Scholar
  45. House LL (1970b) The resonance fluorescence of polarized radiation. II. Scattering in the normal Zeeman triplet (J=0−J″=1). J Quant Spectrosc Radiat Transf 10:1171–1189. doi: 10.1016/0022-4073(70)90002-6 ADSGoogle Scholar
  46. House LL (1971) The resonance fluorescence of polarized radiation. III. The Stokes parameter and circular polarization formulation of the scattering redistribution function. J Quant Spectrosc Radiat Transf 11:367–383. doi: 10.1016/0022-4073(71)90121-X ADSGoogle Scholar
  47. House LL, Baur TG, Hull HK (1975) Initial operation of a scanning Stokes polarimeter. Sol Phys 45:495–500. doi: 10.1007/BF00158465 ADSGoogle Scholar
  48. Howard R, Stenflo JO (1972) On the filamentary nature of solar magnetic fields. Sol Phys 22:402–417. doi: 10.1007/BF00148705 ADSGoogle Scholar
  49. Illing RME, Landman DA, Mickey DL (1975) Broad-band circular polarization of sunspots—Spectral dependence and theory. Astron Astrophys 41:183–185 ADSGoogle Scholar
  50. Ivanov VV (1991) Analytical methods of line formation theory—are they still alive. In: NATO ASIC proc 341: Stellar atmospheres—beyond classical models, p 81 Google Scholar
  51. Jiang J, Cameron RH, Schmitt D, Işık E (2013) Modeling solar cycles 15 to 21 using a flux transport dynamo. Astron Astrophys 553:A128. doi: 10.1051/0004-6361/201321145 ADSGoogle Scholar
  52. Jones HP, Giovanelli RG (1983) Magnetic canopies in unipolar regions. Sol Phys 87:37–42. doi: 10.1007/BF00151157 ADSGoogle Scholar
  53. Keller CU (1992) Resolution of magnetic flux tubes on the Sun. Nature 359:307. doi: 10.1038/359307a0 ADSGoogle Scholar
  54. Khlystova AI, Sokoloff DD (2009) Toroidal magnetic field of the Sun from data on Hale-rule-violating sunspot groups. Astron Rep 53:281–285. doi: 10.1134/S106377290903010X ADSGoogle Scholar
  55. Khomenko E, Collados M (2007) On the Stokes V amplitude ratio as an indicator of the field strength in the solar internetwork. Astrophys J 659:1726–1735. doi: 10.1086/512098 ADSGoogle Scholar
  56. Kleint L, Berdyugina SV, Shapiro AI, Bianda M (2010) Solar turbulent magnetic fields: surprisingly homogeneous distribution during the solar minimum. Astron Astrophys 524:A37. doi: 10.1051/0004-6361/201015285 ADSGoogle Scholar
  57. Knaack R, Stenflo JO (2005) Spherical harmonic decomposition of solar magnetic fields. Astron Astrophys 438:349–363. doi: 10.1051/0004-6361:20052765 ADSzbMATHGoogle Scholar
  58. Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl Akad Nauk SSSR 30:301–305 ADSGoogle Scholar
  59. Kosugi T, Matsuzaki K, Sakao T, Shimizu T, Sone Y, Tachikawa S, Hashimoto T, Minesugi K, Ohnishi A, Yamada T, Tsuneta S, Hara H, Ichimoto K, Suematsu Y, Shimojo M, Watanabe T, Shimada S, Davis JM, Hill LD, Owens JK, Title AM, Culhane JL, Harra LK, Doschek GA, Golub L (2007) The Hinode (Solar-B) mission: an overview. Sol Phys 243:3–17. doi: 10.1007/s11207-007-9014-6 ADSGoogle Scholar
  60. Kuhn JR, Harrington DM, Lin H, Berdyugina SV, Trujillo-Bueno J, Keil SL, Rimmele T (eds) (2011) In: Solar polarization 6. Astronomical society of the pacific conference series, vol 437 Google Scholar
  61. Lagg A, Solanki SK, Riethmüller TL, Martínez Pillet V, Schüssler M, Hirzberger J, Feller A, Borrero JM, Schmidt W, del Toro Iniesta JC, Bonet JA, Barthol P, Berkefeld T, Domingo V, Gandorfer A, Knölker M, Title AM (2010) Fully resolved quiet-sun magnetic flux tube observed with the SUNRISE/IMAX instrument. Astrophys J Lett 723:L164–L168. doi: 10.1088/2041-8205/723/2/L164 ADSGoogle Scholar
  62. Landi Degl’Innocenti E, Landolfi M (2004) Polarization in spectral lines. In: Astrophysics and space science library, vol 307. Kluwer Academic, Norwell Google Scholar
  63. Larmor J (1919) How could a rotating body such as the Sun become a magnet? Rep - Br Assoc Adv Sci 87:159–160 Google Scholar
  64. Leighton RB (1969) A magneto-kinematic model of the solar cycle. Astrophys J 156:1–26. doi: 10.1086/149943 ADSGoogle Scholar
  65. Leroy JL, Ratier G, Bommier V (1977) The polarization of the D3 emission line in prominences. Astron Astrophys 54:811–816 ADSGoogle Scholar
  66. Li J, Ulrich RK (2012) Long-term measurements of sunspot magnetic tilt angles. Astrophys J 758:115. doi: 10.1088/0004-637X/758/2/115 ADSGoogle Scholar
  67. Lites BW, Kubo M, Socas-Navarro H, Berger T, Frank Z, Shine R, Tarbell T, Title A, Ichimoto K, Katsukawa Y, Tsuneta S, Suematsu Y, Shimizu T, Nagata S (2008) The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter. Astrophys J 672:1237–1253. doi: 10.1086/522922 ADSGoogle Scholar
  68. Maltby P, Avrett EH, Carlsson M, Kjeldseth-Moe O, Kurucz RL, Loeser R (1986) A new sunspot umbral model and its variation with the solar cycle. Astrophys J 306:284. doi: 10.1086/164342 ADSGoogle Scholar
  69. Martin SF, Harvey KL (1979) Ephemeral active regions during solar minimum. Sol Phys 64:93–108. doi: 10.1007/BF00151118 ADSGoogle Scholar
  70. Moruzzi G, Strumia F (eds) (1991) The Hanle effect and level-crossing spectroscopy. Plenum, New York Google Scholar
  71. Nagata S, Tsuneta S, Suematsu Y, Ichimoto K, Shimizu T, Yokoyama T, Tarbell TD, Lites BW, Shine RA, Berger TE, Title AM, Bellot Rubio LR, Orozco Suárez D (2008) Formation of solar magnetic flux tubes with kilogauss field strength induced by convective instability. Astrophys J Lett 677:L145–L147. doi: 10.1086/588026 ADSGoogle Scholar
  72. Nagendra KN, Stenflo JO (eds) (1999) In: Solar polarization 2. Astrophysics and space science library, vol 243 Google Scholar
  73. Öhman Y (1929) Astronomical consequences of the polarization of fluorescence. Mon Not R Astron Soc 89:479–482 ADSGoogle Scholar
  74. Omont A, Smith EW, Cooper J (1973) Redistribution of resonance radiation. 11. The effect of magnetic fields. Astrophys J 182:283–300. doi: 10.1086/152136 ADSGoogle Scholar
  75. Orozco Suárez D, Bellot Rubio LR, del Toro Iniesta JC, Tsuneta S, Lites BW, Ichimoto K, Katsukawa Y, Nagata S, Shimizu T, Shine RA, Suematsu Y, Tarbell TD, Title AM (2007) Quiet-Sun internetwork magnetic fields from the inversion of Hinode measurements. Astrophys J Lett 670:L61–L64. doi: 10.1086/524139 ADSGoogle Scholar
  76. Parker EN (1955) Hydromagnetic dynamo models. Astrophys J 122:293. doi: 10.1086/146087 MathSciNetADSGoogle Scholar
  77. Parker EN (1978) Hydraulic concentration of magnetic fields in the solar photosphere. VI. Adiabatic cooling and concentration in downdrafts. Astrophys J 221:368–377. doi: 10.1086/156035 ADSGoogle Scholar
  78. Parnell CE, DeForest CE, Hagenaar HJ, Johnston BA, Lamb DA, Welsch BT (2009) A power-law distribution of solar magnetic fields over more than five decades in flux. Astrophys J 698:75–82. doi: 10.1088/0004-637X/698/1/75 ADSGoogle Scholar
  79. Petrovay K, Szakaly G (1993) The origin of intranetwork fields: a small-scale solar dynamo. Astron Astrophys 274:543 ADSGoogle Scholar
  80. Pietarila Graham J, Danilovic S, Schüssler M (2009) Turbulent magnetic fields in the quiet Sun: implications of Hinode observations and small-scale dynamo simulations. Astrophys J 693:1728. doi: 10.1088/0004-637X/693/2/1728 ADSGoogle Scholar
  81. Povel H (1995) Imaging Stokes polarimetry with piezoelastic modulators and charge-coupled-device image sensors. Opt Eng 34:1870–1878 ADSGoogle Scholar
  82. Povel HP (2001) Ground-based instrumentation for solar magnetic field studies, with special emphasis on the zurich imaging polarimeters ZIMPOL-I and II. In: Mathys G, Solanki SK, Wickramasinghe DT (eds) Magnetic fields across the Hertzsprung-Russell diagram. Astronomical society of the pacific conference series, vol 248, pp 543–552 Google Scholar
  83. Richardson RS (1948) Sunspot groups of irregular magnetic polarity. Astrophys J 107:78–93 ADSGoogle Scholar
  84. Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Kosovichev AG, Schou J, Rosenberg W, Springer L, Tarbell TD, Title A, Wolfson CJ, Zayer I (MDI Engineering Team) (1995) The solar oscillations investigation—Michelson doppler imager. Sol Phys 162:129–188. doi: 10.1007/BF00733429 ADSGoogle Scholar
  85. Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, Hoeksema JT, Liu Y, Duvall TL, Zhao J, Title AM, Schrijver CJ, Tarbell TD, Tomczyk S (2012) The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Sol Phys 275:207–227. doi: 10.1007/s11207-011-9834-2 ADSGoogle Scholar
  86. Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, Rabello-Soares MC, Bogart RS, Hoeksema JT, Liu Y, Duvall TL, Akin DJ, Allard BA, Miles JW, Rairden R, Shine RA, Tarbell TD, Title AM, Wolfson CJ, Elmore DF, Norton AA, Tomczyk S (2012) Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Sol Phys 275:229–259. doi: 10.1007/s11207-011-9842-2 ADSGoogle Scholar
  87. Schrijver CJ, Harvey KL (1994) The photospheric magnetic flux budget. Sol Phys 150:1–18. doi: 10.1007/BF00712873 ADSGoogle Scholar
  88. Schüssler M, Baumann I (2006) Modeling the Sun’s open magnetic flux. Astron Astrophys 459:945–953. doi: 10.1051/0004-6361:20065871 ADSGoogle Scholar
  89. Shapiro AI, Fluri DM, Berdyugina SV, Bianda M, Ramelli R (2011) NLTE modeling of Stokes vector center-to-limb variations in the CN violet system. Astron Astrophys 529:A139. doi: 10.1051/0004-6361/200811299 ADSGoogle Scholar
  90. Sheeley NR Jr, DeVore CR, Boris JP (1985) Simulations of the mean solar magnetic field during sunspot cycle 21. Sol Phys 98:219–239. doi: 10.1007/BF00152457 ADSGoogle Scholar
  91. Snik F, de Wijn AG, Ichimoto K, Fischer CE, Keller CU, Lites BW (2010) Observations of solar scattering polarization at high spatial resolution. Astron Astrophys 519:A18. doi: 10.1051/0004-6361/201014500 ADSGoogle Scholar
  92. Sokoloff D, Khlystova AI (2009) The solar dynamo in the light of the distribution of various sunspot magnetic classes over butterfly diagram. Astron Nachr 331:82–87. doi: 10.1002/asna.200911300 ADSGoogle Scholar
  93. Solanki SK (1993) Small-scale solar magnetic fields—an overview. Space Sci Rev 63:1–188. doi: 10.1007/BF00749277 ADSGoogle Scholar
  94. Spruit HC (1977) Magnetic flux tubes and transport of heat in the convection zone of the Sun. PhD thesis, Univ Utrecht Google Scholar
  95. Spruit HC (1979) Convective collapse of flux tubes. Sol Phys 61:363–378 ADSGoogle Scholar
  96. Spruit HC, Zweibel EG (1979) Convective instability of thin flux tubes. Sol Phys 62:15–22 ADSGoogle Scholar
  97. Steenbeck M, Krause F (1969) Zur Dynamotheorie stellarer und planetarer Magnetfelder I. Berechnung sonnenähnlicher Wechselfeldgeneratoren. Astron Nachr 291:49–84 ADSzbMATHGoogle Scholar
  98. Steiner O (2000) The formation of asymmetric Stokes V profiles in the presence of a magnetopause. Sol Phys 196:245–268 ADSGoogle Scholar
  99. Steiner O (2010) Magnetic coupling in the quiet solar atmosphere. In: Hasan SS, Rutten RJ (eds) Magnetic coupling between the interior and atmosphere of the Sun, pp 166–185. doi: 10.1007/978-3-642-02859-5-13 Google Scholar
  100. Stenflo JO (1970) Hale’s attempts to determine the Sun’s general magnetic field. Sol Phys 14:263–273. doi: 10.1007/BF00221312 ADSGoogle Scholar
  101. Stenflo JO (1971) The interpretation of magnetograph results: the formation of absorption lines in a magnetic field. In: Howard R (ed) Solar magnetic fields. IAU symposium, vol 43, pp 101–129 Google Scholar
  102. Stenflo JO (1973) Magnetic-field structure of the photospheric network. Sol Phys 32:41–63. doi: 10.1007/BF00152728 ADSGoogle Scholar
  103. Stenflo JO (1976) Small-scale solar magnetic fields. In: Bumba V, Kleczek J (eds) Basic mechanisms of solar activity. IAU symposium, vol 71, pp 69–99 Google Scholar
  104. Stenflo JO (1978) Resonance-line polarization. III. The Hanle effect in a compact non-LTE radiative transfer formulation. Astron Astrophys 66:241–248 ADSGoogle Scholar
  105. Stenflo JO (1980) Resonance-line polarization. V. Quantum-mechanical interference between states of different total angular momentum. Astron Astrophys 84:68–74 ADSGoogle Scholar
  106. Stenflo JO (1982) The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere. Sol Phys 80:209–226 ADSGoogle Scholar
  107. Stenflo JO (1987) Observational constraints on a ‘hidden’, turbulent magnetic field of the Sun. Sol Phys 114:1–19 ADSGoogle Scholar
  108. Stenflo JO (1989) Small-scale magnetic structures on the Sun. Astron Astrophys Rev 1:3–48 ADSGoogle Scholar
  109. Stenflo JO (1994a) Cycle patterns of the axisymmetric magnetic field. In: Rutten RJ, Schrijver CJ (eds) Solar surface magnetism, pp 365–377 Google Scholar
  110. Stenflo JO (1994b) Solar magnetic fields—polarized radiation diagnostics. Kluwer Academic, Dordrecht Google Scholar
  111. Stenflo JO (1999) Solar magnetism and the second solar spectrum: future directions. In: Nagendra KN, Stenflo JO (eds) Polarization, astrophysics and space science library, vol 243, pp 1–16 Google Scholar
  112. Stenflo JO (2003) Scattering polarization in magnetic fields: anomalies, surprises and enigmas. In: Trujillo Bueno J, Sánchez Almeida J (eds) Astronomical society of the pacific conference series, vol 307, pp 385–398 Google Scholar
  113. Stenflo JO (2004) The new world of scattering physics seen by high-precision imaging polarimetry (with 14 figures). In: Schielicke RE (ed) Reviews in modern astronomy, vol 17, pp 269–296 Google Scholar
  114. Stenflo JO (2010a) Distribution functions for magnetic fields on the quiet Sun. Astron Astrophys 517:A37. doi: 10.1051/0004-6361/200913972 ADSGoogle Scholar
  115. Stenflo JO (2010b) Measuring the hidden aspects of solar magnetism. In: Hasan SS, Rutten RJ (eds) Magnetic coupling between the interior and atmosphere of the Sun, pp 101–117. doi: 10.1007/978-3-642-02859-5-8 Google Scholar
  116. Stenflo JO (2011) Collapsed, uncollapsed, and hidden magnetic flux on the quiet Sun. Astron Astrophys 529:A42. doi: 10.1051/0004-6361/201016275 ADSGoogle Scholar
  117. Stenflo JO (2012a) Basal magnetic flux and the local solar dynamo. Astron Astrophys 547:A93. doi: 10.1051/0004-6361/201219833 ADSGoogle Scholar
  118. Stenflo JO (2012b) Scaling laws for magnetic fields on the quiet Sun. Astron Astrophys 541:A17. doi: 10.1051/0004-6361/201218939 ADSGoogle Scholar
  119. Stenflo JO (2013) Horizontal or vertical magnetic fields on the quiet Sun. Angular distributions and their height variations. Astron Astrophys 555:A132. doi: 10.1051/0004-6361/201321608 ADSGoogle Scholar
  120. Stenflo JO, Guedel M (1988) Evolution of solar magnetic fields—modal structure. Astron Astrophys 191:137–148 ADSGoogle Scholar
  121. Stenflo JO, Keller CU (1996) New window for spectroscopy. Nature 382:588. doi: 10.1038/382588a0 ADSGoogle Scholar
  122. Stenflo JO, Keller CU (1997) The second solar spectrum. A new window for diagnostics of the Sun. Astron Astrophys 321:927–934 ADSGoogle Scholar
  123. Stenflo JO, Kosovichev AG (2012) Bipolar magnetic regions on the Sun: global analysis of the SOHO/MDI data set. Astrophys J 745:129. doi: 10.1088/0004-637X/745/2/129 ADSGoogle Scholar
  124. Stenflo JO, Nagendra KN (eds) (1996) In: Solar polarization 1. Solar phys, vol 164 Google Scholar
  125. Stenflo JO, Vogel M (1986) Global resonances in the evolution of solar magnetic fields. Nature 319:285–290 ADSGoogle Scholar
  126. Stenflo JO, Twerenbold D, Harvey JW (1983a) Coherent scattering in the solar spectrum—Survey of linear polarization in the range 3165–4230 Å. Astron Astrophys Suppl Ser 52:161–180 ADSGoogle Scholar
  127. Stenflo JO, Twerenbold D, Harvey JW, Brault JW (1983b) Coherent scattering in the solar spectrum—Survey of linear polarization in the range 4200–9950 Å. Astron Astrophys Suppl Ser 54:505–514 ADSGoogle Scholar
  128. Stenflo JO, Solanki S, Harvey JW, Brault JW (1984) Diagnostics of solar magnetic fluxtubes using a Fourier transform spectrometer. Astron Astrophys 131:333–346 ADSGoogle Scholar
  129. Stenflo JO, Keller CU, Gandorfer A (1998) Differential Hanle effect and the spatial variation of turbulent magnetic fields on the Sun. Astron Astrophys 329:319–328 ADSGoogle Scholar
  130. Stenflo JO, Demidov ML, Bianda M, Ramelli R (2013) Calibration of the 6302/6301 Stokes V line ratio in terms of the 5250/5247 ratio. Astron Astrophys 556:A113. doi: 10.1051/0004-6361/201321749 ADSGoogle Scholar
  131. Stepanov VE, Severny AB (1962) A photoelectric method for measurements of the magnitude and direction of the solar magnetic field. Izv Krym Astrofiz Obs 28:166–193 Google Scholar
  132. Suematsu Y, Tsuneta S, Ichimoto K, Shimizu T, Otsubo M, Katsukawa Y, Nakagiri M, Noguchi M, Tamura T, Kato Y, Hara H, Kubo M, Mikami I, Saito H, Matsushita T, Kawaguchi N, Nakaoji T, Nagae K, Shimada S, Takeyama N, Yamamuro T (2008) The solar optical telescope of Solar-B (Hinode): the optical telescope assembly. Sol Phys 249:197–220. doi: 10.1007/s11207-008-9129-4 ADSGoogle Scholar
  133. Thompson MJ, Balogh A, Culhane JL, Nordlund Å, Solanki SK, Zahn JP (eds) (2009) The origin and dynamics of solar magnetism. Springer, Berlin. doi: 10.1007/978-1-4419-0239-9 Google Scholar
  134. Tlatov A, Illarionov E, Sokoloff D, Pipin V (2013) A new dynamo pattern revealed by the tilt angle of bipolar sunspot groups. Mon Not R Astron Soc 432:2975–2984. doi: 10.1093/mnras/stt659 ADSGoogle Scholar
  135. Trujillo Bueno J (2001) Atomic polarization and the hanle effect. In: Sigwarth M (ed) Advanced solar polarimetry—theory, observation, and instrumentation. Astronomical society of the pacific conference series, vol 236, pp 161–195. arXiv:astro-ph/0202328 Google Scholar
  136. Trujillo Bueno J, Sanchez Almeida J (eds) (2003) In: Solar polarization 3. Astronomical society of the pacific conference series, vol 307 Google Scholar
  137. Trujillo Bueno J, Landi Degl’Innocenti E, Collados M, Merenda L, Manso Sainz R (2002) Selective absorption processes as the origin of puzzling spectral line polarization from the Sun. Nature 415:403–406. arXiv:astro-ph/0201409 ADSGoogle Scholar
  138. Trujillo Bueno J, Shchukina N, Asensio Ramos A (2004) A substantial amount of hidden magnetic energy in the quiet Sun. Nature 430:326–329. doi: 10.1038/nature02669. arXiv:astro-ph/0409004 ADSGoogle Scholar
  139. Tsuneta S, Ichimoto K, Katsukawa Y, Nagata S, Otsubo M, Shimizu T, Suematsu Y, Nakagiri M, Noguchi M, Tarbell T, Title A, Shine R, Rosenberg W, Hoffmann C, Jurcevich B, Kushner G, Levay M, Lites B, Elmore D, Matsushita T, Kawaguchi N, Saito H, Mikami I, Hill LD, Owens JK (2008) The solar optical telescope for the Hinode mission: an overview. Sol Phys 249:167–196. doi: 10.1007/s11207-008-9174-z ADSGoogle Scholar
  140. Unno W, Ando H (1979) Instability of a thin magnetic tube in the solar atmosphere. Geophys Astrophys Fluid Dyn 12:107–115. doi: 10.1080/03091927908242679 ADSzbMATHGoogle Scholar
  141. Vögler A, Schüssler M (2007) A solar surface dynamo. Astron Astrophys 465:L43–L46. doi: 10.1051/0004-6361:20077253. arXiv:astro-ph/0702681 Google Scholar
  142. Wang YM, Sheeley NR Jr (1989) Average properties of bipolar magnetic regions during sunspot cycle 21. Sol Phys 124:81–100. doi: 10.1007/BF00146521 ADSGoogle Scholar
  143. Wittmann A (1973) Computation and observation of Zeeman multiplet polarization in Fraunhofer lines. I: Photographic measurement of Stokes parameters. Sol Phys 33:107–118. doi: 10.1007/BF00152383 ADSGoogle Scholar
  144. Zirin H (1987) Weak solar fields and their connection to the solar cycle. Sol Phys 110:101–107. doi: 10.1007/BF00148205 ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of AstronomyETH ZurichZurichSwitzerland
  2. 2.Istituto Ricerche Solari LocarnoLocarno MontiSwitzerland

Personalised recommendations