The Astronomy and Astrophysics Review

, Volume 18, Issue 3, pp 383–416 | Cite as

Habitability: from stars to cells

Review Article

Abstract

To determine where to search for life in our solar system or in other extrasolar systems, the concept of habitability has been developed, based on the only sample we have of a biological planet—the Earth. Habitability can be defined as the set of the necessary conditions for an active life to exist, even if it does not exist. In astronomy, a habitable zone (HZ) is the zone defined around a sun/star, where the temperature conditions allow liquid water to exist on its surface. This habitability concept can be considered from different scientific perspectives and on different spatial and time scales. Characterizing habitability at these various scales requires interdisciplinary research. In this article, we have chosen to develop the geophysical, geological, and biological aspects and to insist on the need to integrate them, with a particular focus on our neighboring planets, Mars and Venus. Important geodynamic processes may affect the habitability conditions of a planet. The dynamic processes, e.g., internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution, meteorite impacts, and erosion, modify the planetary surface, the possibility to have liquid water, the thermal state, the energy budget, and the availability of nutrients. They thus play a role in the persistence of life on a planet. Earth had a liquid water ocean and some continental crust in the Hadean between 4.4 and 4.0 Ga (Ga: billions years ago), and may have been habitable very early on. The origin of life is not understood yet; but the oldest putative traces of life are early Archean (~3.5 Ga). Studies of early Earth habitats documented in the rock record hosting fossil life traces provide information about possible habitats suitable for life beyond Earth. The extreme values of environmental conditions in which life thrives today can also be used to characterize the “envelope” of the existence of life and the range of potential extraterrestrial habitats. The requirement of nutrients by life for biosynthesis of cellular constituents and for growth, reproduction, transport, and motility may suggest that a dynamic and rocky planet with hydrothermal activity and formation of relief, liquid water alteration, erosion, and runoff is required to replenish nutrients and to sustain life (as we know it). The concept of habitability is very Earth-centric, as we have only one biological planet to study. However, life elsewhere would most probably be based on organic chemistry and leave traces of its past or recent presence and metabolism by modifying microscopically or macroscopically the physico-chemical characteristics of its environment. The extent to which these modifications occur will determine our ability to detect them in astrobiological exploration. Looking at major steps in the evolution of life may help determining the probability of detecting life (as we know it) beyond Earth and the technology needed to detect its traces, be they morphological, chemical, isotopic, or spectral.

Keywords

Habitability Astrobiology Geodynamics Early Earth Biosignatures Extremophiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Anderson KA, Carlson CW, McFadden JM, Curtis DW, Mitchell D, Rème H, Mazelle C, Savaud JA, d’Uston C, Cros A, Medale JL, Bauer SJ, Cloutier P, Mayhew M, Winterhalter D, Ness NF (1998) Magnetic field and plasma observations at mars: initial results of the mars global surveyor mission. Science 279: 1676–1680ADSGoogle Scholar
  2. Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Mitchell D, Anderson KA, Carlson CW, McFadden JM, Rème H, Mazelle C, Vignes D, Bauer SJ, Cloutier P, Ness NF (2001) Magnetic field of mars: summary of results from the aerobraking and mapping orbits. J Geophys Res 106(E10): 23403–23417ADSGoogle Scholar
  3. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441: 714–718ADSGoogle Scholar
  4. Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Coleman ML, Kanik (2008) Controls on development and diversity of early Archean stromatolites. PNAS 16: 9548–9555Google Scholar
  5. Anbar A, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge?. Science 297: 1137–1142. doi:10.1126/science.1069651 ADSGoogle Scholar
  6. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event?. Science 317: 1903–1906ADSGoogle Scholar
  7. Arnold L (2008) Earthshine observation of vegetation and implication for life detection on other planets. Space Sci Rev. doi:10.1007/s11214-007-9281-4
  8. Bada JL (2004) How life began on Earth: a status report. Earth Planet Sci Lett 226: 1–15ADSGoogle Scholar
  9. Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4: 137–167ADSGoogle Scholar
  10. Barabash S (2009) Venus, earth, mars: comparative ion escape rates. Invited talk at international conference on comparative planetology: venus-earth-mars, ESLAB 2009, ESTEC, The NetherlandsGoogle Scholar
  11. Barabash S, Fedorov A, Lundin R, Sauvaud JA (2007) Martian atmospheric erosion rates. Science 315: 501. doi:10.1126/science.1134358 ADSGoogle Scholar
  12. Barron (2008) Chirality and life. In: Botta O, Bada JL, Gomez-Elvira J, Javaux E, Selsis F, Summons R (eds) Strategies of life detection. Space Sci ISSI 25:187–201Google Scholar
  13. Beaulieu JP et al (2006) Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439: 437–440ADSGoogle Scholar
  14. Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427: 117–120ADSGoogle Scholar
  15. Bekker A, Kaufman AJ, Karhu JA, Eriksson KA (2005) Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Res 137: 167–206Google Scholar
  16. Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe?. Current Opinion Chem Biol 8: 672–689Google Scholar
  17. Bertrand P (2007) Towards a global Earth’s regulation. In: Gargaud M, Martin H, Clayes Ph (eds) Lectures in astrobiology II. Springer, Berlin, Heidelberg. pp 281–302. doi:10.1007/10913314.
  18. Bibring JP, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson RE, Mangold N, Mustard J, Drossart P (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307(5715): 1576–1581ADSGoogle Scholar
  19. Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson RE, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312: 400–404ADSGoogle Scholar
  20. Boss AP (2006) Rapid formation of super-Earths around M dwarf stars. Astrophys J 644: 79–82ADSGoogle Scholar
  21. Botta O, Bada JL, Gomez-Elvira J, Javaux E, Selsis F, Summons R (eds) (2008) Strategies of life detection. Space Sci ISSI 25:388. Reprinted from Space Sci Rev J 135:1–4Google Scholar
  22. Boynton WV, Ming DW, Kounaves SP, Young SMM, Arvidson RE, Hecht MH, Hoffman J, Niles PB, Hamara DK, Quinn RC, Smith PH, Sutter B, Catling DC, Morris RV (2009) Evidence for calcium carbonate at the mars phoenix landing site. Science 325: 61–64ADSGoogle Scholar
  23. Brasier MD, McLoughin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Phil Trans R Soc B 361: 887–902Google Scholar
  24. Breslow R, Cheng ZL (2009) On the origin of terrestrial homochirality for nucleosides and amino acids. PNAS 106: 9144–9146ADSGoogle Scholar
  25. Breuer D, Spohn T (2003) Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. J Geophys Res 108: 5072. doi:10.1029/2002JE001999 Google Scholar
  26. Breuer D, Spohn T (2006) Viscosity of the Martian mantle and its initial temperature: constraints from crust formation history and the evolution of the magnetic field. Planet Space Sci 54: 153–169. doi:10.1016/j.pss.2005.08.008 ADSGoogle Scholar
  27. Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78-2.45 billion year old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67: 4321–4335ADSGoogle Scholar
  28. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437: 866–870ADSGoogle Scholar
  29. Buick R (2001) Paleobiology II. In: Briggs DEG, Crowther PR (eds) Blackwell Science. Oxford Press, London, pp 13–21Google Scholar
  30. Buick R (2008) When did oxygenic photosynthesis evolve? Phil Trans R Soc B 13. doi:10.1098/rstb.2008.0041
  31. Bullock MA, Grinspoon DH (1996) The stability of climate on Venus. J Geophys Res 101(E3): 7521–7530. doi:10.1029/95JE03862 ADSGoogle Scholar
  32. Canfield D, Habicht KS, Thamdrup B (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288: 658–661ADSGoogle Scholar
  33. Catling DC (2007) Ancient fingerprints in the clay. Nature 448: 31–32ADSGoogle Scholar
  34. Chevrier V, Poulet F, Bibring J-P (2007) Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448: 60–63ADSGoogle Scholar
  35. Christensen UR, Aubert J (2006) Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields, Geophys. J Int 166(1): 97–114. doi:10.1111/j.1365-246X.2006.03009.x Google Scholar
  36. Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosphere 38: 105–115ADSGoogle Scholar
  37. Cockell CS et al (2009) Darwin-A mission to detect and search for life on extrasolar planets. Astrobiology 9: 1–22ADSGoogle Scholar
  38. Connerney JEP, Acuña MH, Ness NF, Spohn T, Schubert G (2004) Mars crustal magnetism. Space Sci Rev 111(1–2): 1–32. doi:10.1023/B:SPAC.0000032719.40094.1d ADSGoogle Scholar
  39. Corrigan CM, Harvey RP (2004) Multi-generational carbonate assemblages in Martian meteorite Allan Hills 84001: implications for nucleation, growth and alteration. Meteorit Planet Sci 39: 17–30ADSGoogle Scholar
  40. Dehant V, Lammer H, Kulikov Y, Griemeier JM, Breuer D, Verhoeven O, Karatekin Ö, Van Hoolst T, Korablev O, Lognonné P (2007) Planetary magnetic dynamo effect on atmospheric protection of early earth and mars. In: Fishbaugh K et al (eds) Geology and habitability of terrestrial planets. Space sci Ser ISSI 24. Reprinted from Space Sci Rev, Springer, Dordrecht, The Netherlands. Space Sci Rev 129(1–3):279–300. doi:10.1007/s11214-007-9163-9.
  41. Dole SH (1964) Habitable planets for man. NewYork, Blaisdell, 159 ppGoogle Scholar
  42. Ehlmann BL, Mustard JF, Murchie SL, Poulet F, Bishop JL, Brown AJ, Calvin WM, Clark RN, Des Marais DJ, Milliken RE, Roach LH, Roush TL, Swayze GA, Wray JJ (2008) Orbital identification of carbonate-bearing rocks on Mars. Science 322: 1828–1832. doi:10.1126/science.1164759 ADSGoogle Scholar
  43. Falkowski PG, Godfrey LV (2008a) Electrons, life and the evolution of Earth’s oxygen cycle. Phil Trans R Soc B 12. doi:10.1098/rstb.2008.0054; published online
  44. Falkowski PG, Fenchel T, Delong EF (2008b) The microbial engines that drive Earth’s biogeochemical cycles. Science 320: 1034–1038ADSGoogle Scholar
  45. Fassett CI, Head JW (2005) Valleys on hecates tholus, mars: origin by basal melting of summit snowpack. Planet Space Sci 54(4): 370–378. doi:10.1016/j.pss.2005.12.011 ADSGoogle Scholar
  46. Fassett CI, Head JW (2007) Valley formation on martian volcanoes in the Hesperian: evidence for melting of summit snowpack, caldera lake formation, drainage and erosion on ceraunius tholus. Icarus 189(1): 118–135. doi:10.1016/j.icarus.2006.12.021 ADSGoogle Scholar
  47. Fernandez-Remolar DC, Knoll AH (2008) Fossilization potential of iron-bearing minerals in acidic environments of Rio Tinto, Spain: implications for Mars exploration. Icarus 194: 72–85. doi:10.1016/j.icarus.2007.10.009 ADSGoogle Scholar
  48. Franck S, Block A, von Bloh W, Bounama C, Garrido I, Schellnhuber H-J, Svirezhev Y (2000) Habitable zone for Earth-like planets in the solar system. Planet Space Sci 48(11): 1099–1105ADSGoogle Scholar
  49. Franck S, Block A, von Bloh W, Bounama C, Garrido I, Schellnhuber H-J (2001) Planetary habitability: is Earth commonplace in the milky way?. Naturwiss 88: 416–426ADSGoogle Scholar
  50. Furnes H, Staudigel H (1999) Biological mediation in ocean crust alteration: how deep is the deep biosphere?. Earth Planet Sci Lett 166: 97–103. doi:10.1016/S0012-821X(99)00005-9 ADSGoogle Scholar
  51. Gaidos E, Selsis F (2007) From protoplanets to protolife: the emergence and maintenance of life. Proceedings of protostars and planets V, Waikoloa, The Big Island, Hawaii, 24–28 Oct 2005. E-Print: astro-ph/0602008Google Scholar
  52. Gillmann C, Lognonné P, Chassefière E (2006) Evolution of the atmospheres of terrestrial planets: focus on Mars and Venus. American geophysical union, fall meeting 2006. Abstract P23A-0035Google Scholar
  53. Gillmann C, Lognonné P, Chassefière E, Moreira M (2009) The present-day atmosphere of Mars: where does it come from?. Earth Planet Sci Lett 277(3-4): 384–393. doi:10.1016/j.epsl.2008.10.033 ADSGoogle Scholar
  54. Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435: 466–469ADSGoogle Scholar
  55. Grady MM, Verchovsky AB, Wright IP (2004) Magmatic carbon in Martian meteorites: attempts to constrain the carbon cycle on Mars. Int J Astrobiol 3: 117–124Google Scholar
  56. Griessmeier J-M, Stadelmann A, Motschmann U, Belisheva NK, Lammer H, Biernat HK (2005) Cosmic ray impact on extrasolar Earth-like planets in close-in habitable zones. Astrobiology 5(5): 587–603. doi:10.1089/ast.2005.5.587 ADSGoogle Scholar
  57. Guillermo G (2005) Habitable zones in the universe. Orig Life Evol Biospher 35: 555–606. doi:10.1007/s11084-005-5010-8 ADSGoogle Scholar
  58. Guillermo G, Brownlee D, Ward P (2001) The galactic habitable zone: galactic chemical evolution. Icarus 152(1): 185–200. doi:10.1006/icar.2001.6617 ADSGoogle Scholar
  59. Hart MH (1979) Habitable zones about main sequence stars. Icarus 37: 351–357ADSGoogle Scholar
  60. Hartmann WK (1975) Lunar ’cataclysm’-A misconception. Icarus 24: 181–187ADSGoogle Scholar
  61. Hashizume K, Sugihara A, Pinti DL, Orberger B, Westall F (2006) Search for primordial biogenic isotopic signatures of nitrogen in Archean sedimentary rocks. Geochim Cosmochim Acta Suppl 70: 235ADSGoogle Scholar
  62. Holk GJ, Taylor BE, Galley AG (2008) Oxygen isotope mapping of the Archean Sturgeon Lake caldera complex and VMS-related hydrothermal system, Northwestern Ontario, Canada. Mineral Deposita 43(6): 623–640. doi:10.1007/s00126-008-0185-3 ADSGoogle Scholar
  63. Huang SS (1959) Ocurrence of life in the universe. Am Sci 47: 397–402Google Scholar
  64. Huang SS (1960) Life outside the solar system. Sci Am 202: 55–63Google Scholar
  65. Jackson B, Barnes R, Greensberg R (2008) Tidal heating of terrestrial extrasolar planets and implications for their habitability. Month Notice R Astronom Soc 391(1): 237–245. doi:10.1111/j.1365-2966.2008.13868.x ADSGoogle Scholar
  66. Jackson B, Greensberg R, Barnes R (2009) The effects of tides on close-in exoplanets. American astronomical society, AAS meeting, 213, 351.01. Bull Am Astron Soc 41:491Google Scholar
  67. Jakosky BM, Phillips RJ (2001) Review article Mars’ volatile and climate history. Nature 412: 237–244. doi:10.1038/35084184 ADSGoogle Scholar
  68. Jaumann R, Reiss D, Frei S, Neukum G, Scholten F, Gwinner K, Roatsch T, Matz KD, Mertens V, Hauber E, Hoffmann H, Köhler U, Head JW, Hiesinger H, Carr MH (2005) Interior channels in Martian valleys: constraints on fluvial erosion by measurements of the mars express high resolution stereo camera. Geophys Res Lett 32(16):L16203. doi:10.1029/2005GL023415 Google Scholar
  69. Javaux EJ (2006) Extreme life on Earth-past, present and possibly beyond. Res Microbiol 175: 37–48Google Scholar
  70. Javaux EJ, Benzerara K (2009) Microfossils. In: Gargaud M, Mustin C, Reisse J, Vandenabeele-Trambouze O (eds) Traces de vie présente ou passée: quels indices, signatures ou marqueurs? Compt Rendus Palevol Spec Issue 2009. doi:10.1016/j.crpv.2009.04.004; Published online
  71. Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463: 934–938. doi:10.1038/nature08793 ADSGoogle Scholar
  72. Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41: 429–463ADSGoogle Scholar
  73. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101: 108–128ADSGoogle Scholar
  74. Knoll AH (2003) Life on a young planet, the first three billion years of evolution on earth. Princeton Univ Press, Princeton, NJGoogle Scholar
  75. Knoll AH, Bambach RK (2000) Directionality in the history of life: diffusion from the left wall or repeated scaling of the right?. Paleobiology 26: 1–14Google Scholar
  76. Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Phil Trans R Soc B 361: 1023–1038Google Scholar
  77. Konhauser KO, Lalonde SV, Amskold L, Holland HD (2007) Was there really an Archean phosphate crisis?. Science 315: 1234ADSGoogle Scholar
  78. Lammer H, Lichtenegger HIM, Kolb C, Ribas I, Guinan EF, Abart R, Bauer SJ (2003) Loss of water from mars: implications for the oxidation of the soil. Icarus 106: 9–25ADSGoogle Scholar
  79. Lammer H, Dehant V, Korablev O, Lundin R (2007a) Planetary-Sun interactions. In: Fishbaugh K et al (eds) Geology and habitability of terrestrial planets. Space Sci Ser ISSI 24. Reprinted from Space Sci Rev, Springer, Dordrecht, The Netherlands. Space Sci Rev 129:205–206. doi:10.1007/s11214-007-9190-6
  80. Lammer H, Lichtenegger HIM, Kulikov YN, Griemeier J-M, Terada N, Erkaev NV, Biernat HK, Khodachenko ML, Ribas I, Penz T, Selsis F (2007b) Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7(1): 185–207. doi:10.1089/ast.2006.0128 ADSGoogle Scholar
  81. Lammer H, Kasting JF, Chassefière E, Johnson RE, Kulikov YuN, Tian F (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139(1–4): 399–436. doi:10.1007/s11214-008-9413-5 ADSGoogle Scholar
  82. Lammer H, Bredehöft JH, Coustenis A, Khodachenko ML, Kaltenegger L, Grasset O, Prieur D, Raulin F, Ehrenfreund P, Yamauchi M, Wahlund J-E, Griessmeier J-M, Stangl G, Cockell CS, Kulikov YuN, Grenfell JL, Rauer H (2009) What makes a planet habitable?. Astronomy Astrophysics Rev 17(2): 181–249. doi:10.1007/s00159-009-0019-z ADSGoogle Scholar
  83. Lazcano A (2008) Towards a definition of life: the impossible quest?. Space Sci Rev 135: 6. doi:10.1007/s11214-007-9283-2 ADSGoogle Scholar
  84. Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world and time. Cell 85: 793–798Google Scholar
  85. Léger A, Rouan D, Schneider J, Alonso R, Samuel B, Guenther E, Deleuil M, Deeg HJ, Fridlund M, et al (2009) Transiting exoplanets from the CoRoT space mission VII. COROT-Exo-7b: the first super-Earth with radius characterized. Astronomy Astrophys (in press)Google Scholar
  86. Levison HF, Morbidelli A, Gomes R, Tsiganis K (2008) Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196: 258–273. doi:10.1016/j.icarus.2007.11.035 ADSGoogle Scholar
  87. López-García P (2006) Extremophiles. In: Gargaud M et al (eds) Lectures in astrobiology, vol I. Springer, Heidelberg. pp 257–282Google Scholar
  88. López-García P, Moreira D, Douzery E, Forterre P, van Zuilen M, Claeys P, Prieur D (2006) Ancient fossil record and early evolution (ca. 3.8 to 0.5 Ga). Earth Moon Planets 98:247–290Google Scholar
  89. Lundin R, Lammer H, Ribas I (2007) Planetary magnetic fields and solar forcing: implications for atmospheric evolution. In: Fishbaugh K et al (eds) Geology and habitability of terrestrial planets. Space Sci Ser ISSI 24. Reprinted from space Sci Rev, Springer, Dordrecht, The Netherlands. Space Sci Rev 129(1–3):245-278. doi:10.1007/s11214-007-9176-4.
  90. Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice-Hall, NJ, p 991 ppGoogle Scholar
  91. Martin H, Albarède F, Claeys P, Gargaud M, Marty B, Morbidelli A, Pinti DL (2006a) Building of a habitable planet. In: Gargaud M et al (eds) From suns to life, a chronological approach to the history of life on Earth, pp 97–151Google Scholar
  92. Martin H, Claeys P, Gargaud M, Pinti DL, Selsis F (2006b) Environmental context. In: Gargaud M et al (eds) From suns to life, a chronological approach to the history of life on Earth, pp 205–245Google Scholar
  93. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409: 178–181ADSGoogle Scholar
  94. Morbidelli A, Levison HF, Gomes R (2007) The dynamical structure of the Kuiper belt and its primordial origin. In: The solar system beyond neptune. Barucci A et al (eds) University of Arizona press, pp 275–292Google Scholar
  95. Noffke N, Hazen RM, Nhleko N (2003a) Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology 31: 673–676. doi:10.1130/2FG19704.1 ADSGoogle Scholar
  96. Noffke N, Gerdes G, Klenke T (2003b) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth Sci Rev 62: 163–176ADSGoogle Scholar
  97. Noffke N, Eriksson KA, Hazen RM, Simpson EL (2006) A new window into early archean life: microbial mats in Earth’ s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34: 253–256. doi:10.1130/2FG22246.1 ADSGoogle Scholar
  98. O’Neill C, Lenardic A (2007) Geological consequences of super-sized Earths. Geophys Res Lett 34: L19204. doi:10.1029/2007GL030598 ADSGoogle Scholar
  99. Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci USA 98: 805–808ADSGoogle Scholar
  100. Parnell J (2004) Plate tectonics, surface mineralogy, and the early evolution of life. Int J Astrobiol 3(2): 131–137. doi:10.1017/S1473550404002101 MathSciNetGoogle Scholar
  101. Pham LBS, Karatekin O, Dehant V (2009) The heavy bombardment phase: impact erosion and delivery to early Mars. In: Lammer H (ed) Early mars environment evolution. Spec Issue Astrobiol (in press)Google Scholar
  102. Phillips RJ, Bullock MA, Hauck SA II (2001a) Climate and interior coupled evolution on Venus. Geophys Res Lett 28(9): 1779–1782ADSGoogle Scholar
  103. Phillips RJ, Zuber MT, Solomon SC, Golombek MP, Jakosky BM, Banerdt WB, Smith DE, Williams RME, Hynek BM, Aharonson O, Hauck SA (2001b) Ancient geodynamics and global-scale hydrology on mars. Science 291(5513): 2587–2591. doi:10.1126/science.1058701 ADSGoogle Scholar
  104. Pizzarello S, Huang Y, Alexandre MR (2008) Molecular asymmetry in extraterrestrial chemistry: insights from a pristine meteorite. PNAS 105: 3700–3704. doi:10.1073/pnas.0709909105 ADSGoogle Scholar
  105. Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulfide. Nature 405: 676–679ADSGoogle Scholar
  106. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455: 1101–1105ADSGoogle Scholar
  107. Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction: criticality by addition of water?. Science 294: 578–580ADSGoogle Scholar
  108. Rosing MT (1999) C-13-depleted carbon microparticles in > 3700-Ma sea-floor sedimentary rocks from western Greenland. Science 283: 674–676ADSGoogle Scholar
  109. Rosing MT, Bird DK, Sleep NH, Glassley W, Albarede F (2006) The rise of continents-an essay on the geologic consequences of photosynthesis. Palaeogeograph Palaeoclimatol Palaeoecol 232: 99–113Google Scholar
  110. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409: 1092–1101ADSGoogle Scholar
  111. Schopf JW (1993) Microfossils of the early archean apex chert: new evidence of the antiquity of life. Science 260: 640–646ADSGoogle Scholar
  112. Selsis F, Kasting JF, Levrard B, Paillet J, Ribas I, Delfosse X (2007) Habitable planets around the star Gliese 581?. Astron Astrophys 476: 1373–1387. doi:10.1051/0004-6361:20078091 ADSGoogle Scholar
  113. Shen Y, Schidlowski M (2000) New C isotope stratigraphy from southwest China: implications for the placement of the precambrian-cambrian boundary on the yangtze platform and global correlations. Geology 28: 623–626. doi:10.1130/2F0091-7613/282000/2928/3C623/3ANCISFS/3E2.0.CO/3B2 ADSGoogle Scholar
  114. Shklovskii IS, Sagan C (1966) Intelligent Life in the Universe. San Francisco, Holden Day, p 509Google Scholar
  115. Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH, Dombard AJ, Frey HV, Golombek MP, Hauck SA, Head JW, Jakosky BM, Johnson CL, McGovern PJ, Neumann GA, Phillips RJ, Smith DE, Zuber MT (2005) New perspectives on ancient mars. Science 307(5713): 1214–1220. doi:10.1126/science.1101812 ADSGoogle Scholar
  116. Sotin C, Grasset O, Mocquet A (2007) Mass-radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191: 337–351ADSGoogle Scholar
  117. Southam G, Rothschild LJ, Westall F (2007) The geology and habitability of terrestrial planets: fundamental requirements for life. Space Sci Rev 129(1–3): 7–34. doi:10.1007/s11214-007-9148-8 ADSGoogle Scholar
  118. Spohn T (2007) Interior evolution and habitability, European mars science and exploration conference: mars express & ExoMars, session S.01 Mars interior and subsurface structure. AbstractGoogle Scholar
  119. Sugitani K, Grey K, Allwood A, Nagaoka T, Mimura K, Minamif M, Marshall CP, Van Kranendonk MJ, Walter MR (2007) Diverse microstructures from Archaean chert from the Mount Goldsworthy-Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossils, or pseudofossils?. Precambrian Res 158: 228–262Google Scholar
  120. Tarduno JA, Cottrell RD, Watkeys MK, Hofmann A, Doubrovine PV, Mamajek EE, Liu DJ, Sibeck DG, Neukirch LP, Usui Y (2010) Geodynamo, solar wind, magnetopause 3.4 to 3.45 billion years ago. Science 327(5970): 1238–1240ADSGoogle Scholar
  121. Tian F, Kasting JF, Solomon SC (2009) Thermal escape of carbon from the early Martian atmosphere. Geophys Res Lett 36: L02205. doi:10.1029/2008GL036513 Google Scholar
  122. Tinetti G, Razhby S, Yung YL (2007) Detectability of red-edge shifted vegetation on terrestrial planets orbiting M-Stars ApJ. Letters 644: L129–L132ADSGoogle Scholar
  123. Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature 435: 459–461ADSGoogle Scholar
  124. Udry S, Bonfils X, Delfosse X, Forveille T, Mayor M, Perrier C, Bouchy F, Lovis C, Pepe F, Queloz D, Bertaux J-L (2007) The HARPSs earch for southern extra-solar planets. XI. Super-Earths (5 & 8 M) in a 3-planet system. Astron Astrophys 469: 43–47. doi:10.1051/0004-6361:20077612 ADSGoogle Scholar
  125. Valencia D, O’Connell RJ, Sasselov DD (2007) Inevitability of plate tectonics on super-Earths. Astrophys J 670: 45–48ADSGoogle Scholar
  126. Van Thienen P, Benzerara K, Breuer D, Gillmann C, Labrosse S, Lognonné P, Spohn T (2007) Water, life, and planetary geodynamical evolution. In: Herring T, Schubert J (eds) Treatise of geophysics, invited paper, Elsevier. 129:67–203, doi:10.1007/s11214-007-9149-7
  127. Van Zuilen M (2008) Stable isotope ratios as a biomarker on Mars. In: Botta O, Bada JL, Gomez-Elvira J, Javaux E, Selsis F, Summons R (eds) (2008) Strategies of life detection. Space Sci Ser ISSI 25:221–232Google Scholar
  128. Westall F (1999) The nature of fossil bacteria: a guide to the search for extraterrestrial life. J Geophys Res 104: 16437–16450. doi:10.1029/1998JE900051 ADSGoogle Scholar
  129. Westall F, Steele A, Toporski Jan, Walsh M, Allen C, Guidry S, McKay D, Gibson E, Chafetz H (2000) Polymeric substances and biofilms as biomarkers in terrestrial materials: implications for extraterrestrial samples. J Geophys Res 105: 24511–24528. doi:10.1029/2000JE001250 ADSGoogle Scholar
  130. Wierzchos J, Sancho LG, Ascaso C (2005) Biomineralization of endolithic microbes in rocks from the McMurdo dry valleys of Antarctica: implications for microbial fossil formation and their detection. Environ Microbiol 7: 566–575Google Scholar
  131. Wright IP, Grady MM, Pillenger CT (1992) Chassigny and the nakhlites—Carbon-bearing components and their relationship to Martian environmental conditions. Geochim Cosmochim Acta 56: 817–826. doi:10.1016/0016-7037(92)90100-W ADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Geology, UR Paleobotany, Paleopalynology and MicropaleontologyUniversity of LiègeLiège Sart-TilmanBelgium
  2. 2.Royal Observatory of BelgiumBrusselsBelgium

Personalised recommendations