Advertisement

Space missions to small bodies: asteroids and cometary nuclei

  • M. A. BarucciEmail author
  • E. Dotto
  • A. C. Levasseur-Regourd
Article

Abstract

The knowledge of the physical and dynamical properties, distribution, formation, and evolution of small bodies is fundamental to understand how planet formation occurred and, even more importantly, if and how these objects have played a role in the apparition of life on Earth. In the last century, asteroids began to no longer appear as starlike points of light in our telescopes, but to be resolved worlds with distinctly measurable sizes, shapes, and surface morphologies. Only in the last 25 years, the exploration of small bodies by spacecraft has begun and revealed objects widely diverse in formation region, evolution and properties (e.g. shape, albedo density, gravity, regolith size distribution, and porosity). In this paper we will provide a chronological analysis of comet nuclei and asteroids as revealed by space missions. The real breakthrough began with the ESA Giotto mission in 1986 to the comet Halley, while the latest JAXA Hayabusa mission was devoted to hover above the small asteroid Itokawa with a touch-and-go for a sample return of asteroidal regolith. Comet and asteroid science stands at the threshold of a new exceptional era, with many new missions to be devoted to these widely diverse and still poorly known small bodies.

Keywords

Asteroids Comets Space missions Origin of the solar system 

References

  1. A’Hearn MF, Belton MJS, Delamere WA et al. (2005) Deep Impact: excavating comet Tempel 1. Science 310:258–264 CrossRefADSGoogle Scholar
  2. A’Hearn MF, Belton MJS, Delamere W et al. (2011) Epoxi at comet Hartley 2. Science 332:1396–1400 CrossRefADSGoogle Scholar
  3. Abe S, Mukai T, Hirata N et al. (2006) Mass and local topography measurements of Itokawa by Hayabusa. Science 312:1344–1347 CrossRefADSGoogle Scholar
  4. Balsiger H, Altwegg K, Geiss J (1995) D/H and 18O/16O ratio in the hydronium ion and in neutral water from in situ ion measurements in comet Halley. J Geophys Res 100:5827–5834 CrossRefADSGoogle Scholar
  5. Barucci MA, Fulchignoni M, Fornasier S, Dotto E, Vernazza P, Birlan M, Binzel RP, Carvano J, Merlin F, Barbieri C, Belskaya IN (2005) Asteroid target selection for the new Rosetta mission baseline. 21 Lutetia and 2867 steins. Astron Astrophys 430:313–317 CrossRefADSGoogle Scholar
  6. Belton MJS, Meech KJ, Chesley S (2011) Stardust-NExT, Deep Impact, and the accelerating spin of 9P/Tempel 1. Icarus 213:345–368 CrossRefADSGoogle Scholar
  7. Belton MJS, Veverka J, Thomas P et al. (1992) Galileo encounter with 951 Gaspra—first pictures of an asteroid. Science 257:1647–1652 CrossRefADSGoogle Scholar
  8. Belton MJS Chapman CR, Klaasen KP et al. (1996) Galileo’s encounter with 243 ida: an overview of the imaging experiment. Icarus 120:1–19 CrossRefADSGoogle Scholar
  9. Bernatowicz TJ, Messenger S, Pravdivtseva O et al. (2003) Pristine presolar silicon carbide. Geochim Cosmochim Acta 67:4679–4691 CrossRefADSGoogle Scholar
  10. Binzel PR, Rivkin AS, Bus SJ et al. (2001) MUSES-C target asteroid (25143) 1998 SF36: a reddened ordinary chondrite. Meteorit Planet Sci 36:1167–1172 CrossRefADSGoogle Scholar
  11. Binzel RP, Rivkin AS, Stuart JS et al. (2004) Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes. Icarus 170:259–294 CrossRefADSGoogle Scholar
  12. Bottke WF, Morbidelli A, Jedicke RP et al. (2002) Debiased orbital and absolute magnitude distribution of the near-earth objects. Icarus 156:399–433 CrossRefADSGoogle Scholar
  13. Brownlee DE, Horz F, Newburn RL et al. (2004) Surface of young Jupiter family comet 81P/Wild 2: view from the Stardust spacecraft. Science 304:1764–1769 CrossRefADSGoogle Scholar
  14. Brownlee D, Tsou P, Aléon J et al. (2006) Comet 81P/Wild 2 under a microscope. Science 314:1712–1716 CrossRefADSGoogle Scholar
  15. Campins H, Hargrove K, Pinilla-Alonso N (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature 464:1320–1321 CrossRefADSGoogle Scholar
  16. Chapman CR, Veverka J, Belton MJ et al. (1996) Cratering on gaspra. Icarus 120:231–245 CrossRefADSGoogle Scholar
  17. Cheng A, Barnouin-Jha O, Prockter L et al. (2002) Small-scale topography of 433 Eros from laser altimetry and imaging. Icarus 155:51–74 CrossRefADSGoogle Scholar
  18. Clemett SJ, Sandford SA, Nakamura-Messenger K et al. (2010) Complex aromatic hydrocarbons in Stardust samples collected from comet 81P/Wild 2. Meteorit Planet Sci 45:701–722 CrossRefADSGoogle Scholar
  19. Cody GD, Ade H, O’D Alexander CM et al. (2008) Quantitative organic and light-element analysis of comet 81P/Wild 2 particles using C-, N-, and O-μ-XANES. M&PS 43:353–365 ADSGoogle Scholar
  20. Connors M, Weigert P, Veillet C (2011) Earth’s Trojan asteroid. Nature 475:481–483 CrossRefADSGoogle Scholar
  21. Coradini A, Capaccioni F, Erard S et al. (2011) The surface composition and temperature of the asteroid 21 Lutetia as observed by ROSETTA/VIRTIS. Science 334:492–494 CrossRefADSGoogle Scholar
  22. Croat TK, Stadermann FJ, Bernatowicz TJ (2010) Surface studies of pristine presolar grains. Meteorit Planet Sci Suppl 73:5327 ADSGoogle Scholar
  23. Davis DR, Chapman CR, Durda DD, Farinella P, Marzari F (1996) The formation and collisional/dynamical evolution of the Ida/Dactyl System as part of the Koronis Family. Icarus 120:220–230 CrossRefADSGoogle Scholar
  24. DeMeo F (2010) The composition variation of small bodies across the Solar System, PhD thesis, Paris Observatory Google Scholar
  25. DeMeo F, Binzel RP (2008) Comets in the near-Earth object population. Icarus 194:436–449 CrossRefADSGoogle Scholar
  26. Dotto E, Emery JP, Barucci MA et al. (2008) De Troianis: the Trojans in the planetary system. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A (eds) The Solar System beyond Neptune, vol 592. University of Arizona Press, Tucson, pp 383–395 Google Scholar
  27. Durda DD, Stern SA (2000) Collision rates in the present-day Kuiper belt and Centaur regions: applications to surface activation and modification on comets, Kuiper belt objects, Centaurs, and Pluto-Charon. Icarus 145:220–229 CrossRefADSGoogle Scholar
  28. Duxbury TC, Newburn RL, Acton CH et al. (2004) Asteroid 5535 Annefrank size, shape, and orientation: stardust first results. J Geophys Res 109:E02002 CrossRefGoogle Scholar
  29. Eberhard P, Reber M, Krankovsky D, Hodges RR (1995) The D/H and 18O/16O ratios in water from comet P/Halley. Astron Astrophys 302:301–315 ADSGoogle Scholar
  30. Ebihara M, Sekimoto S, Shirai N et al. (2011) Neutron activation analysis of a particle returned from asteroid Itokawa. Science 333:1119–1121 CrossRefADSGoogle Scholar
  31. Elsila JE, Glavin DP, Dworkin JP (2009) Cometary glycine detected in samples returned by Stardust. MAPS 44:1323–1330 Google Scholar
  32. Engrand C, Maurette M (1998) Carbonaceous micrometeorites from Antarctica. Meteorit Planet Sci 3:565–580 CrossRefADSGoogle Scholar
  33. Fujiwara A, Kawaguchi J, Yomans DK et al. (2006) The Rubble-Pile asteroid Itokawa as observed by Hayabusa. Science 312:1330–1334 CrossRefADSGoogle Scholar
  34. Fulle M, Levasseur-Regourd AC, McBride N, Hadamcik E (2000) In-situ dust measurements from within the coma of 1P/Halley: first order approximation with a dust dynamical model. Astron J 119:1968–1977 CrossRefADSGoogle Scholar
  35. Gulkis S, Keihm S, Kamp L et al. (2011) Continuum and spectroscopic observations of (21) Lutetia at millimeter and submillimeter wavelength with the MIRO instrument on the Rosetta spacecraft. PSS, in press Google Scholar
  36. Halley E (1705) Synopsis astronomiae cometicae Google Scholar
  37. Horner J, Evans NW, Bailey ME (2004) Simulations of the population of Centaurs-II. Individual objects. Mon Not R Astron Soc Lett 355:321–329 CrossRefADSGoogle Scholar
  38. Hörz F, Bastien R, Borg J et al. (2006) Impact features on Stardust: implications for comet 81P/Wild 2 dust. Science 314:1716–1719 CrossRefADSGoogle Scholar
  39. Jacobsen SB (2003) How old is planet Earth? Science 300:1513–1514 CrossRefGoogle Scholar
  40. Jewitt D (2009) The active Centaurs. Astron J 137:4296–4312 CrossRefADSGoogle Scholar
  41. Jewitt D, Yang B, Haghigjipour N (2009) Main-Belt Comet P/2008 R1 (Garradd). Astron J 137:4313–4321 CrossRefADSGoogle Scholar
  42. Jewitt D, Weaver H, Mutchler M et al. (2011) Hubble space telescope observations of main belt comet (596) Scheila. Astrophys J Lett 733:L4 CrossRefADSGoogle Scholar
  43. Jutzi M, Michel P, Benz W (2010) A large crater as a probe of the internal structure of the E-type asteroid Steins. Astron Astrophys 509:L2 CrossRefADSGoogle Scholar
  44. Keller HU, Arpigny C, Barbieri C et al. (1986) First Halley multicolour camera imaging results from Giotto. Nature 321:320–326 CrossRefADSGoogle Scholar
  45. Keller HU, Britt D, Buratti B et al. (2004) In situ observations of cometary nuclei. In: Festou MC, Keller HU, Weaver HA (eds) Comets II. Univ. of Arizona Press, Tucson, pp 211–222 Google Scholar
  46. Keller HU, Barbieri C, Koschny D et al. (2010) E-type asteroid (2867) steins as imaged by OSIRIS on board Rosetta. Science 327:190 CrossRefADSGoogle Scholar
  47. Keller LP (2006) Infrared spectroscopy of comet 81P/Wild 2 samples returned by stardust. Science 314:1728 CrossRefADSGoogle Scholar
  48. Kissel J, Sagdeev RZ, Bertaux JL et al. (1986) Composition of comet Halley dust particles from Vega observations. Nature 321:280–282 CrossRefADSGoogle Scholar
  49. Lamy PL, Toth I, Fernandez YR, Weaver HA (2004) Sizes, shapes, albedos, and colors of cometary nuclei. In: Festou M, Keller HU, Weaver HA (eds) Comets II. Univ. Arizona Press, Tucson, pp 223–264 Google Scholar
  50. Lazzarin M, Marchi S, Barucci MA, di Martino M, Barbieri C (2004) Visible and near-infrared spectroscopic investigation of near-Earth objects at ESO: first results. Icarus 169:373–384 CrossRefADSGoogle Scholar
  51. Levasseur-Regourd AC, Mukai T, Lasue J, Okada Y (2007) Physical properties of cometary and interplanetary dust. Planet Space Sci 55:1010–1020 CrossRefADSGoogle Scholar
  52. Levasseur-Regourd AC, Hadamcik E, Desvoivres E, Lasue J (2009) Probing the internal structure of the nuclei of comets. Planet Space Sci 57:221–228 CrossRefADSGoogle Scholar
  53. Levison HF, Duncan MJ (1997) From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127:13–32 CrossRefADSGoogle Scholar
  54. Licandro J, Campins H, Kelley M et al. (2011) (65) Cybele: detection of small silicate grains, water-ice, and organics. Astron Astrophys 525:A34 CrossRefADSGoogle Scholar
  55. Lyon IC, Tizard JM, Henkel T (2007) Evidence for lithium and boron from star-forming regions implanted in presolar SiC grains. MAPS 42:373–385 Google Scholar
  56. Marchis F, Hestroffer D, Descamps P et al. (2006) A low density of 0.8 g cm−3 for the Trojan binary asteroid 617 Patroclus. Nature 439:565–567 CrossRefADSGoogle Scholar
  57. Martins Z, Botta O, Fogel M et al. (2008) Extraterrestrial nucleobases in the Murchison meteorite. EPSL 270:130–136 CrossRefADSGoogle Scholar
  58. Maurette M (2005) Micrometeorites and the mysteries of our origins. Springer, Berlin Google Scholar
  59. McBride N, Green S, Levasseur-Regourd AC, Goidet-Devel B, Renard JB (1997) The inner dust coma of comet 26P/Grigg-Skjellerup: multiple jets and nucleus fragments? Mon Not R Astron Soc 289:535–553 ADSGoogle Scholar
  60. Michel P, Migliorini F, Morbidelli A et al. (2000) The population of Mars-crossers: classification and dynamical evolution. Icarus 145:332–347 CrossRefADSGoogle Scholar
  61. Morbidelli A, Jedicke R, Bottke WF et al. (2002) From magnitudes to diameters: the Albedo distribution of near Earth objects and the Earth collision hazard. Icarus 158:329–342 CrossRefADSGoogle Scholar
  62. Morbidelli A, Levison HH, Tsiganis K, Gomes R (2005) Chaotic capture of Jupiter’s Trojan asteroids in the early solar system. Nature 435:462–465 CrossRefADSGoogle Scholar
  63. Morbidelli A, Levison HF, Bottke WF (2006) Formation of the binary near-Earth object 1996 FG3: can binary NEOs be the source of short-CRE meteorites? MAPS 41:875–887 Google Scholar
  64. Nakamura T, Noguchi T, Tanaka M et al. (2011) Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333:1113–1116 CrossRefADSGoogle Scholar
  65. Nuth JA (2001) How were the comets made? Am Sci 89:228 ADSGoogle Scholar
  66. Oberst J, Mottola S, di Martino M et al. (2001) A model for rotation and shape of asteroid 9969 Braille from ground-based observations and images obtained during the deep space 1 (DS1) fly-by. Icarus 153:16–23 CrossRefADSGoogle Scholar
  67. Pätzold M, Andert T, Asmar SW, Anderson JD, Bird MK, Häusler B, Hahn M, Tellmann S, Sierks H, Jorda L (2011) Asteroid 21 Lutetia: low mass, high density. Science 334:491–492 CrossRefADSGoogle Scholar
  68. Peixinho N, Doressoundiram A, Delsanti A et al. (2003) Reopening the TNOs color controversy: Centaurs bimodality and TNOs unimodality. Astron Astrophys 410:L29–L32 CrossRefADSGoogle Scholar
  69. Perozzi E, Rossi A, Valsecchi GB (2001) Basic targeting strategies for rendezvous and flyby missions to the near-Earth asteroids. Planet Space Sci 49:3–22 CrossRefADSGoogle Scholar
  70. Perozzi E, Binzel R, Rossi A, Valsecchi GB (2010) Asteroids more accessible than the Moon. EPSC 5:750 Google Scholar
  71. Richardson JE, Melosh HJ, Lisse CM, Carcich B (2007) A ballistics analysis of the Deep Impact ejecta plume: determining comet Tempel 1’s gravity, mass, and density. Icarus 190:357–390 CrossRefADSGoogle Scholar
  72. Rivkin AS, Emery JP (2010) Detection of ice and organics on an asteroidal surface. Nature 464:1322–1323 CrossRefADSGoogle Scholar
  73. Rivkin AS, Clark BE, Ockert-Bell M et al. (2011) Asteroid 21 Lutetia at 3 μm: observations with IRTF SpeX. Icarus 216, 62–68 CrossRefADSGoogle Scholar
  74. Rotundi A, Baratta GA Borg J et al. (2008) Combined micro-Raman, micro-infrared, and field emission scanning electron microscope analyses of comet 81P/Wild 2 particles collected by Stardust. MPS 43:367–397 Google Scholar
  75. Samarasinha NH, Mueller BEA, Belton MJS, Jorda L (2004) Rotation of cometary nuclei. In: Festou M, Keller HU, Weaver HA (eds) Comets II. Univ. Arizona Press, Tucson, pp 281–299 Google Scholar
  76. Soderblom LA, Becker TL, Bennett G et al. (2002) Observations of comet 19P/Borrelly by the miniature integrated camera and spectrometer aboard deep space 1. Science 296:1087–1091 CrossRefADSGoogle Scholar
  77. Sandford SA, Aleon J, Alexander CM et al. (2006) Organics captured from comet 81P/Wild 2 by the stardust spacecraft. Science 314:1720 CrossRefADSGoogle Scholar
  78. Sandford SA, Brownlee DE (2007) Response to Comment on “Organics captured from comet 81P/Wild 2 by the stardust spacecraft”. Science 313:1680 CrossRefGoogle Scholar
  79. Seneca LA (ca. 65 BC) De cometis, in Naturales Quaestiones, liber VII, XXV, 7 Google Scholar
  80. Sierks H, Lamy P, Barbieri C et al. (2011) Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science 334:487–490 CrossRefADSGoogle Scholar
  81. Stooke PJ (1996) The surface of asteroid 951 Gaspra. Earth Moon Planets 75:53–75 CrossRefADSGoogle Scholar
  82. Tegler SC, Bauer JM, Romanishin W, Peixinho N (2008) Colors of Centaurs. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A (eds) The Solar System Beyond Neptune. University of Arizona Press, Tucson, pp 105–114 Google Scholar
  83. Trombka JI, Squyres SW, Bruckner J et al. (2000) The elemental composition of asteroid 433 Eros: results of the NEAR-Shoemaker X-ray spectrometer. Science 289:2101–2105 CrossRefADSGoogle Scholar
  84. Trombka JI, Nittler LR, Starr RD et al. (2001) The Near-Shoemaker X-ray/gamma-ray spectrometer experiment: overview and lessons learned. Meteorit Planet Sci 36:1605–1616 CrossRefADSGoogle Scholar
  85. Weiss BP, Elkins-Tanton LT, Barucci MA, Sierks H, Snodgrass C, Vincent J-B, Marchi S, Weissman PR, Patzold M, Richter I, Fulchignoni M, Binzel RP, Shulz R (2011) Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. PSS, in press Google Scholar
  86. Whipple FL (1950) A comet model. The acceleration of comet Encke. Astrophys J 111:375–394 CrossRefADSGoogle Scholar
  87. Yurimoto H, Abe K, Abe M et al. (2011) Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science 333:1116–1119 CrossRefADSGoogle Scholar
  88. Zolensky ME, Zega TJ, Yano H et al. (2006) Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples. Science 314:1735–1739 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. A. Barucci
    • 1
    Email author
  • E. Dotto
    • 2
  • A. C. Levasseur-Regourd
    • 3
  1. 1.LESIA-Observatoire de ParisMeudon Principal CedexFrance
  2. 2.INAF-Osservatorio Astronomico di RomaMonteporzio CatoneItaly
  3. 3.UPMC (Univ. Paris 6)/LATMOS-CNRSParisFrance

Personalised recommendations