Advertisement

Multiple populations in globular clusters

Lessons learned from the Milky Way globular clusters
  • Raffaele G. Gratton
  • Eugenio Carretta
  • Angela Bragaglia
Review Article

Abstract

Recent progress in studies of globular clusters has shown that they are not simple stellar populations, but rather are made up of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second-parameter problem, it also opens new perspectives on the relation between globular clusters and the halo of our Galaxy, and by extension on all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focussing on the most recent studies. Several points remain to become properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.

Keywords

Galaxy: general Globular Clusters Halo Stars: abundances Hertzsprung–Russell and C–M diagrams 

References

  1. Aguilar L, Hut P, Ostriker JP (1988) On the evolution of globular cluster systems. I—Present characteristics and rate of destruction in our Galaxy. Astrophys J 335:720–747 ADSGoogle Scholar
  2. Anderson J, Piotto G, IR King, Bedin LR, Guhathakurta P (2009) Mixed populations in globular clusters: Et Tu 47 Tuc? Astrophys J 697:L58–L62 ADSGoogle Scholar
  3. Anthony-Twarog BJ, Twarog BA, Craig J (1995) CN and CA abundance variations among the giants in M22. Publ Astron Soc Pac 107:32–48 ADSGoogle Scholar
  4. Armosky BJ, Sneden C, Langer GE, Kraft RP (1994) Abundance trends among neutron capture elements in giants of globular clusters M5, M3, M13, M92, and M15. Astron J 108:1364–1374 ADSGoogle Scholar
  5. Arnould M, Goriely S, Jorissen A (1999) Non-explosive hydrogen and helium burnings: abundance predictions from the NACRE reaction rate compilation. Astron Astrophys 347:572–582 ADSGoogle Scholar
  6. Bastian N, de Mink SE (2009) The effect of stellar rotation on colour-magnitude diagrams: on the apparent presence of multiple populations in intermediate age stellar clusters. Mon Not R Astron Soc 398:L11–L15 ADSGoogle Scholar
  7. Baumgardt H, Kroupa P, Parmentier G (2008) The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo. Mon Not R Astron Soc 384:1231–1241 ADSGoogle Scholar
  8. Becker SA, Iben I Jr (1979) The asymptotic giant branch evolution of intermediate-mass stars as a function of mass and composition. I—Through the second dredge-up phase. Astrophys J 232:831–853 ADSGoogle Scholar
  9. Bedin LR, Piotto G, Anderson J, Cassisi S, King IR, Momany Y, Carraro G (2004) ω Centauri: the population puzzle goes deeper. Astrophys J 605:L125–L128 ADSGoogle Scholar
  10. Beers TC, Lee Y, Sivarani T, Allende Prieto C, Wilhelm R, Re Fiorentin P, Bailer-Jones C (2006) The SDSS-I value added catalog of stellar parameters and the SEGUE Pipeline. IAUJD 13 Google Scholar
  11. Beers TC et al. (2007) Broadband UBVR C I C photometry of horizontal-branch and metal-poor candidates from the HK and Hamburg/ESO Surveys. I. Astrophys J Suppl Ser 168:128–139 ADSGoogle Scholar
  12. Behr BB (2003) Chemical abundances and rotation velocities of blue horizontal-branch stars in six globular clusters. Astrophys J Suppl 149:67–99 (it repeated twice) ADSGoogle Scholar
  13. Behr BB, Cohen JG, McCarthy JK, Djorgovski SG (1999) Striking photospheric abundance anomalies in blue horizontal-branch stars in globular cluster M13. Astrophys J 517:L135–L138 ADSGoogle Scholar
  14. Bekki K (2011) Secondary star formation within massive star clusters: origin of multiple stellar populations in globular clusters. Mon Not R Astron Soc 412:2241–2259 ADSGoogle Scholar
  15. Bekki K, Chiba M (2001) Formation of the Galactic Stellar Halo. I. Structure and kinematics. Astrophys J 558:666–686 ADSGoogle Scholar
  16. Bekki K, Freeman KC (2003) Formation of ω Centauri from an ancient nucleated dwarf galaxy in the young Galactic disc. Mon Not R Astron Soc 346:L11–L15 ADSGoogle Scholar
  17. Bekki K, Mackey AD (2009) On the origin of double main-sequence turn-offs in star clusters of the Magellanic Clouds. Mon Not R Astron Soc 394:124–132 ADSGoogle Scholar
  18. Bekki K, Norris JE (2006) The origin of the double main sequence in ω Centauri: Helium enrichment due to gas fueling from its ancient Host Galaxy? Astrophys J 637:L109–L112 ADSGoogle Scholar
  19. Bekki K, Campbell SW, Lattanzio JC, Norris JE (2007) Origin of abundance inhomogeneity in globular clusters. Mon Not R Astron Soc 377:335–351 ADSGoogle Scholar
  20. Bekki K, Yahagi H, Nagashima M, Forbes DA (2008) The origin of globular cluster systems from cosmological simulations. Mon Not R Astron Soc 387:1131–1148 ADSGoogle Scholar
  21. Bellazzini M, Ibata RA, Chapman SC, Mackey AD, Monaco L, Irwin MJ, Martin NF, Lewis GF, Dalessandro E (2008) The Nucleus of the Sagittarius Dsph Galaxy and M54: a window on the process of Galaxy nucleation. Astron J 136:1147–1170 ADSGoogle Scholar
  22. Bellini A, Piotto G, Bedin LR, King IR, Anderson J, Milone AP, Momany Y (2009) Radial distribution of the multiple stellar populations in ω Centauri. Astron Astrophys 507:1393–1408 ADSGoogle Scholar
  23. Belokurov V, Evans NW, Irwin MJ, Hewett PC, Wilkinson MI (2006) Astrophys J 637:L29 ADSGoogle Scholar
  24. Bertelli G, Nasi E, Girardi L, Chiosi C, Zoccali M, Gallart C (2003) Testing intermediate-age stellar evolution models with VLT photometry of Large Magellanic Cloud clusters. III. Padova results. Astron J 125:770–784 ADSGoogle Scholar
  25. Bhatia RK, Hatzidimitriou D (1988) Binary star clusters in the Large Magellanic Cloud. Mon Not R Astron Soc 230:215–221 ADSGoogle Scholar
  26. Bica E, Dutra CM, Soares J, Barbuy B (2003) New infrared star clusters in the northern and equatorial Milky Way with 2MASS. Astron Astrophys 404:223–232 ADSGoogle Scholar
  27. Bloecker T, Schoenberner D (1991) A 7-solar-mass AGB model sequence not complying with the core mass-luminosity relation. Astron Astrophys 244:L43–L46 ADSGoogle Scholar
  28. Böker T (2008) Are globular clusters the remnant nuclei of progenitor disk galaxies? Astrophys J 672:L111–L114 ADSGoogle Scholar
  29. Böker T (2010) Nuclear star clusters. Star clusters: basic galactic building blocks throughout time and space. Proc IAU 266:58–63 Google Scholar
  30. Boley AC, Lake G, Read J, Teyssier R (2009) Globular cluster formation within a cosmological context. Astrophys J 706:L192–L196 ADSGoogle Scholar
  31. Bonifacio P et al. (2002) The lithium content of the globular cluster NGC 6397. Astron Astrophys 390:91–101 ADSGoogle Scholar
  32. Bragaglia A, Carretta E, Gratton R, D’Orazi V, Cassisi S, Lucatello S (2010a) Helium in first and second-generation stars in globular clusters from spectroscopy of red giants. Astron Astrophys 519:A60 ADSGoogle Scholar
  33. Bragaglia A, Carretta E, Gratton RG, Lucatello S, Milone A, Piotto G, D’Orazi V, Cassisi S, Sneden C, Bedin LR (2010b) X-shooter observations of main-sequence stars in the globular cluster NGC 2808: first chemical tagging of a He-normal and a He-rich Dwarf. Astrophys J 720:L41–L45 ADSGoogle Scholar
  34. Bragaglia A, Sneden C, Carretta E, Gratton RG, Lucatello S (2012) Searching for abundance anomalies in the old, massive open cluster NGC 6791. Astrophys J, submitted Google Scholar
  35. Briley MM, Cohen JG (2001) Calibration of the CH and CN variations among main-sequence stars in M71 and in M13. Astron J 122:242–247 ADSGoogle Scholar
  36. Briley MM, Smith VV, Suntzeff NB, Lambert DL, Bell RA, Hesser JE (1996) Sodium abundance variations in main-sequence stars of the globular cluster 47 Tucanae. Nature 383:604–606 ADSGoogle Scholar
  37. Briley MM, Cohen JG, Stetson PB (2004a) The chemical inhomogeneity of faint M13 stars: carbon and nitrogen abundances. Astron J 127:1579–1587 ADSGoogle Scholar
  38. Briley MM, Harbeck D, Smith GH, Grebel EK (2004b) On the carbon and nitrogen abundances of 47 Tucanae’s main-sequence stars. Astron J 127:1588–1593 ADSGoogle Scholar
  39. Brodie JP, Strader J (2006) Extragalactic globular clusters and Galaxy formation. Annu Rev Astron Astrophys 44:193–267 ADSGoogle Scholar
  40. Brown WR, Beers TC, Wilhelm R, Allende Prieto C, Geller MJ, Kenyon SJ, Kurtz MJ (2008) The century survey Galactic halo project III: a complete 4300 DEG2 survey of blue horizontal branch stars in the metal-weak thick disk and Inner Halo. Astron J 135:564–574 ADSGoogle Scholar
  41. Brüns RC, Kroupa P, Fellhauer M, Metz M, Assmann P (2011) A parametric study on the formation of extended star clusters and ultra-compact dwarf galaxies. Astron Astrophys 529:A138 ADSGoogle Scholar
  42. Bullock JS, Johnston KV (2005) Tracing Galaxy formation with Stellar Halos. I. Methods. Astrophys J 635:931–949 ADSGoogle Scholar
  43. Butler D, Dickens RJ, Epps E (1978) Studies of RR Lyrae variable stars in the unusual globular cluster Omega Centauri. I—Spectroscopic observations. Astrophys J 225:148–164 ADSGoogle Scholar
  44. Buzzoni A, Fusi Pecci F, Buonanno R, Corsi CE (1983) Helium abundance in globular clusters—The R-method. Astron Astrophys 128:94–101 ADSGoogle Scholar
  45. Caloi V (1999) On the gap in horizontal branches at B–V about zero. Astron Astrophys 343:904–908 ADSGoogle Scholar
  46. Caloi V, D’Antona F (2005) Helium self-enrichment in globular clusters and the second parameter problem in M 3 and M 13. Astron Astrophys 435:987–993 ADSGoogle Scholar
  47. Caloi V, D’Antona F (2007) NGC 6441: another indication of very high helium content in globular cluster stars. Astron Astrophys 463:949–955 ADSGoogle Scholar
  48. Caloi V, D’Antona F (2008) Is mass loss along the red giant branch of globular clusters sharply peaked? The case of M3. Astrophys J 673:847–853 ADSGoogle Scholar
  49. Caloi V, D’Antona F (2011) In search of massive single-population Globular Clusters. arXiv:1106.0810
  50. Cameron AGW, Fowler WA (1971) Lithium and the s-PROCESS in red-giant stars. Astrophys J 164:111 ADSGoogle Scholar
  51. Campbell SW, Lattanzio JC, Elliott LM (2006) Are there radical cyanogen abundance differences between galactic globular cluster RGB and AGB stars? Possibly a vital clue to the globular cluster abundance anomaly problem. MmSAI 77:864 ADSGoogle Scholar
  52. Campbell SW, Yong D, Wylie-de Boer EC, Stancliffe RJ, Lattanzio JC, Angelou GC, Grundahl F, Sneden C (2010) The case of the disappearing CN-strong AGB stars in Galactic globular clusters—preliminary results. MmSAI 81:1004 ADSGoogle Scholar
  53. Cannon RD, Croke BFW, Bell RA, Hesser JE, Stathakis RA (1998) Carbon and nitrogen abundance variations on the main sequence of 47 Tucanae. Mon Not R Astron Soc 298:601–624 ADSGoogle Scholar
  54. Caputo F, Castellani V, Wood PR (1978) Evolutionary parameters in observed horizontal and asymptotic branches. Mon Not R Astron Soc 184:377–386 ADSGoogle Scholar
  55. Carney BW, Latham DW, Stefanik RP, Laird JB, Morse JA (2003) Spectroscopic binaries, velocity jitter, and rotation in field metal-poor red giant and red horizontal-branch stars. Astron J 125:293–321 ADSGoogle Scholar
  56. Carollo D et al. (2007) Two stellar components in the halo of the Milky Way. Nature 450:1020–1025 ADSGoogle Scholar
  57. Carretta E (2006) Abundances in red giant stars of NGC 2808 and correlations between chemical anomalies and global parameters in globular clusters. Astron J 131:1766–1783 ADSGoogle Scholar
  58. Carretta E, Gratton RG, Bragaglia A, Bonifacio P, Pasquini L (2004) Abundance analysis of turn-off and early subgiant stars in the globular cluster 47 Tuc (NGC 104). Astron Astrophys 416:925–940 ADSGoogle Scholar
  59. Carretta E, Gratton RG, Lucatello S, Bragaglia A, Bonifacio P (2005) Abundances of C, N, O in slightly evolved stars in the globular clusters NGC 6397, NGC 6752 and 47 Tuc. Astron Astrophys 433:597–611 ADSGoogle Scholar
  60. Carretta E, Bragaglia A, Gratton RG, Leone F, Recio-Blanco A, Lucatello S (2006) Na–O anticorrelation and HB. I. The Na–O anticorrelation in NGC 2808. Astron Astrophys 450:523–533 ADSGoogle Scholar
  61. Carretta E, Bragaglia A, Gratton RG, Lucatello S, Momany Y (2007a) Na–O anticorrelation and horizontal branches. II. The Na–O anticorrelation in the globular cluster NGC 6752. Astron Astrophys 464:927–937 ADSGoogle Scholar
  62. Carretta E et al. (2007b) Na–O Anticorrelation and horizontal branches IV detection of He-rich and He:poor stellar populations in the globular cluster NGC 6218. Astron Astrophys 464:939–951 ADSGoogle Scholar
  63. Carretta E, Bragaglia A, Gratton RG, Momany Y, Recio-Blanco A, Cassisi S, François P, James G, Lucatello S, Moehler S (2007c) Na–O anticorrelation and horizontal branches. VI. The chemical composition of the peculiar bulge globular cluster NGC 6388. Astron Astrophys 464:967–981 ADSGoogle Scholar
  64. Carretta E, Recio-Blanco A, Gratton RG, Piotto G, Bragaglia A (2007d) The link between chemical anomalies along the red giant branch and the horizontal branch extension in globular clusters. Astrophys J 671:L125–L128 ADSGoogle Scholar
  65. Carretta E et al. (2009a) Na–O Anticorrelation and HB VII: the chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra. Astron Astrophys 505:117–138 ADSGoogle Scholar
  66. Carretta E, Bragaglia A, Gratton R, D’Orazi V, Lucatello S (2009b) Intrinsic iron spread and a new metallicity scale for globular clusters. Astron Astrophys 508:695–706 ADSGoogle Scholar
  67. Carretta E, Bragaglia A, Gratton R, Lucatello S (2009c) Na–O Anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra. Astron Astrophys 505:139–155 ADSGoogle Scholar
  68. Carretta E, Bragaglia A, Gratton RG, Recio-Blanco A, Lucatello S, D’Orazi V, Cassisi S (2010a) Properties of stellar generations in globular clusters and relations with global parameters. Astron Astrophys 516:A55 ADSGoogle Scholar
  69. Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010b) M54 + Sagittarius = ω Centauri. Astrophys J 714:L7–L11 ADSGoogle Scholar
  70. Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010c) Detailed abundances of a large sample of giant stars in M 54 and in the Sagittarius nucleus. Astron Astrophys 520:A95 ADSGoogle Scholar
  71. Carretta E et al. (2010d) Abundances for a Large Sample of Red Giants in NGC 1851: hints for a merger of two clusters? Astrophys J 722:L1–L6 ADSGoogle Scholar
  72. Carretta E, Bragaglia A, D’Orazi V, Lucatello S, Gratton RG (2010e) The radial distribution of stars of different stellar generations in the globular cluster NGC 3201. Astron Astrophys 519:A71 ADSGoogle Scholar
  73. Carretta E, Bragaglia A, Gratton R, Lucatello S, Bellazzini M, D’Orazi V (2010f) Calcium and light-elements abundance variations from high-resolution spectroscopy in globular clusters. Astrophys J 712:L21–L25 ADSGoogle Scholar
  74. Carretta E, Lucatello S, Gratton R, Bragaglia A, D’Orazi V (2011a) Multiple stellar populations in the globular cluster NGC 1851. Astron Astrophys 533:69 ADSGoogle Scholar
  75. Carretta E, Bragaglia A, Gratton R, Lucatello S, D’orazi V (2011b) A Strömgren view of the multiple populations in globular clusters. Astron Astrophys. doi: 10.1051/0004-6361/201117180. arXiv:1109.3199 Google Scholar
  76. Cassisi S, Salaris M, Pietrinferni A, Piotto G, Milone AP, Bedin LR, Anderson J (2008) The double subgiant branch of NGC 1851: the role of the CNO abundance. Astrophys J 672:L115–L118 ADSGoogle Scholar
  77. Catelan M (1998) Is there a difference in luminosity between field and cluster RR lyrae variables? Astrophys J 495:L81 ADSGoogle Scholar
  78. Catelan M (2009) Horizontal branch stars: the interplay between observations and theory, and insights into the formation of the Galaxy. Astron Astrophys Suppl Ser 320:261–309 zbMATHGoogle Scholar
  79. Cavallo RM, Suntzeff NB, Pilachowski CA (2004) Hydra observations of aluminum abundances in the red giants of the globular clusters M80 and NGC 6752. Astron J 127:3411–3421 ADSGoogle Scholar
  80. Chiappini C, Frischknecht U, Meynet G, Hirschi R, Barbuy B, Pignatari M, Decressin T, Maeder A (2011) Imprints of fast-rotating massive stars in the Galactic Bulge. Nature 472:454–457 ADSGoogle Scholar
  81. Chun S-H, Kim J-W, Sohn ST, Park J-H, Han W, Kim H-I, Lee Y-W, Lee MG, Lee S-G, Sohn Y-J (2010) A wide-field photometric survey for extratidal tails around five metal-poor globular clusters in the galactic halo. Astron J 139:606–625 ADSGoogle Scholar
  82. Cohen JG (2004) Palomar 12 as a part of the Sagittarius stream: the evidence from abundance ratios. Astron J 127:1545–1554 ADSGoogle Scholar
  83. Cohen JG (1999a) The spectra of main-sequence stars in Galactic globular clusters. I. CH and CN bands in M13. Astron J 117:2428–2433 ADSGoogle Scholar
  84. Cohen JG (1999b) The spectra of main-sequence stars in Galactic globular clusters. II. CH and CN bands in M71. Astron J 117:2434–2439 ADSGoogle Scholar
  85. Cohen JG (2011) No heavy-element dispersion in the globular cluster M92. Astrophys J 740:L38 ADSGoogle Scholar
  86. Cohen JG, Meléndez J (2005) Abundances in a large sample of stars in M3 and M13. Astron J 129:303–329 ADSGoogle Scholar
  87. Cohen JG, Briley MM, Stetson PB (2002) Carbon and nitrogen abundances in stars at the base of the red giant branch in M5. Astron J 123:2525–2540 ADSGoogle Scholar
  88. Cohen JG, Briley MM, Stetson PB (2005) C and N abundances in stars at the base of the red giant branch in M15. Astron J 130:1177–1193 ADSGoogle Scholar
  89. Cohen JG, Huang W, Kirby E (2011) The peculiar chemical inventory of NGC 2419—an extreme outer halo “Globular Cluster”. Astrophys J 740:60 ADSGoogle Scholar
  90. Conroy C (2011) The ancient globular clusters were much more massive at birth. arXiv:1101.2208
  91. Conroy C, Spergel DN (2011) On the formation of multiple stellar populations in globular clusters. Astrophys J 726:36 ADSGoogle Scholar
  92. Cottrell PL, Da Costa GS (1981) Correlated cyanogen and sodium anomalies in the globular clusters 47 TUC and NGC 6752. Astrophys J 245:L79–L82 ADSGoogle Scholar
  93. Crocker DA, Rood RT, Oconnell RW (1986) Horizontal-branch stars in NGC 6752 with strong helium lines. Astrophys J 309:L23–L26 ADSGoogle Scholar
  94. Da Costa GS, Held EV, Saviane I, Gullieuszik M (2009) M22: An [Fe/H] abundance range revealed. Astrophys J 705:1481–1491 ADSGoogle Scholar
  95. Dabringhausen J, Hilker M, Kroupa P (2008) From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. Mon Not R Astron Soc 386:864–886 ADSGoogle Scholar
  96. D’Antona F, Caloi V (2004) The early evolution of globular clusters: the case of NGC 2808. Astrophys J 611:871–880 ADSGoogle Scholar
  97. D’Antona F, Caloi V (2008) The fraction of second-generation stars in globular clusters from the analysis of the horizontal branch. Mon Not R Astron Soc 390:693–705 ADSGoogle Scholar
  98. D’Antona F, Ventura P (2010) Lithium factories in the Galaxy: novae and AGB stars. IAUS 268:395–404 ADSGoogle Scholar
  99. D’Antona F, Gratton RG, Chieffi A (1983) CNO self-pollution in globular clusters—A model and its possible observational tests. Mem Soc Astron Ital 54:173–198 ADSGoogle Scholar
  100. D’Antona F, Caloi V, Montalbán J, Ventura P, Gratton R (2002) Helium variation due to self-pollution among Globular Cluster stars. Consequences on the horizontal branch morphology. Astron Astrophys 395:69–75 ADSGoogle Scholar
  101. D’Antona F, Bellazzini M, Caloi V, Fusi Pecci F, Galleti S, Rood RT (2005) A Helium spread among the main-sequence stars in NGC 2808. Astrophys J 631:868–878 ADSGoogle Scholar
  102. D’Antona F, Caloi V, Ventura P (2010a) The evolutionary status of the blue hook stars in ω Centauri. Mon Not R Astron Soc 405:2295–2301 ADSGoogle Scholar
  103. D’Antona F, Ventura P, Caloi V, D’Ercole A, Vesperini E, Carini R, Di Criscienzo M (2010b) Terzan 5: an alternative interpretation for the split horizontal branch. Astrophys J 715:L63–L67 ADSGoogle Scholar
  104. D’Antona F et al. (2011) The oxygen versus sodium (anti)correlation(S) in ω Cen. Astrophys J 736:5 ADSGoogle Scholar
  105. Davies B, Figer DF, Kudritzki R-P, MacKenty J, Najarro F, Herrero A (2007) A massive cluster of red supergiants at the base of the scutum-crux arm. Astrophys J 671:781–801 ADSGoogle Scholar
  106. Davies B, Figer DF, Law CJ, Kudritzki R-P, Najarro F, Herrero A, MacKenty JW (2008) The cool supergiant population of the massive Young Star cluster RSGC1. Astrophys J 676:1016–1028 ADSGoogle Scholar
  107. De Marchi G, Pulone L (2007) NGC 2298: a globular cluster on its way to disruption. Astron Astrophys 467:107–115 ADSGoogle Scholar
  108. De Marchi G, Paresce F, Pulone L (2007) Why haven’t loose globular clusters collapsed yet? Astrophys J 656:L65–L68 ADSGoogle Scholar
  109. De Marchi G et al (2011a) Star formation in 30 Doradus. arXiv:1106.2801
  110. De Marchi G, Panagia N, Sabbi E (2011b) Clues to the star formation in NGC 346 across time and space. arXiv:1106.5780
  111. de Mink SE, Pols OR, Langer N, Izzard RG (2009) Massive binaries as the source of abundance anomalies in globular clusters. Astron Astrophys 507:L1–L4 ADSGoogle Scholar
  112. de Silva GM, Gibson BK, Lattanzio J, Asplund M (2009) O and Na abundance patterns in open clusters of the Galactic disk. Astron Astrophys 500:L25–L28 ADSGoogle Scholar
  113. Decressin T, Meynet G, Charbonnel C, Prantzos N, Ekström S (2007a) Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters. Astron Astrophys 464:1029–1044 ADSGoogle Scholar
  114. Decressin T, Charbonnel C, Meynet G (2007b) Origin of the abundance patterns in Galactic globular clusters: constraints on dynamical and chemical properties of globular clusters. Astron Astrophys 475:859–873 ADSGoogle Scholar
  115. Decressin T, Baumgardt H, Kroupa P (2008) The evolution of two stellar populations in globular clusters. I. The dynamical mixing timescale. Astron Astrophys 492:101–109 ADSGoogle Scholar
  116. Decressin T, Baumgardt H, Kroupa P, Meynet G, Charbonnel C (2009) The ages of Galactic globular clusters in the context of self-enrichment. IAUS 258:265–274 ADSGoogle Scholar
  117. Decressin T, Baumgardt H, Charbonnel C, Kroupa P (2010) Evolution of two stellar populations in globular clusters. II. Effects of primordial gas expulsion. Astron Astrophys 516:A73 ADSGoogle Scholar
  118. Denisenkov PA, Denisenkova SN (1989) Possible explanation of the correlation between nitrogen and sodium over abundances for red giants in globular clusters. ATsir 1538:11 ADSGoogle Scholar
  119. D’Ercole A, Vesperini E, D’Antona F, McMillan SLW, Recchi S (2008) Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon Not R Astron Soc 391:825–843 ADSGoogle Scholar
  120. D’Ercole A, D’Antona F, Ventura P, Vesperini E, McMillan SLW (2010) Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta. Mon Not R Astron Soc 407:854–869 ADSGoogle Scholar
  121. D’Ercole A, D’Antona F, Vesperini E (2011) Formation of multiple populations in globular clusters: constraints on the dilution by pristine gas. Mon Not R Astron Soc 736 Google Scholar
  122. di Criscienzo M, D’Antona F, Ventura P (2010a) A detailed study of the main sequence of the globular cluster NGC 6397: can we derive constraints on the existence of multiple populations? Astron Astrophys 511:A70 Google Scholar
  123. di Criscienzo M, Ventura P, D’Antona F, Milone A, Piotto G (2010b) The helium spread in the globular cluster 47 Tuc. Mon Not R Astron Soc 408:999–1005 ADSGoogle Scholar
  124. D’Orazi V, Marino AF (2010) Lithium abundances in red giants of M4: evidence for asymptotic giant branch star pollution in globular clusters? Astrophys J 716:L166–L169 ADSGoogle Scholar
  125. D’Orazi V, Randich S (2009) Chemical composition of the young open clusters IC 2602 and IC 2391. Astron Astrophys 501:553–562 ADSGoogle Scholar
  126. D’Orazi V, Gratton R, Lucatello S, Carretta E, Bragaglia A, Marino AF (2010a) Ba stars and other binaries in first and second generation stars in globular clusters. Astrophys J 719:L213–L217 ADSGoogle Scholar
  127. D’Orazi V, Lucatello S, Gratton R, Bragaglia A, Carretta E, Shen Z, Zaggia S (2010b) Lithium and proton-capture elements in globular cluster dwarfs: the case of 47 TUC. Astrophys J 713:L1–L5 ADSGoogle Scholar
  128. D’Orazi V et al. (2011) Chemical enrichment mechanisms in ω Centauri: clues from neutron-capture elements. Astron Astrophys 534:29 Google Scholar
  129. Dotter A et al. (2010) The ACS survey of Galactic globular clusters. IX. Horizontal branch morphology and the second parameter phenomenon. Astrophys J 708:698–716 ADSGoogle Scholar
  130. Dupree AK, Strader J, Smith GH (2011) Direct evidence for an enhancement of helium in giant stars in omega Centauri. Astrophys J 728:155 ADSGoogle Scholar
  131. Duquennoy A, Mayor M (1991) Multiplicity among solar-type stars in the solar neighbourhood. II—Distribution of the orbital elements in an unbiased sample. Astron Astrophys 248:485–524 ADSGoogle Scholar
  132. Elmegreen BG (2010) The globular cluster mass function as a remnant of violent birth. Astrophys J 712:L184–L188 ADSGoogle Scholar
  133. Fabbian D, Recio-Blanco A, Gratton RG, Piotto G (2005) Abundance anomalies in hot horizontal branch stars of the galactic globular cluster NGC1904. Astron Astrophys 434:235–245 ADSGoogle Scholar
  134. Fall SM, Rees MJ (1977) Survival and disruption of galactic substructure. Mon Not R Astron Soc 181:37P–42P ADSGoogle Scholar
  135. Fall SM, Zhang Q (2001) Dynamical evolution of the mass function of globular star clusters. Astrophys J 561:751–765 ADSGoogle Scholar
  136. Ferraro FR et al. (2009) The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge. Nature 462:483–486 ADSGoogle Scholar
  137. Ferraro FR, Lanzoni B (2008) Blue straggler stars in Galactic globular clusters: tracing the effect of dynamics on stellar evolution. IAUS 246:281–290 ADSGoogle Scholar
  138. Ferraro FR, Paltrinieri B, Pecci FF, Rood RT, Dorman B (1998) Multimodal distributions along the horizontal branch. Astrophys J 500:311 ADSGoogle Scholar
  139. Ferraro FR, Sollima A, Pancino E, Bellazzini M, Straniero O, Origlia L, Cool AM (2004) The discovery of an anomalous subgiant branch in the color-magnitude diagram of ω Centauri. Astrophys J 603:L81–L84 ADSGoogle Scholar
  140. Freeman K (2011) Prospects for wide field multi-object spectroscopic instrumentation. EAS 45:213–218 Google Scholar
  141. Freeman K, Bland-Hawthorn J (2002) The New Galaxy: signatures of its formation. Annu Rev Astron Astrophys 40:487–537 ADSGoogle Scholar
  142. Freeman KC, Rodgers AW (1975) The chemical inhomogeneity of Omega Centauri. Astrophys J 201:L71 ADSGoogle Scholar
  143. Fusi Pecci F, Ferraro FR, Bellazzini M, Djorgovski S, Piotto G, Buonanno R (1993) On the effects of cluster density and concentration on the horizontal branch morphology—The origin of the blue tails. Astron J 105:1145–1168 ADSGoogle Scholar
  144. Gao B, Goodman J, Cohn H, Murphy B (1991) Fokker–Planck calculations of star clusters with primordial binaries. Astrophys J 370:567–582 ADSGoogle Scholar
  145. Gieles M (2009) The early evolution of the star cluster mass function. Mon Not R Astron Soc 394:2113–2126 ADSGoogle Scholar
  146. Gilmozzi R, Kinney EK, Ewald SP, Panagia N, Romaniello M (1994) WFPC2 observations of the double cluster NGC 1850 in the Large Magellanic Cloud. Astrophys J 435:L43–L46 ADSGoogle Scholar
  147. Girardi L, Eggenberger P, Miglio A (2011) Can rotation explain the multiple main-sequence turn-offs of Magellanic Cloud star clusters? Mon Not R Astron Soc 412:L103–L107 ADSGoogle Scholar
  148. Glatt K et al. (2008) Age determination of six intermediate-age Small Magellanic Cloud Star clusters with HST/ACS. Astron J 136:1703–1727 ADSGoogle Scholar
  149. Gnedin OY, Ostriker JP (1997) Destruction of the Galactic Globular Cluster System. Astrophys J 474:223 ADSGoogle Scholar
  150. Goodman J, Hut P (1989) Primordial binaries and globular cluster evolution. Nature 339:40–42 ADSGoogle Scholar
  151. Goodwin SP (2010) Binaries in star clusters and the origin of the field stellar population. RSPTA 368:851–866 ADSGoogle Scholar
  152. Goudfrooij P, Puzia TH, Chandar R, Kozhurina-Platais V (2011) Population parameters of intermediate-age star clusters in the Large Magellanic Cloud. III. Dynamical evidence for a range of ages being responsible for extended main sequence turnoffs. Astrophys J 737:4–13 ADSGoogle Scholar
  153. Gratton R (2008) Abundances in globular cluster stars: what is the relation with Dwarf Galaxies? Msngr 134:9–12 ADSGoogle Scholar
  154. Gratton RG et al. (2001) The O–Na and Mg–Al anticorrelations in turn-off and early subgiants in globular clusters. Astron Astrophys 369:87–98 ADSGoogle Scholar
  155. Gratton RG et al. (2007) Na–O anticorrelation and horizontal branches V The Na–O anticorrelation in NGC 6441 from Giraffe spectra. Astron Astrophys 464:953–965 ADSGoogle Scholar
  156. Gratton RG, Carretta E (2010) Diluting the material forming the second generation stars in globular clusters: the contribution by unevolved stars. Astron Astrophys 521:A54 ADSGoogle Scholar
  157. Gratton RG, Sneden C, Carretta E, Bragaglia A (2000) Mixing along the red giant branch in metal-poor field stars. Astron Astrophys 354:169–187 ADSGoogle Scholar
  158. Gratton R, Sneden C, Carretta E (2004) Abundance variations within globular clusters. Annu Rev Astron Astrophys 42:385–440 ADSGoogle Scholar
  159. Gratton RG, Lucatello S, Bragaglia A, Carretta E, Momany Y, Pancino E, Valenti E (2006) Na–O anticorrelation and HB. III. The abundances of NGC 6441 from FLAMES-UVES spectra. Astron Astrophys 455:271–281 ADSGoogle Scholar
  160. Gratton R, Carretta E, Bragaglia A, Lucatello S, D’Orazi V (2010a) Observations of multiple stellar populations in globular clusters with FLAMES at the VLT. Msngr 142:28–30 ADSGoogle Scholar
  161. Gratton RG, Carretta E, Bragaglia A, Lucatello S, D’Orazi V (2010b) The second and third parameters of the horizontal branch in globular clusters. Astron Astrophys 517:A81 ADSGoogle Scholar
  162. Gratton RG, D’Orazi V, Bragaglia A, Carretta E, Lucatello S (2010c) The connection between missing AGB stars and extended horizontal branches. Astron Astrophys 522:A77 ADSGoogle Scholar
  163. Gratton RG, Carretta E, Bragaglia A, Lucatello S, D’Orazi V (2011) The Na–O anticorrelation in horizontal branch stars. I. NGC 2808. Astron Astrophys. doi: 10.1051/0004-6361/201117690 Google Scholar
  164. Greenstein JL, Sargent AI (1974) The nature of faint Blue Stars in the Halo. II. Astrophys J Suppl Ser 28:157 ADSGoogle Scholar
  165. Greggio L, Renzini A (1990) Clues on the hot star content and the ultraviolet output of elliptical galaxies. Astrophys J 364:35–64 ADSGoogle Scholar
  166. Greissl J, Meyer MR, Christopher MH, Scoville NZ (2010) Star formation history of a young Super-Star cluster in NGC 4038/39: direct detection of low-mass pre-main sequence stars. Astrophys J 710:1746–1754 ADSGoogle Scholar
  167. Grillmair CJ, Johnson R (2006) The detection of a 45 deg tidal stream associated with the globular cluster NGC 5466. Astrophys J 639:L17–L20 ADSGoogle Scholar
  168. Grundahl F, Catelan M, Landsman WB, Stetson PB, Andersen MI (1999) Hot horizontal-branch stars: the ubiquitous nature of the “Jump” in Strömgren u, low gravities, and the role of radiative levitation of metals. Astrophys J 524:242–261 ADSGoogle Scholar
  169. Han S-I, Lee Y-W, Joo S-J, Sohn ST, Yoon S-J, Kim H-S, Lee J-W (2009) The presence of two distinct red giant branches in the globular cluster NGC 1851. Astrophys J 707:L190–L194 ADSGoogle Scholar
  170. Harbeck D, Smith GH, Grebel EK (2003) CN abundance variations on the main sequence of 47 tucanae. Astron J 125:197–207 ADSGoogle Scholar
  171. Harris WE (1974) The unusual horizontal branch of NGC 2808. Astrophys J 192:L161 ADSGoogle Scholar
  172. Harris WE (1976) Spatial structure of the globular cluster system and the distance to the galactic center. Astron J 81:1095–1116 ADSGoogle Scholar
  173. Harris WE (1996) A catalog of parameters for globular clusters in the Milky Way. Astron J 112:1487 ADSGoogle Scholar
  174. Heggie D, Hut P (2003) The gravitational million-body problem: a multidisciplinary approach to star cluster dynamics. CQGra 20:4504–4505 ADSGoogle Scholar
  175. Heggie DC, Trenti M, Hut P (2006) Star clusters with primordial binaries—I. Dynamical evolution of isolated models. Mon Not R Astron Soc 368:677–689 ADSGoogle Scholar
  176. Helmi A (2008) The stellar halo of the Galaxy. Astron Astrophys Rev 15:145–188 ADSGoogle Scholar
  177. Helmi A, White SDM (1999) Building up the stellar halo of the Galaxy. Mon Not R Astron Soc 307:495–517 ADSGoogle Scholar
  178. Hennekemper E, Gouliermis DA, Henning T, Brandner W, Dolphin AE (2008) NGC 346 in the small Magellanic Cloud. III. Recent star formation and stellar clustering properties in the bright H II region N66. Astrophys J 672:914–929 ADSGoogle Scholar
  179. Henon M (1969) Rates of escape from Isolated clusters with an arbitrary mass distribution. Astron Astrophys 2:151 ADSGoogle Scholar
  180. Hesser JE, Bell RA (1980) CN variations among main-sequence 47 Tucanae stars. Astrophys J 238:L149–L153 ADSGoogle Scholar
  181. Hilker M, Richtler T (2000) ω Centauri—a former nucleus of a dissolved dwarf galaxy? New evidence from Strömgren photometry. Astron Astrophys 362:895–909 ADSGoogle Scholar
  182. Hurley JR, Aarseth SJ, Shara MM (2007) The core binary fractions of star clusters from realistic simulations. Astrophys J 665:707–718 ADSGoogle Scholar
  183. Ivanova N, Heinke CO, Rasio FA, Taam RE, Belczynski K, Fregeau J (2006) Formation and evolution of compact binaries in globular clusters—I. Binaries with white dwarfs. Mon Not R Astron Soc 372:1043–1059 ADSGoogle Scholar
  184. Ivanova N, Heinke CO, Rasio FA, Belczynski K, Fregeau JM (2008) Formation and evolution of compact binaries in globular clusters—II. Binaries with neutron stars. Mon Not R Astron Soc 386:553–576 ADSGoogle Scholar
  185. Ivans II et al. (1999) Star-to-star abundance variations among bright giants in the mildly metal-poor globular cluster M4. Astron J 118:1273–1300 ADSGoogle Scholar
  186. Ivans II, Kraft RP, Sneden C, Smith GH, Rich RM, Shetrone M (2001) New analyses of star-to-star abundance variations among bright giants in the mildly metal-poor globular cluster M5. Astron J 122:1438–1463 ADSGoogle Scholar
  187. Ivezić Ž et al. (2008) The Milky Way tomography with SDSS. II. Stellar metallicity. Astrophys J 684:287–325 ADSGoogle Scholar
  188. James G, François P, Bonifacio P, Carretta E, Gratton RG, Spite F (2004) Heavy elements and chemical enrichment in globular clusters. Astron Astrophys 427:825–838 ADSGoogle Scholar
  189. Johnson CI, Pilachowski CA (2010) Chemical abundances for 855 giants in the globular cluster omega Centauri (NGC 5139). Astrophys J 722:1373–1410 ADSGoogle Scholar
  190. Johnson CI, Kraft RP, Pilachowski CA, Sneden C, Ivans II, Benman G (2005) A 235 star sample sodium, magnesium, and aluminum abundance study in the globular Clusters M3 (NGC 5272) and M13 (NGC 6205). Publ Astron Soc Pac 117:1308–1324 ADSGoogle Scholar
  191. Johnson JA, Ivans II, Stetson PB (2006) Chemical compositions of red giant stars in old large Magellanic Cloud globular clusters. Astrophys J 640:801–822 ADSGoogle Scholar
  192. Jordi K, Grebel EK (2010) Search for extratidal features around 17 globular clusters in the Sloan digital Sky survey. Astron Astrophys 522:A71 ADSGoogle Scholar
  193. Jurić M et al. (2008) The Milky Way tomography with SDSS. I. Stellar number density distribution. Astrophys J 673:864–914 ADSGoogle Scholar
  194. Karakas AI (2010) Updated stellar yields from asymptotic giant branch models. Mon Not R Astron Soc 403:1413–1425 ADSGoogle Scholar
  195. Kayser A, Hilker M, Grebel EK, Willemsen PG (2008) Comparing CN and CH line strengths in a homogeneous spectroscopic sample of 8 Galactic globular clusters. Astron Astrophys 486:437–452 ADSGoogle Scholar
  196. Keller SC, Dougal Mackey A, Da Costa GS (2011) The extended main-sequence turnoff clusters of the Large Magellanic Cloud—missing links in globular cluster evolution. Astrophys J 731:22 ADSGoogle Scholar
  197. Kepley AA, Morrison HL, Helmi A, Kinman TD, Van Duyne J, Martin JC, Harding P, Norris JE, Freeman KC (2007) Halo star streams in the solar neighborhood. Astron J 134:1579–1595 ADSGoogle Scholar
  198. Kinman TD, Allen C (1996) The horizontal branch morphology of halo field stars. ASPC 92:36 ADSGoogle Scholar
  199. Kirby EN, Simon JD, Geha M, Guhathakurta P, Frebel A (2008) Uncovering extremely metal-poor stars in the Milky Way’s ultrafaint dwarf spheroidal satellite galaxies. Astrophys J 685:L43–L46 ADSGoogle Scholar
  200. Klypin A, Kravtsov AV, Valenzuela O, Prada F (1999) Where are the missing Galactic satellites? Astrophys J 522:82–92 ADSGoogle Scholar
  201. Koch A, Côté P, McWilliam A (2009) All quiet in the outer halo: chemical abundances in the globular cluster Pal 3. Astron Astrophys 506:729–743 ADSGoogle Scholar
  202. Korn A, Grudahl F, Richrad O et al. (2007) Atomic diffusion and mixing in old stars. I. Very large telescope FLAMES-UVES observations of stars in NGC 6397. Astrophys J 671:402–419 ADSGoogle Scholar
  203. Krabbe A et al. (1995) The nuclear cluster of the Milky Way: star formation and velocity dispersion in the central 0.5 Parsec. Astrophys J 447:L95–L98 ADSGoogle Scholar
  204. Kraft RP (1979) On the nonhomogeneity of metal abundances in stars of globular clusters and satellite subsystems of the Galaxy. Annu Rev Astron Astrophys 17:309–343 ADSGoogle Scholar
  205. Kraft RP (1994) Abundance differences among globular-cluster giants: primordial versus evolutionary scenarios. Publ Astron Soc Pac 106:553–565 ADSGoogle Scholar
  206. Kraft RP, Sneden C, Langer GE, Shetrone MD (1993) Oxygen abundances in Halo giants. IV—the oxygen-sodium anticorrelation in a sample of 22 bright giants in M13. Astron J 106:1490–1507 ADSGoogle Scholar
  207. Kraft RP, Sneden C, Smith GH, Shetrone MD, Langer GE, Pilachowski CA (1997) Proton capture chains in globular cluster stars. II. Oxygen, sodium, magnesium, and aluminum abundances in M13 giants brighter than the horizontal branch. Astron J 113:279 ADSGoogle Scholar
  208. Kravtsov AV, Gnedin OY (2005) Formation of globular clusters in hierarchical cosmology. Astrophys J 623:650–665 ADSGoogle Scholar
  209. Kravtsov V, Alcaíno G, Marconi G, Alvarado F (2010) Evidence of the inhomogeneity of the stellar population in the differentially reddened globular cluster NGC 3201. Astron Astrophys 512:L6 ADSGoogle Scholar
  210. Kravtsov V, Alcaíno G, Marconi G, Alvarado F (2011) Strong radial segregation between sub-populations of evolutionary homogeneous stars in the Galactic globular cluster NGC 6752. Astron Astrophys 527:L9 ADSGoogle Scholar
  211. Kruijssen JMD (2009) The evolution of the stellar mass function in star clusters. Astron Astrophys 507:1409–1423 ADSzbMATHGoogle Scholar
  212. Lada CJ, Lada EA (2003) Embedded clusters in molecular clouds. Annu Rev Astron Astrophys 41:57–115 ADSGoogle Scholar
  213. Lai DK, Smith GH, Bolte M, Johnson JA, Lucatello S, Kraft RP, Sneden C (2011) Chemical abundances for evolved stars in M5: lithium through thorium. Astron J 141:62 ADSGoogle Scholar
  214. Lamers HJGLM, Gieles M, Portegies Zwart SF (2005) Disruption time scales of star clusters in different galaxies. Astron Astrophys 429:173–179 ADSGoogle Scholar
  215. Langer GE, Hoffman R, Sneden C (1993) Sodium-oxygen abundance anticorrelations and deep-mixing scenarios for globular-cluster giants. Publ Astron Soc Pac 105:301–307 ADSGoogle Scholar
  216. Lardo C, Bellazzini M, Pancino E, Carretta E, Bragaglia A, Dalessandro E (2011) Mining SDSS in search of multiple populations in globular clusters. Astron Astrophys 525:A114 ADSGoogle Scholar
  217. Larsen SS, de Mink SE, Eldridge JJ, Langer N, Bastian N, Seth A, Smith LJ, Brodie J, Efremov YN (2011) Resolved photometry of extragalactic young massive star clusters. arXiv:1106.4560
  218. Lee Y-W, Demarque P, Zinn R (1994) The horizontal-branch stars in globular clusters. 2: The second parameter phenomenon. Astrophys J 423:248–265 ADSGoogle Scholar
  219. Lee Y-W, Joo J-M, Sohn Y-J, Rey S-C, Lee H-C, Walker AR (1999) Multiple stellar populations in the globular cluster ω Centauri as tracers of a merger event. Nature 402:55–57 ADSGoogle Scholar
  220. Lee Y-W, Joo S-J, Han S-I, Chung C, Ree CH, Sohn Y-J, Kim Y-C, Yoon S-J, Yi SK, Demarque P (2005) Super-helium-rich populations and the origin of extreme horizontal-branch stars in globular clusters. Astrophys J 621:L57–L60 ADSGoogle Scholar
  221. Lee J-W, Kang Y-W, Lee J, Lee Y-W (2009) Enrichment by supernovae in globular clusters with multiple populations. Nature 462:480–482 ADSGoogle Scholar
  222. Letarte B, Hill V, Jablonka P, Tolstoy E, François P, Meylan G (2006) VLT/UVES spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal galaxy. Astron Astrophys 453:547–554 ADSGoogle Scholar
  223. Lind K, Primas F, Charbonnel C, Grundahl F, Asplund M (2009) Signatures of intrinsic Li depletion and Li–Na anti-correlation in the metal-poor globular cluster NGC 6397. Astron Astrophys 503:545–557 ADSGoogle Scholar
  224. Lind K, Charbonnel C, Decressin T, Primas F, Grundahl F, Asplund M (2011) Tracing the evolution of NGC 6397 through the chemical composition of its stellar populations. Astron Astrophys 527:A148 ADSGoogle Scholar
  225. Lucatello S et al (2011a) in preparation Google Scholar
  226. Lucatello S et al (2011b) in preparation Google Scholar
  227. Macciò AV, Kang X, Fontanot F, Somerville RS, Koposov S, Monaco P (2010) Luminosity function and radial distribution of Milky Way satellites in a ΛCDM Universe. Mon Not R Astron Soc 402:1995–2008 ADSGoogle Scholar
  228. Mackey AD, Broby Nielsen P (2007) A double main-sequence turn-off in the rich star cluster NGC 1846 in the Large Magellanic Cloud. Mon Not R Astron Soc 379:151–158 ADSGoogle Scholar
  229. Maeder A, Meynet G (2006) On the origin of the high helium sequence in ω Centauri. Astron Astrophys 448:L37–L41 ADSGoogle Scholar
  230. Mallia EA (1978) Spectra of asymptotic giant branch stars in four southern globular clusters. Astron Astrophys 70:115–123 ADSGoogle Scholar
  231. Marino A et al. (2008) Spectroscopic and photometric evidence of two stellar populations in the Galactic globular cluster NGC 6121 (M 4). Astron Astrophys 490:625–640 ADSGoogle Scholar
  232. Marino AF, Milone AP, Piotto G, Villanova S, Bedin LR, Bellini A, Renzini A (2009) A double stellar generation in the globular cluster NGC 6656 (M 22). Two stellar groups with different iron and s-process element abundances. Astron Astrophys 505:1099–1113 ADSGoogle Scholar
  233. Marino AF et al. (2011a) Sodium-oxygen anticorrelation and neutron-capture elements in Omega Centauri stellar populations. Astrophys J 731:64 ADSGoogle Scholar
  234. Marino AF et al. (2011b) The two metallicity groups of the globular cluster M 22: a chemical perspective. Astron Astrophys 532:8 ADSGoogle Scholar
  235. Marino AF et al. (2011c) Sodium-oxygen anticorrelation among horizontal branch stars in the globular cluster M 4. Astrophys J 730:L16 ADSGoogle Scholar
  236. Martell SL (2011) Light-element abundance variations in globular clusters. Astron Nachr 332:467–474 ADSGoogle Scholar
  237. Martell SL, Grebel EK (2010) Light-element abundance variations in the Milky Way halo. Astron Astrophys 519:A14 ADSGoogle Scholar
  238. Martell SL, Smith GH, Briley MM (2008) CN bimodality at low metallicity: the globular cluster M53. Publ Astron Soc Pac 120:7–15 ADSGoogle Scholar
  239. Martell SL, Smolinski JP, Beers TC, Grebel EK (2011) Building the Galactic halo from globular clusters: evidence from chemically unusual red giants. arXiv:1109.3916
  240. McKee CF, Ostriker EC (2007) Theory of Star formation. Annu Rev Astron Astrophys 45:565–687 ADSGoogle Scholar
  241. McLaughlin DE (2003) The globular cluster luminosity function. In: Kissler-Patig M (ed) Extragalactic globular cluster systems. Springer, Berlin, p 329 Google Scholar
  242. McLaughlin DE, Fall SM (2008) Shaping the globular cluster mass function by stellar-dynamical evaporation. Astrophys J 679:1272–1287 ADSGoogle Scholar
  243. McWilliam A, Preston GW, Sneden C, Searle L (1995) Spectroscopic analysis of 33 of the most metal poor stars. II. Astron J 109:2757 ADSGoogle Scholar
  244. Michaud G, Vauclair G, Vauclair S (1983) Chemical separation in horizontal-branch stars. Astrophys J 267:256–270 ADSGoogle Scholar
  245. Milone AP, Piotto G, Bedin LR, Sarajedini A (2008) Photometric binaries in 50 globular clusters. MmSAI 79:623 ADSGoogle Scholar
  246. Milone AP, Bedin LR, Piotto G, Anderson J (2009a) Multiple stellar populations in Magellanic Cloud clusters I An ordinary feature for intermediate age globulars in the LMC? Astron Astrophys 497:755–771 ADSGoogle Scholar
  247. Milone AP, Stetson PB, Piotto G, Bedin LR, Anderson J, Cassisi S, Salaris M (2009b) The radial distribution of the two stellar populations in NGC 1851. Astron Astrophys 503:755–764 ADSGoogle Scholar
  248. Milone AP, Piotto G, King IR, Bedin LR, Anderson J, Marino AF, Momany Y, Malavolta L, Villanova S (2010) Multiple stellar populations in the Galactic globular cluster NGC 6752. Astrophys J 709:1183–1194 ADSGoogle Scholar
  249. Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Aparicio A, Cassisi S, Rich RM (2011) A double main sequence in the globular cluster NGC 6397. arXiv:1110.1077
  250. Moehler S, Dreizler S, Lanz T, Bono G, Sweigart AV, Calamida A, Monelli M, Nonino M (2007) The hottest horizontal-branch stars in ω Centauri. Late hot flasher vs. helium enrichment. Astron Astrophys 475:L5–L8 ADSGoogle Scholar
  251. Moehler S, Dreizler S, Lanz T, Bono G, Sweigart AV, Calamida A, Nonino M (2011) The hot horizontal-branch stars in ω Centauri. Astron Astrophys 526:A136 ADSGoogle Scholar
  252. Monaco L, Villanova S, Bonifacio P, Caffau E, Geisler D, Marconi G, Momany Y, Ludwig H-G (2011) Lithium and sodium in the globular cluster M4. A main sequence star with Li compatible with the cosmological value: nature or nurture? arXiv:1108.0138
  253. Moore B, Ghigna S, Governato F, Lake G, Quinn T, Stadel J, Tozzi P (1999) Dark matter substructure within Galactic halos. Astrophys J 524:L19–L22 ADSGoogle Scholar
  254. Moretti A et al. (2009) MCAO near-IR photometry of the globular cluster NGC 6388: MAD observations in crowded fields. Astron Astrophys 493:539–546 ADSGoogle Scholar
  255. Morrison HL (1993) The local density of halo giants. Astron J 106:578–590 ADSGoogle Scholar
  256. Mucciarelli A, Origlia L, Ferraro FR, Pancino E (2009) Looking outside the Galaxy: the discovery of chemical anomalies in three old large Magellanic Cloud clusters. Astrophys J 695:L134–L139 ADSGoogle Scholar
  257. Mucciarelli A, Salaris M, Lovisi L, Ferraro FR, Lanzoni B, Lucatello S, Gratton RG (2011) Lithium abundance in the globular cluster M4: from the turn-off to the red giant branch bump. Mon Not R Astron Soc 412:81–94 ADSGoogle Scholar
  258. Nataf DM, Gould A, Pinsonneault MH, Stetson PB (2011) The gradients in the 47 tuc red giant branch bump and horizontal branch are consistent with a centrally-concentrated, helium-enriched second stellar generation. arXiv:1102.3916
  259. Negueruela I, González-Fernández C, Marco A, Clark JS (2011) A massive association around the obscured open cluster RSGC3. Astron Astrophys 528:59 ADSGoogle Scholar
  260. Nieva MF, Simon-Diaz S (2011) The chemical composition of the Orion star-forming region III. C, N, Ne, Mg and Fe abundances in B-type stars revisited. Astron Astrophys 532:A2 ADSGoogle Scholar
  261. Norris JE (2004) The helium abundances of ω Centauri. Astrophys J 612:L25–L28 ADSGoogle Scholar
  262. Norris JE, Da Costa GS (1995) The giant branch of omega Centauri. IV. Abundance patterns based on echelle spectra of 40 red giants. Astrophys J 447:680 ADSGoogle Scholar
  263. Norris J, Cottrell PL, Freeman KC, Da Costa GS (1981) The abundance spread in the giants of NGC 6752. Astrophys J 244:205–220 ADSGoogle Scholar
  264. Odenkirchen M et al. (2001) Detection of massive tidal tails around the globular cluster Palomar 5 with Sloan digital sky survey commissioning data. Astrophys J 548:L165–L169 ADSGoogle Scholar
  265. Odenkirchen M, Grebel EK, Dehnen W, Rix H-W, Yanny B, Newberg HJ, Rockosi CM, Martínez-Delgado D, Brinkmann J, Pier JR (2003) The extended tails of Palomar 5: A 10deg Arc of globular cluster tidal debris. Astron J 126:2385–2407 ADSGoogle Scholar
  266. Olszewski EW, Saha A, Knezek P, Subramaniam A, de Boer T, Seitzer P (2009) A 500 parsec halo surrounding the Galactic globular NGC 1851. Astron J 138:1570–1576 ADSGoogle Scholar
  267. Origlia L, Rich RM, Ferraro FR, Lanzoni B, Bellazzini M, Dalessandro E, Mucciarelli A, Valenti E, Beccari G (2011) Spectroscopy unveils the complex nature of terzan 5. Astrophys J 726:L20 ADSGoogle Scholar
  268. Osborn W (1971) Two new CN-strong globular cluster stars. Observatory 91:223–224 ADSGoogle Scholar
  269. Pace G, Recio-Blanco A, Piotto G, Momany Y (2006) Abundance anomalies in hot horizontal branch stars of the Galactic globular cluster NGC 2808. Astron Astrophys 452:493–501 ADSGoogle Scholar
  270. Pancino E, Ferraro FR, Bellazzini M, Piotto G, Zoccali M (2000) New evidence for the complex structure of the red giant branch in ω Centauri. Astrophys J 534:L83–L87 ADSGoogle Scholar
  271. Pancino E, Rejkuba M, Zoccali M, Carrera R (2010) Low-resolution spectroscopy of main sequence stars belonging to 12 Galactic globular clusters. I. CH and CN band strength variations. Astron Astrophys 524:A44 ADSGoogle Scholar
  272. Pancino E, Mucciarelli A, Sbordone L, Bellazzini M, Pasquini L, Monaco L, Ferraro FR (2011) The subgiant branch of ω Centauri seen through high-resolution spectroscopy. I. The first stellar generation in ω Cen? Astron Astrophys 527:A18 ADSGoogle Scholar
  273. Parmentier G, Gilmore G (2005) New light on the initial mass function of the Galactic halo globular clusters. Mon Not R Astron Soc 363:326–336 ADSGoogle Scholar
  274. Parmentier G, Gilmore G (2007) The origin of the Gaussian initial mass function of old globular cluster systems. Mon Not R Astron Soc 377:352–372 ADSGoogle Scholar
  275. Pasquini L, Bonifacio P, Molaro P, Francois P, Spite F, Gratton RG, Carretta E, Wolff B (2005) Li in NGC 6752 and the formation of globular clusters. Astron Astrophys 441:549–553 ADSGoogle Scholar
  276. Pasquini L, Mauas P, Käufl HU, Cacciari C (2011) Measuring helium abundance difference in giants of NGC 2808. Astron Astrophys 531:A35 ADSGoogle Scholar
  277. Perryman MAC, de Boer KS, Gilmore G, Høg E, Lattanzi MG, Lindegren L, Luri X, Mignard F, Pace O, de Zeeuw PT (2001) GAIA: composition, formation and evolution of the Galaxy. Astron Astrophys 369:339–363 ADSGoogle Scholar
  278. Peterson RC, Rood RT, Crocker DA (1995) Rotation and oxygen line strengths in blue horizontal-branch stars. Astrophys J 453:214 ADSGoogle Scholar
  279. Pflamm-Altenburg J, Kroupa P (2008) On the origin of complex stellar populations in star clusters. IAUS 246:71–72 ADSGoogle Scholar
  280. Pilachowski CA, Sneden C, Kraft RP, Langer GE (1996) Proton capture chains in globular cluster stars. I. Evidence for deep mixing based on sodium and magnesium abundances in M13 giants. Astron J 112:545 ADSGoogle Scholar
  281. Piotto G (2009) Observations of multiple populations in star clusters. IAUS 258:233–244 ADSGoogle Scholar
  282. Piotto G et al. (2003) HST Color–magnitude diagrams of 74 Galactic globular clusters: the snapshot database. ASPC 296:230 ADSGoogle Scholar
  283. Piotto G et al. (2005) Metallicities on the double main sequence of ω Centauri imply large helium enhancement. Astrophys J 621:777–784 ADSGoogle Scholar
  284. Piotto G, Bedin LR, Anderson J, King IR, Cassisi S, Milone AP, Villanova S, Pietrinferni A, Renzini A (2007) A triple main sequence in the globular cluster NGC 2808. Astrophys J 661:L53–L56 ADSGoogle Scholar
  285. Portegies Zwart SF, McMillan SLW, Gieles M (2010) Young massive star clusters. Ann Rev Astron Astrophys 48:431–493 ADSGoogle Scholar
  286. Prantzos N, Charbonnel C (2006) On the self-enrichment scenario of galactic globular clusters: constraints on the IMF. Astron Astrophys 458:135–149 ADSGoogle Scholar
  287. Prantzos N, Charbonnel C, Iliadis C (2007) Light nuclei in galactic globular clusters: constraints on the self-enrichment scenario from nucleosynthesis. Astron Astrophys 470:179–190 ADSGoogle Scholar
  288. Pumo ML, Siess L, Zappala’ RA (2008) Super-AGB stars: evolution and associated nucleosynthesis. arXiv:0805.3611
  289. Ramírez SV, Cohen JG (2002) Abundances in stars from the red giant branch tip to near the main-sequence turnoff in M71. III. Abundance ratios. Astron J 123:3277–3297 ADSGoogle Scholar
  290. Ramírez SV, Cohen JG (2003) Abundances in stars from the red giant branch tip to near the main-sequence turnoff in M5. Astron J 125:224–245 ADSGoogle Scholar
  291. Recio-Blanco A, Aparicio A, Piotto G, de Angeli F, Djorgovski SG (2006) Multivariate analysis of globular cluster horizontal branch morphology: searching for the second parameter. Astron Astrophys 452:875–884 ADSGoogle Scholar
  292. Renzini A (2008) Origin of multiple stellar populations in globular clusters and their helium enrichment. Mon Not R Astron Soc 391:354–362 ADSGoogle Scholar
  293. Rich RM, Sosin C, Djorgovski SG, Piotto G, King IR, Renzini A, Phinney ES, Dorman B, Liebert J, Meylan G (1997) Discovery of extended blue horizontal branches in two metal-rich globular clusters. Astrophys J 484:L25 ADSGoogle Scholar
  294. Richer HB, Fahlman GG, Buonanno R, Fusi Pecci F, Searle L, Thompson IB (1991) Globular cluster mass functions. Astrophys J 381:147–159 ADSGoogle Scholar
  295. Ricotti M (2002) Did globular clusters reionize the Universe? Mon Not R Astron Soc 336:L33–L37 ADSGoogle Scholar
  296. Roederer IU (2011) Primordial r-process dispersion in metal-poor globular clusters. Astrophys J 732:L17 ADSGoogle Scholar
  297. Roederer IU, Sneden C (2011) Heavy-element dispersion in the metal-poor globular cluster M92. Astron J 142:22 ADSGoogle Scholar
  298. Roh D-G, Lee Y-W, Joo S-J, Han S-I, Sohn Y-J, Lee J-W (2011) Two distinct red giant branches in the globular cluster NGC 288. Astrophys J 733:L45 ADSGoogle Scholar
  299. Romani RW, Weinberg MD (1991) Limits on cluster binaries. Astrophys J 372:487–493 ADSGoogle Scholar
  300. Rossa J, van der Marel RP, Böker T et al. (2006) Hubble space telescope STIS spectra of nuclear star clusters in spiral galaxies: dependence of age and mass on Hubble type. Astron J 132:1074–1099 ADSGoogle Scholar
  301. Rubele S, Kerber L, Girardi L (2010) The star-formation history of the Small Magellanic Cloud star cluster NGC 419. Mon Not R Astron Soc 403:1156–1164 ADSGoogle Scholar
  302. Ryan SG (1992) Halo common proper motion stars—Subdwarf distance scale, halo binary fraction, and UBVRI colors. Astron J 104:1144–1155 ADSGoogle Scholar
  303. Sackmann I-J, Boothroyd AI (1992) The creation of superrich lithium giants. Astrophys J 392:L71–L74 ADSGoogle Scholar
  304. Salaris M, Weiss A, Ferguson JW, Fusilier DJ (2006) On the primordial scenario for abundance variations within globular clusters: the isochrone test. Astrophys J 645:1131–1137 ADSGoogle Scholar
  305. Sandage A, Wildey R (1967) The anomalous color-magnitude diagram of the remote globular cluster NGC 7006. Astrophys J 150:469 ADSGoogle Scholar
  306. Sarajedini A, Layden AC (1995) A photometric study of the globular cluster M54 and the Sagittarius dwarf galaxy: evidence for three distinct populations. Astron J 109:1086–1094 ADSGoogle Scholar
  307. Sbordone L, Bonifacio P, Marconi G, Buonanno R, Zaggia S (2005) Family ties: abundances in Terzan 7, a Sgr dSph globular cluster. Astron Astrophys 437:905–910 ADSGoogle Scholar
  308. Sbordone L, Salaris M, Weiss A, Cassisi S (2011) Photometric signatures of multiple stellar populations in Galactic globular clusters. arXiv:1103.5863
  309. Scalo JM, Despain KH, Ulrich RK (1975) Studies of evolved stars. V—Nucleosynthesis in hot-bottom convective envelopes. Astrophys J 196:805–817 ADSGoogle Scholar
  310. Schaerer D, Charbonnel C (2011) A new perspective on globular clusters, their initial mass function and their contribution to the stellar halo and the cosmic reionization. Mon Not R Astron Soc 413:2297–2304 ADSGoogle Scholar
  311. Schaller G, Schaerer D, Meynet G, Maeder A (1992) New grids of stellar models from 0.8 to 120 solar masses at Z=0.020 and Z=0.001. Astron Astrophys Suppl 96:269–331 ADSGoogle Scholar
  312. Shen Z-X, Jones B, Lin DNC, Liu X-W, Li SL (2005) Spectroscopic abundance analysis of dwarfs in the young open cluster IC 4665. Astrophys J 635:608–624 ADSGoogle Scholar
  313. Shen Z-X, Bonifacio P, Pasquini L, Zaggia S (2010) Li–O anti-correlation in NGC 6752: evidence for Li-enriched polluting gas. Astron Astrophys 524:L2 ADSGoogle Scholar
  314. Shetrone M, Venn KA, Tolstoy E, Primas F, Hill V, Kaufer A (2003) VLT/UVES abundances in four nearby dwarf spheroidal Galaxies. I. Nucleosynthesis and abundance ratios. Astron J 125:684–706 ADSGoogle Scholar
  315. Siebert A et al. (2011) The RAdial Velocity Experiment (RAVE): third data release. Astron J 141:187 ADSGoogle Scholar
  316. Siegel MH et al. (2007) The ACS survey of Galactic globular clusters: M54 and young populations in the Sagittarius dwarf spheroidal Galaxy. Astrophys J 667:L57–L60 ADSGoogle Scholar
  317. Siess L (2007) Astron Astrophys 476:893 ADSGoogle Scholar
  318. Smith GH, Langland-Shula LE (2009) CN Abundance inhomogeneities among bright red giants in the globular clusters NGC 288 and NGC 362. Publ Astron Soc Pac 121:1054–1064 ADSGoogle Scholar
  319. Smith GH, Norris J (1982) Comments on the origin of the carbon and nitrogen variations within NGC 6752 and 47 Tucanae. Astrophys J 254:594–605 ADSGoogle Scholar
  320. Smith GH, Norris JE (1993) CN variations among asymptotic giant branch and horizontal branch stars in the intermediate metallicity globular clusters M5, M4, and NGC 6752. Astron J 105:173–183 ADSGoogle Scholar
  321. Smith GH, Briley MM, Harbeck D (2005a) A comparison between carbon and nitrogen abundances of bright giants in the globular clusters M13, M10, and NGC 7006. Astron J 129:1589–1595 ADSGoogle Scholar
  322. Smith VV, Cunha K, Ivans II, Lattanzio JC, Campbell S, Hinkle KH (2005b) Fluorine abundance variations in red giants of the globular cluster M4 and early-cluster chemical pollution. Astrophys J 633:392–397 ADSGoogle Scholar
  323. Sneden C, Kraft RP, Prosser CF, Langer GE (1992) Oxygen abundances in halo giants. III—Giants in the mildly metal-poor globular cluster M5. Astron J 104:2121–2140 ADSGoogle Scholar
  324. Sneden C, Ivans II, Kraft RP (2000) Do AGB stars differ chemically from RGB stars in globular clusters? MmSAI 71:657–665 ADSGoogle Scholar
  325. Sneden C, Kraft RP, Guhathakurta P, Peterson RC, Fulbright JP (2004) The chemical composition contrast between M3 and M13 revisited: new abundances for 28 giant stars in M3. Astron J 127:2162–2184 ADSGoogle Scholar
  326. Sollima A, Pancino E, Ferraro FR, Bellazzini M, Straniero O, Pasquini L (2005) Metallicities, relative ages, and kinematics of stellar populations in ω Centauri. Astrophys J 634:332–343 ADSGoogle Scholar
  327. Sollima A, Martínez-Delgado D, Valls-Gabaud D, Peñarrubia J (2011) Discovery of tidal tails around the distant globular cluster Palomar 14. Astrophys J 726:47 ADSGoogle Scholar
  328. Sosin C, Dorman B, Djorgovski SG, Piotto G, Rich RM, King IR, Liebert J, Phinney ES, Renzini A (1997) Peculiar multimodality on the horizontal branch of the globular cluster NGC 2808. Astrophys J 480:L35 ADSGoogle Scholar
  329. Stanford LM, Da Costa GS, Norris JE, Cannon RD (2006) The age and metallicity relation of ω Centauri. Astrophys J 647:1075–1092 ADSGoogle Scholar
  330. Stanford LM, Da Costa GS, Norris JE, Cannon RD (2007) Abundances on the main sequence of ω Centauri. Astrophys J 667:911–929 ADSGoogle Scholar
  331. Steinmetz M et al. (2006) The Radial Velocity Experiment (RAVE): first data release. Astron J 132:1645–1668 ADSGoogle Scholar
  332. Steinmetz M, Muller E (1995) The formation of disc galaxies in a cosmological context: structure and kinematics. Mon Not R Astron Soc 276:549–562 ADSGoogle Scholar
  333. Stephenson CB (1990) A possible new and very remote galactic cluster. Astron J 99:1867 ADSGoogle Scholar
  334. Sweigart AV, Gross PG (1976) Horizontal-branch evolution with semiconvection II. Theoretical sequences. Astrophys J Suppl Ser 32:367 ADSGoogle Scholar
  335. Sweigart AV, Mengel JG (1979) Meridional circulation and CNO anomalies in red giant stars. Astrophys J 229:624–641 ADSGoogle Scholar
  336. Tenorio-Tagle G, Wünsch R, Silich S, Palouš J (2007) Hydrodynamics of the matter reinserted within super stellar clusters. Astrophys J 658:1196–1202 ADSGoogle Scholar
  337. Thompson RI, Sauvage M, Kennicutt RC, Engelbracht C, Vanzi L, Schneider G (2009) Super star clusters in SBS0335-052E. Astrophys J 691:1068–1078 ADSGoogle Scholar
  338. Tolstoy E, Hill V, Tosi M (2009) Star-formation histories, abundances, and kinematics of dwarf galaxies in the local group. Annu Rev Astron Astrophys 47:371–425 ADSGoogle Scholar
  339. Trenti M, Heggie DC, Hut P (2007) Star clusters with primordial binaries—II. Dynamical evolution of models in a tidal field. Mon Not R Astron Soc 374:344–356 ADSGoogle Scholar
  340. Truran JW, Arnett WD (1971) Explosive nucleosynthesis and the composition of metal-poor stars. Astrophys Sp Sci 11:430–442 ADSGoogle Scholar
  341. Valcarce AAR, Catelan M (2011) Formation of multiple populations in globular clusters: another possible scenario. Astron Astrophys 533:120 ADSGoogle Scholar
  342. van den Bergh S (1967) UBV photometry of globular clusters. Astron J 72:70–81 ADSGoogle Scholar
  343. van den Bergh S (1996) Mergers of globular clusters. Astrophys J 471:L31 ADSGoogle Scholar
  344. Ventura P, D’Antona F (2008) The self-enrichment scenario in intermediate metallicity globular clusters. Astron Astrophys 479:805–816 ADSGoogle Scholar
  345. Ventura P, D’Antona F (2009) Massive AGB models of low metallicity: the implications for the self-enrichment scenario in metal-poor globular clusters. Astron Astrophys 499:835–846 ADSGoogle Scholar
  346. Ventura P, D’Antona F (2010) The role of lithium production in massive AGB and super AGB stars for the understanding of multiple populations in globular clusters. Mon Not R Astron Soc 402:L72–L76 ADSGoogle Scholar
  347. Ventura P, D’Antona F (2011) Hot bottom burning in the envelope of super asymptotic giant branch stars. Mon Not R Astron Soc 410:2760–2766 ADSGoogle Scholar
  348. Ventura P, D’Antona F, Mazzitelli I, Gratton R (2001) Predictions for self-pollution in globular cluster stars. Astrophys J 550:L65–L69 ADSGoogle Scholar
  349. Ventura P, D’Antona F, Mazzitelli I (2002) Yields from low metallicity intermediate mass AGB stars: their role for the CNO and lithium abundances in globular cluster stars. Astron Astrophys 393:215–223 ADSGoogle Scholar
  350. Ventura P, Caloi V, D’Antona F, Ferguson J, Milone A, Piotto GP (2009) The C+N+O abundances and the splitting of the subgiant branch in the globular cluster NGC 1851. Mon Not R Astron Soc 399:934–943 ADSGoogle Scholar
  351. Ventura P, Carini R, D’Antona F (2011) A deep insight into the Mg–Al–Si nucleosynthesis in massive AGB and SAGB stars. Mon Not R Astron Soc. doi: 10.1111/j.1365-2966.2011.18997.x Google Scholar
  352. Vesperini E, Chernoff DF (1994) The range of core size of postcollapse clusters supported by primordial binaries. Astrophys J 431:231–236 ADSGoogle Scholar
  353. Vesperini E, Zepf SE (2003) Effects of the dissolution of low-concentration globular clusters on the evolution of globular cluster systems. Astrophys J 587:L97–L100 ADSGoogle Scholar
  354. Vesperini E, McMillan SLW, D’Antona F, D’Ercole A (2010) The fraction of globular cluster Second-generation stars in the Galactic halo. Astrophys J 718:L112–L116 ADSGoogle Scholar
  355. Vesperini E, McMillan SLW, D’Antona F, D’Ercole A (2011) Binary star disruption in globular clusters with multiple stellar populations. Mon Not R Astron Soc 1013. doi: 10.1111/j.1365-2966.2011.19046.x
  356. Villanova S et al. (2007) The multiplicity of the subgiant branch of ω Centauri: evidence for prolonged star formation. Astrophys J 663:296–314 ADSGoogle Scholar
  357. Villanova S, Piotto G, Gratton RG (2009) The helium content of globular clusters: light element abundance correlations and HB morphology. I. NGC 6752. Astron Astrophys 499:755–763 ADSGoogle Scholar
  358. Villanova S, Geisler D, Piotto G, Gratton R (2012) The helium content of globular clusters: NGC6121 (M4), Aastrophys J, arXiv:1201.3241 in press
  359. Villanova S, Geisler D, Piotto G (2010) Detailed abundances of red giants in the globular cluster NGC 1851: C+N+O and the origin of multiple populations. Astrophys J 722:L18–L22 ADSGoogle Scholar
  360. Villanova S, Geisler D, Piotto G, Gratton RG (2011) submitted to Astrophys J Google Scholar
  361. Vinkó J et al. (2009) The young, massive, star cluster Sandage-96 after the explosion of Supernova 2004dj in NGC 2403. Astrophys J 695:619–635 ADSGoogle Scholar
  362. Wadepuhl M, Springel V (2011) Satellite galaxies in hydrodynamical simulations of Milky Way sized galaxies. Mon Not R Astron Soc 410:1975–1992 ADSGoogle Scholar
  363. Walcher CJ, Böker T, Charlot S et al. (2006) Stellar populations in the nuclei of late-type spiral Galaxies. Astrophys J 649:692–708 ADSGoogle Scholar
  364. Walker AR (1992) A BV color–magnitude diagram for the Galactic globular cluster NGC 1851. Publ Astron Soc Pac 104:1063–1085 ADSGoogle Scholar
  365. Walker AR et al (2011) Constraints on the formation of the globular cluster IC 4499 from multiwavelength photometry. Mon Not R Astron Soc 702. doi: 10.1111/j.1365-2966.2011.18736.x
  366. White SDM, Rees MJ (1978) Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon Not R Astron Soc 183:341–358 ADSGoogle Scholar
  367. Yanny B et al. (2009) SEGUE: a spectroscopic survey of 240,000 Stars with g=14–20. Astron J 137:4377–4399 ADSGoogle Scholar
  368. Yong D, Grundahl F (2008) An abundance analysis of bright giants in the globular cluster NGC 1851. Astrophys J 672:L29–L32 ADSGoogle Scholar
  369. Yong D, Grundahl F, Nissen PE, Jensen HR, Lambert DL (2005) Abundances in giant stars of the globular cluster NGC 6752. Astron Astrophys 438:875–888 ADSGoogle Scholar
  370. Yong D, Aoki W, Lambert DL (2006a) Mg isotope ratios in giant stars of the globular clusters M13 and M71. Astrophys J 638:1018–1027 ADSGoogle Scholar
  371. Yong D, Aoki W, Lambert DL, Paulson DB (2006b) Rubidium and lead abundances in giant stars of the globular clusters M13 and NGC 6752. Astrophys J 639:918–928 ADSGoogle Scholar
  372. Yong D, Grundahl F, Johnson JA, Asplund M (2008a) Nitrogen abundances in giant stars of the globular cluster NGC 6752. Astrophys J 684:1159–1169 ADSGoogle Scholar
  373. Yong D, Lambert DL, Paulson DB, Carney BW (2008b) Rubidium and lead abundances in giant stars of the globular clusters M4 and M5. Astrophys J 673:854–863 ADSGoogle Scholar
  374. Yong D, Meléndez J, Cunha K, Karakas AI, Norris JE, Smith VV (2008c) Chemical abundances in giants stars of the tidally disrupted globular cluster NGC 6712 from high-resolution Infrared Spectroscopy. Astrophys J 689:1020–1030 ADSGoogle Scholar
  375. Yong D, Grundahl F, D’Antona F, Karakas AI, Lattanzio JC, Norris JE (2009) A large C+N+O abundance spread in giant stars of the globular cluster NGC 1851. Astrophys J 695:L62–L66 ADSGoogle Scholar
  376. Zhao G, Chen Y-Q, Shi J-R, Liang Y-C, Hou J-L, Chen L, Zhang H-W, Li A-G (2006) Stellar abundance and Galactic chemical evolution through LAMOST spectroscopic survey. Chin J Astron Astrophys 6:265–280 ADSGoogle Scholar
  377. Zoccali M, Pancino E, Catelan M, Hempel M, Rejkuba M, Carrera R (2009) The radial extent of the double subgiant branch in NGC 1851. Astrophys J 697:L22–L27 ADSGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Raffaele G. Gratton
    • 1
  • Eugenio Carretta
    • 2
  • Angela Bragaglia
    • 2
  1. 1.INAFOsservatorio Astronomico di PadovaPadovaItaly
  2. 2.INAFOsservatorio Astronomico di BolognaBolognaItaly

Personalised recommendations