The Astronomy and Astrophysics Review

, Volume 18, Issue 3, pp 279–315 | Cite as

Formation of supermassive black holes

  • Marta VolonteriEmail author
Review Article


Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for ‘seed’ black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.


Black hole physics Galaxies: formation Cosmology: theory Quasars Galaxies: evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel T, Bryan GL, Norman ML (2000) The formation and fragmentation of primordial molecular clouds. Astrophys J 540: 39–44. doi: 10.1086/309295 astro-ph/0002135ADSGoogle Scholar
  2. Abramowicz MA, Lasota JP (1980) Spin-up of black holes by thick accretion disks. Acta Astron 30: 35–39ADSGoogle Scholar
  3. Abramowicz MA, Czerny B, Lasota JP, Szuszkiewicz E (1988) Slim accretion disks. Astrophys J 332: 646–658. doi: 10.1086/166683 ADSGoogle Scholar
  4. Ajello M, Costamante L, Sambruna RM, Gehrels N, Chiang J, Rau A, Escala A, Greiner J, Tueller J, Wall JV, Mushotzky RF (2009) The evolution of swift/BAT blazars and the origin of the MeV background. Astrophys J 699: 603–625. doi: 10.1088/0004-637X/699/1/603 0905.0472ADSGoogle Scholar
  5. Alcock C, Allsman RA, Alves DR, Axelrod TS, Becker AC, Bennett DP, Cook KH, Dalal N, Drake AJ, Freeman KC, Geha M, Griest K, Lehner MJ, Marshall SL, Minniti D, Nelson CA, Peterson BA, Popowski P, Pratt MR, Quinn PJ, Stubbs CW, Sutherland W, Tomaney AB, Vandehei T, Welch D (2000) The MACHO project: microlensing results from 5.7 years of large magellanic cloud observations. Astrophys J 542: 281–307. doi: 10.1086/309512 arXiv:astro-ph/0001272ADSGoogle Scholar
  6. Aller MC, Richstone D (2002) The cosmic density of massive black holes from galaxy velocity dispersions. Astron J 124: 3035–3041. doi: 10.1086/344484 ADSGoogle Scholar
  7. Arun KG, Babak S, Berti E, Cornish N, Cutler C, Gair J, Hughes SA, Iyer BR, Lang RN, Mandel I, Porter EK, Sathyaprakash BS, Sinha S, Sintes AM, Trias M, VanDen Broeck C, Volonteri M (2009) Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce. Classical and Quantum Gravity 26(9): 094,027. doi: 10.1088/0264-9381/26/9/094027 811–1011Google Scholar
  8. Barkat Z, Rakavy G, Sack N (1967) Dynamics of Supernova Explosion Resulting from Pair Formation. Physical Review Letters 18: 379–381. doi: 10.1103/PhysRevLett.18.379 ADSGoogle Scholar
  9. Barth AJ, Martini P, Nelson CH, Ho LC (2003) Iron emission in the z = 6. Quasar SDSS J114816.64+525150.3. 4. Astrophys J Lett 594: L95–L98. doi: 10.1086/378735 ADSGoogle Scholar
  10. Barth AJ, Ho LC, Rutledge RE, Sargent WLW (2004) POX 52: A Dwarf Seyfert 1 galaxy with an intermediate-mass black hole. Astrophys J 607: 90–102. doi: 10.1086/383302 astro-ph/0402110ADSGoogle Scholar
  11. Baumgarte TW, Shapiro SL (1999) Evolution of rotating supermassive stars to the onset of collapse. Astrophys J 526: 941–952. doi: 10.1086/308006 arXiv:astro-ph/9909237ADSGoogle Scholar
  12. Begelman MC (1979) Can a spherically accreting black hole radiate very near the Eddington limit. Mon Notices R Astron Soc 187: 237–251ADSGoogle Scholar
  13. Begelman MC (2009) Evolution of supermassive stars as a pathway to black hole formation. ArXiv e-prints 0910.4398Google Scholar
  14. Begelman MC, Meier DL (1982) Thick accretion disks—self-similar, supercritical models. Astrophys J 253: 873–896. doi: 10.1086/159688 ADSGoogle Scholar
  15. Begelman MC, Rees MJ (1978) The fate of dense stellar systems. Mon Notices R Astron Soc 185: 847–860ADSGoogle Scholar
  16. Begelman MC, Shlosman I (2009) Angular momentum transfer and lack of fragmentation in self-gravitating accretion flows. Astrophys J Lett 702: L5–L8. doi: 10.1088/0004-637X/702/1/L5 0904.4247ADSGoogle Scholar
  17. Begelman MC, Volonteri M, Rees MJ (2006) Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon Notices R Astron Soc 370: 289–298. doi: 10.1111/j.1365-2966.2006.10467.x astro-ph/0602363ADSGoogle Scholar
  18. Begelman MC, Rossi EM, Armitage PJ (2008) Quasi-stars: accreting black holes inside massive envelopes. Mon Notices R Astron Soc 387: 1649–1659. doi: 10.1111/j.1365-2966.2008.13344.x 0711.4078ADSGoogle Scholar
  19. Berti E, Cardoso V, Will CM (2006) Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys Rev D 73(6): 030–064. doi: 10.1103/PhysRevD.73.064030 arXiv:gr-qc/0512160MathSciNetGoogle Scholar
  20. Blandford RD, Begelman MC (1999) On the fate of gas accreting at a low rate on to a black hole. Mon Notices R Astron Soc 303: L1–L5. doi: 10.1046/j.1365-8711.1999.02358.x arXiv:astro-ph/9809083ADSGoogle Scholar
  21. Blandford RD, Begelman MC (2004) Two-dimensional adiabatic flows on to a black hole—I. Fluid accretion. Mon Notices R Astron Soc 349: 68–86. doi: 10.1111/j.1365-2966.2004.07425.x arXiv:astro-ph/0306184ADSGoogle Scholar
  22. Bond JR, Arnett WD, Carr BJ (1984) The evolution and fate of very massive objects. Astrophys J 280: 825–847. doi: 10.1086/162057 ADSGoogle Scholar
  23. Bovill MS, Ricotti M (2009) Pre-reionization fossils, ultra-faint dwarfs, and the missing galactic satellite problem. Astrophys J 693: 1859–1870. doi: 10.1088/0004-637X/693/2/1859 0806.2340ADSGoogle Scholar
  24. Bromm V, Loeb A (2003) Formation of the first supermassive black holes. Astrophys J 596: 34–46. doi: 10.1086/377529 astro-ph/0212400ADSGoogle Scholar
  25. Bromm V, Coppi PS, Larson RB (1999) Forming the first stars in the universe: the fragmentation of primordial gas. Astrophys J Lett 527: L5–L8. doi: 10.1086/312385 astro-ph/9910224ADSGoogle Scholar
  26. Bromm V, Coppi PS, Larson RB (2002) The formation of the first stars. I. the primordial star-forming cloud. Astrophys J 564: 23–51. doi: 10.1086/323947 astro-ph/0102503ADSGoogle Scholar
  27. Bullock JS, Dekel A, Kolatt TS, Kravtsov AV, Klypin AA, Porciani C, Primack JR (2001) A universal angular momentum profile for galactic halos. Astrophys J 555: 240–257. doi: 10.1086/321477 astro-ph/0011001ADSGoogle Scholar
  28. Carr BJ (2003) Primordial black holes as a probe of cosmology and high energy physics. In: Giulini D, Kiefer C, Laemmerzahl C (eds) Quantum gravity: from theory to experimental search, lecture notes in physics, vol 631. Springer Verlag, Berlin, pp 301–321Google Scholar
  29. Carr BJ, Bond JR, Arnett WD (1984) Cosmological consequences of population III stars. Astrophys J 277: 445–469. doi: 10.1086/161713 ADSGoogle Scholar
  30. Clark PC, Glover SCO, Klessen RS (2008) The first stellar cluster. Astrophys J 672: 757–764. doi: 10.1086/524187 arXiv:0706.0613ADSGoogle Scholar
  31. Côté P, Piatek S, Ferrarese L, Jordán A, Merritt D, Peng EW, Haşegan M, Blakeslee JP, Mei S, West MJ, Milosavljević M, Tonry JL (2006) The ACS virgo cluster survey VIII. The nuclei of early-type galaxies. Astrophys J Suppl 165: 57–94. doi: 10.1086/504042 arXiv:astro-ph/0603252ADSGoogle Scholar
  32. Decarli R, Gavazzi G, Arosio I, Cortese L, Boselli A, Bonfanti C, Colpi M (2007) The census of nuclear activity of late-type galaxies in the Virgo cluster. Mon Notices R Astron Soc 381: 136–150. doi: 10.1111/j.1365-2966.2007.12208.x arXiv:0707.0999ADSGoogle Scholar
  33. Devecchi B, Volonteri M (2009) Formation of the first nuclear clusters and massive black holes at high redshift. Astrophys J 694: 302–313. doi: 10.1088/0004-637X/694/1/302 0810.1057ADSGoogle Scholar
  34. Diemand J, Kuhlen M, Madau P (2007) Formation and evolution of galaxy dark matter halos and their substructure. Astrophys J 667: 859–877. doi: 10.1086/520573 arXiv:astro-ph/0703337ADSGoogle Scholar
  35. Dijkstra M, Haiman Z, Mesinger A, Wyithe JSB (2008) Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes. Mon Notices R Astron Soc 391: 1961–1972. doi: 10.1111/j.1365-2966.2008.14031.x 0810.0014ADSGoogle Scholar
  36. Ebisuzaki T, Makino J, Tsuru TG, Funato Y, Portegies Zwart S, Hut P, McMillan S, Matsushita S, Matsumoto H, Kawabe R (2001) Missing link found? The “runaway” path to supermassive black holes. Astrophys J Lett 562: L19–L22. doi: 10.1086/338118 astro-ph/0106252ADSGoogle Scholar
  37. Eisenstein DJ, Loeb A (1995) Origin of quasar progenitors from the collapse of low-spin cosmological perturbations. Astrophys J 443: 11–17. doi: 10.1086/175498 arXiv:astro-ph/9401016ADSGoogle Scholar
  38. Eke VR, Cole S, Frenk CS (1996) Cluster evolution as a diagnostic for omega. Mon Notices R Astron Soc 282: 263–280 arXiv:astro-ph/9601088ADSGoogle Scholar
  39. Elvis M, Risaliti G, Zamorani G (2002) Most supermassive black holes must be rapidly rotating. Astrophys J Lett 565: L75–L77. doi: 10.1086/339197 arXiv:astro-ph/0112413ADSGoogle Scholar
  40. Fan X et al (2001) A survey of z > 5.8 quasars in the sloan digital sky survey. I. discovery of three new quasars and the spatial density of luminous quasars at z ~6. Astron J 122: 2833–2849. doi: 10.1086/324111 ADSGoogle Scholar
  41. Fan X et al (2001) High-redshift quasars found in sloan digital sky survey commissioning data. IV. luminosity function from the fall equatorial stripe sample. Astron J 121: 54–65. doi: 10.1086/318033 ADSGoogle Scholar
  42. Fan X et al (2004) A survey of z > 5.7 quasars in the sloan digital sky survey. III. discovery of five additional quasars. Astron J 128: 515–522. doi: 10.1086/422434 ADSGoogle Scholar
  43. Ferrarese L, Ford H (2005) Supermassive black holes in galactic nuclei: past, present and future research. Space Sci Rev 116: 523–624. doi: 10.1007/s11214-005-3947-6 astro-ph/0411247ADSGoogle Scholar
  44. Ferrarese L, Merritt D (2000) A fundamental relation between supermassive black holes and their host galaxies. Astrophys J 539: L9–L12. doi: 10.1086/312838 ADSGoogle Scholar
  45. Ferrarese L, Côté P, Dalla Bontà E, Peng EW, Merritt D, Jordán A, Blakeslee JP, Haşegan M, Mei S, Piatek S, Tonry JL, West MJ (2006) A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. Astrophys J Lett 644: L21–L24. doi: 10.1086/505388 astro-ph/0603840ADSGoogle Scholar
  46. Freese K, Bodenheimer P, Spolyar D, Gondolo P (2008) Stellar structure of dark stars: a first phase of stellar evolution resulting from dark matter annihilation. Astrophys J Lett 685: L101–L104. doi: 10.1086/592685 0806.0617ADSGoogle Scholar
  47. Freise A, Chelkowski S, Hild S, Del Pozzo W, Perreca A, Vecchio A (2009) Triple Michelson interferometer for a third-generation gravitational wave detector. Class Quantum Gravity 26(8): 085,012. doi: 10.1088/0264-9381/26/8/085012 804–1036Google Scholar
  48. Freitag M, Gürkan MA, Rasio FA (2006a) Runaway collisions in young star clusters—II. Numerical results. Mon Notices R Astron Soc 368: 141–161. doi: 10.1111/j.1365-2966.2006.10096.x astro-ph/0503130ADSGoogle Scholar
  49. Freitag M, Rasio FA, Baumgardt H (2006) Runaway collisions in young star clusters— I. Methods and tests. Mon Notices R Astron Soc 368: 121–140. doi: 10.1111/j.1365-2966.2006.10095.x astro-ph/0503129ADSGoogle Scholar
  50. Fryer CL, Woosley SE, Heger A (2001) Pair-instability supernovae, gravity waves, and gamma-ray transients. Astrophys J 550: 372–382. doi: 10.1086/319719 astro-ph/0007176ADSGoogle Scholar
  51. Gaburov E, Lombardi J, Portegies Zwart S (2009) On the onset of runaway stellar collisions in dense star clusters—II. Hydrodynamics of three-body interactions. ArXiv e-prints 0904.0997Google Scholar
  52. Gair JR, Mandel I, Miller MC, Volonteri M (2009) Exploring intermediate and massive black-hole binaries with the Einstein Telescope. ArXiv e-prints 0907.5450Google Scholar
  53. Gallo E, Treu T, Jacob J, Woo J, Marshall PJ, Antonucci R (2008) AMUSE-Virgo I supermassive black holes in low-mass spheroids. Astrophys J 680: 154–168. doi: 10.1086/588012 0711.2073ADSGoogle Scholar
  54. Gao L, Yoshida N, Abel T, Frenk CS, Jenkins A, Springel V (2007) The first generation of stars in the Λ cold dark matter cosmology. Mon Notices R Astron Soc 378: 449–468. doi: 10.1111/j.1365-2966.2007.11814.x arXiv:astro-ph/0610174ADSGoogle Scholar
  55. Gebhardt K, Bender R, Bower G, Dressler A, Faber SM, Filippenko AV, Green R, Grillmair C, Ho LC, Kormendy J, Lauer TR, Magorrian J, Pinkney J, Richstone D, Tremaine S (2000) A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys J 539: L13–L16. doi: 10.1086/312840 astro-ph/0006289ADSGoogle Scholar
  56. Gebhardt K, Lauer TR, Kormendy J, Pinkney J, Bower GA, Green R, Gull T, Hutchings JB, Kaiser ME, Nelson CH, Richstone D, Weistrop D (2001) M33: A galaxy with no supermassive black hole. Astron J 122: 2469–2476. doi: 10.1086/323481 arXiv:astro-ph/0107135ADSGoogle Scholar
  57. Ghez AM, Salim S, Hornstein SD, Tanner A, Lu JR, Morris M, Becklin EE, Duchêne G (2005) Stellar orbits around the galactic center black hole. Astrophys J 620: 744–757. doi: 10.1086/427175 arXiv:astro-ph/0306130ADSGoogle Scholar
  58. Ghisellini G, Foschini L, Volonteri M, Ghirlanda G, Haardt F, Burlon D, Tavecchio F (2009) The blazar S5 0014+813: a real or apparent monster. Mon Notices R Astron Soc 399: L24–L28. doi: 10.1111/j.1745-3933.2009.00716.x 0906.0575ADSGoogle Scholar
  59. Glover SCO, Clark PC, Greif TH, Johnson JL, Bromm V, Klessen RS, Stacy A (2008) Open questions in the study of population III star formation. In: Hunt LK, Madden S, Schneider R (eds) IAU symposium, vol 255, pp 3–17. doi: 10.1017/S1743921308024526
  60. Gnedin NY, Kravtsov AV (2006) Fossils of reionization in the local group. Astrophys J 645: 1054–1061. doi: 10.1086/504404 arXiv:astro-ph/0601401ADSGoogle Scholar
  61. Greene JE, Ho LC (2007) The mass function of active black holes in the local universe. Astrophys J 667: 131–148. doi: 10.1086/520497 0705.0020ADSGoogle Scholar
  62. Greif TH, Johnson JL, Klessen RS, Bromm V (2008) The first galaxies: assembly, cooling and the onset of turbulence. Mon Notices R Astron Soc 387: 1021–1036. doi: 10.1111/j.1365-2966.2008.13326.x 0803.2237ADSGoogle Scholar
  63. Gruzinov AV (1998) Radiative efficiency of collisionless accretion. Astrophys J 501: 787. doi: 10.1086/305845 arXiv:astro-ph/9710132ADSGoogle Scholar
  64. Gültekin K, Richstone DO, Gebhardt K, Lauer TR, Tremaine S, Aller MC, Bender R, Dressler A, Faber SM, Filippenko AV, Green R, Ho LC, Kormendy J, Magorrian J, Pinkney J, Siopis C (2009) The M–σ and M–L relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys J 698: 198–221. doi: 10.1088/0004-637X/698/1/198 0903.4897ADSGoogle Scholar
  65. Gürkan MA, Freitag M, Rasio FA (2004) Formation of massive black holes in dense star clusters. I. mass segregation and core collapse. Astrophys J 604: 632–652. doi: 10.1086/381968 astro-ph/0308449ADSGoogle Scholar
  66. Gürkan MA, Fregeau JM, Rasio FA (2006) Massive black hole binaries from collisional runaways. Astrophys J Lett 640: L39–L42. doi: 10.1086/503295 astro-ph/0512642ADSGoogle Scholar
  67. Haehnelt MG, Rees MJ (1993) The formation of nuclei in newly formed galaxies and the evolution of the quasar population. Mon Notices R Astron Soc 263: 168–178ADSGoogle Scholar
  68. Haiman Z (2004) Constraints from gravitational recoil on the growth of supermassive black holes at high redshift. Astrophys J 613: 36–40. doi: 10.1086/422910 ADSGoogle Scholar
  69. Häring N, Rix HW (2004) On the black hole mass-bulge mass relation. Astrophys J Lett 604: L89–L92. doi: 10.1086/383567 arXiv:astro-ph/0402376ADSGoogle Scholar
  70. Hawking S (1971) Gravitationally collapsed objects of very low mass. Mon Notices R Astron Soc 152: 75ADSGoogle Scholar
  71. Heger A, Fryer CL, Woosley SE, Langer N, Hartmann DH (2003) How massive single stars end their life. Astrophys J 591: 288–300. doi: 10.1086/375341 astro-ph/0212469ADSGoogle Scholar
  72. Ho LC (2008) Nuclear activity in nearby galaxies. Annu Rev Astron Astrophys 46: 475–539. doi: 10.1146/annurev.astro.45.051806.110546 0803.2268ADSGoogle Scholar
  73. Hopkins PF, Richards GT, Hernquist L (2007) An observational determination of the bolometric quasar luminosity function. Astrophys J 654: 731–753. doi: 10.1086/509629 arXiv:astro-ph/0605678ADSGoogle Scholar
  74. Hoyle F, Fowler WA (1963) On the nature of strong radio sources. Mon Notices R Astron Soc 125: 169ADSGoogle Scholar
  75. Hughes SA (2002) Untangling the merger history of massive black holes with LISA. Mon Notices R Astron Soc 331: 805–816. doi: 10.1046/j.1365-8711.2002.05247.x astro-ph/0108483ADSGoogle Scholar
  76. Iocco F (2008) Dark matter capture and annihilation on the first stars: preliminary estimates. Astrophys J Lett 677: L1–L4. doi: 10.1086/587959 0802.0941ADSGoogle Scholar
  77. Johnson JL, Bromm V (2007) The aftermath of the first stars: massive black holes. Mon Notices R Astron Soc 374: 1557–1568. doi: 10.1111/j.1365-2966.2006.11275.x arXiv:astro-ph/0605691ADSGoogle Scholar
  78. Khlopov MY, Rubin SG, Sakharov AS (2005) Primordial structure of massive black hole clusters. Astropart Phys 23: 265–277. doi: 10.1016/j.astropartphys.2004.12.002 arXiv:astro-ph/0401532ADSGoogle Scholar
  79. Kormendy J, Bender R, Richstone D, Ajhar EA, Dressler A, Faber SM, Gebhardt K, Grillmair C, Lauer TR, Tremaine S (1996) Hubble space telescope spectroscopic evidence for a 2 billion solar masses black hole in NGC 3115. ApJ 459:L57+. doi: 10.1086/309950
  80. Kormendy J, Fisher DB, Cornell ME, Bender R (2009) Structure and formation of elliptical and spheroidal galaxies. ApJS 182: 216–309. doi: 10.1088/0067-0049/182/1/216 0810.1681ADSGoogle Scholar
  81. Koushiappas SM, Bullock JS, Dekel A (2004) Massive black hole seeds from low angular momentum material. Mon Notices R Astron Soc 354: 292–304. doi: 10.1111/j.1365-2966.2004.08190.x astro-ph/0311487ADSGoogle Scholar
  82. Kudritzki RP, Puls J (2000) Winds from hot stars. Annu Rev Astron Astrophys 38: 613–666. doi: 10.1146/annurev.astro.38.1.613 ADSGoogle Scholar
  83. Lacey C, Cole S (1993) Merger rates in hierarchical models of galaxy formation. Mon Notices R Astron Soc 262: 627–649ADSGoogle Scholar
  84. Lodato G, Natarajan P (2006) Supermassive black hole formation during the assembly of pre-galactic discs. Mon Notices R Astron Soc 371: 1813–1823. doi: 10.1111/j.1365-2966.2006.10801.x astro-ph/0606159ADSGoogle Scholar
  85. Loeb A, Rasio FA (1994) Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys J 432: 52–61. doi: 10.1086/174548 astro-ph/9401026ADSGoogle Scholar
  86. Madau P, Rees MJ (2001) Massive black holes as population III remnants. Astrophys J Lett 551: L27–L30. doi: 10.1086/319848 ADSGoogle Scholar
  87. Magorrian J, Tremaine S, Richstone D, Bender R, Bower G, Dressler A, Faber SM, Gebhardt K, Green R, Grillmair C, Kormendy J, Lauer T (1998) The demography of massive dark objects in galaxy centers. Astron J 115: 2285–2305. doi: 10.1086/300353 ADSGoogle Scholar
  88. Majewski SR, Frinchaboy PM, Kunkel WE, Link R, Muñoz RR, Ostheimer JC, Palma C, Patterson RJ, Geisler D (2005) Exploring halo substructure with giant stars. VI. extended distributions of giant stars around the carina dwarf spheroidal galaxy: how reliable are they? Astron J 130: 2677–2700. doi: 10.1086/444535 arXiv:astro-ph/0503627Google Scholar
  89. Marconi A, Hunt LK (2003) The relation between black hole mass, bulge mass, and near-infrared luminosity. Astrophys J Lett 589: L21–L24. doi: 10.1086/375804 arXiv:astro-ph/0304274ADSGoogle Scholar
  90. Marconi A, Risaliti G, Gilli R, Hunt LK, Maiolino R, Salvati M (2004) Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon Notices R Astron Soc 351: 169–185. doi: 10.1111/j.1365-2966.2004.07765.x ADSGoogle Scholar
  91. Mateo M (1998) Dwarf galaxies of the local group. Annu Rev Astron Astrophys 36: 435–506ADSGoogle Scholar
  92. McKee CF, Tan JC (2008) The formation of the first stars. II. radiative feedback processes and implications for the initial mass function. Astrophys J 681: 771–797. doi: 10.1086/587434 0711.1377ADSGoogle Scholar
  93. Merloni A, Heinz S (2008) A synthesis model for AGN evolution: supermassive black holes growth and feedback modes. Mon Notices R Astron Soc 388: 1011–1030. doi: 10.1111/j.1365-2966.2008.13472.x 0805.2499ADSGoogle Scholar
  94. Merloni A, Rudnick G, Di Matteo T (2004) Tracing the cosmological assembly of stars and supermassive black holes in galaxies. Mon Notices R Astron Soc 354: L37–L42. doi: 10.1111/j.1365-2966.2004.08382.x ADSGoogle Scholar
  95. Merritt D, Ferrarese L, Joseph CL (2001) No supermassive black hole in M33? Science 293: 1116–1119. doi: 10.1126/science.1063896 arXiv:astro-ph/0107359ADSGoogle Scholar
  96. Miller MC, Hamilton DP (2002) Production of intermediate-mass black holes in globular clusters. Mon Notices R Astron Soc 330: 232–240. doi: 10.1046/j.1365-8711.2002.05112.x arXiv:astro-ph/0106188ADSGoogle Scholar
  97. Milosavljević M, Couch SM, Bromm V (2009) Accretion onto intermediate-mass black holes in dense protogalactic clouds. Astrophys J Lett 696: L146–L149. doi: 10.1088/0004-637X/696/2/L146 0812.2516ADSGoogle Scholar
  98. Mo HJ, Mao S, White SDM (1998) The formation of galactic discs. Mon Notices R Astron Soc 295: 319–336ADSGoogle Scholar
  99. Narayan R, Igumenshchev IV, Abramowicz MA (2000) Self-similar accretion flows with convection. Astrophys J 539:798–808. doi: 10.1086/309268, arXiv:astro-ph/9912449Google Scholar
  100. Navarro JF, Frenk CS, White SDM (1997) A universal density profile from hierarchical clustering. Astrophys J 490: 493. doi: 10.1086/304888 ADSGoogle Scholar
  101. Oh SP, Haiman Z (2002) Second-generation objects in the universe: radiative cooling and collapse of halos with virial temperatures above 104 K. Astrophys J 569: 558–572. doi: 10.1086/339393 ADSGoogle Scholar
  102. Omukai K, Nishi R (1998) Formation of primordial protostars. Astrophys J 508: 141–150. doi: 10.1086/306395 arXiv:astro-ph/9811308ADSGoogle Scholar
  103. Omukai K, Schneider R, Haiman Z (2008) Can supermassive black holes form in metal-enriched high-redshift protogalaxies. Astrophys J 686: 801–814. doi: 10.1086/591636 0804.3141ADSGoogle Scholar
  104. Page DN, Hawking SW (1976) Gamma rays from primordial black holes. Astrophys J 206: 1–7. doi: 10.1086/154350 ADSGoogle Scholar
  105. Palla et al (2002) Physics of star formation in galaxies. Saas-Fee Advanced Course 29. Lecture Notes 1999, Les Diablerets, Switzerland, 22–29 March 1999. Swiss Society for Astrophysics and Astronomy. In: Maeder A, Meynet G (eds), Physics and astronomy online library. Springer, Berlin, pp 9–133Google Scholar
  106. Peacock, JA (eds) (1999) Cosmological physics. Cambridge University Press, Cambridge, UK, p 704zbMATHGoogle Scholar
  107. Pelupessy FI, Di Matteo T, Ciardi B (2007) How rapidly do supermassive black hole “seeds” grow at early times? ArXiv Astrophysics e-prints, astro-ph/0703773, astro-ph/0703773Google Scholar
  108. Portegies Zwart SF, McMillan SLW (2002) The runaway growth of intermediate-mass black holes in dense star clusters. Astrophys J 576: 899–907. doi: 10.1086/341798 astro-ph/0201055ADSGoogle Scholar
  109. Portegies Zwart SF, Makino J, McMillan SLW, Hut P (1999) Star cluster ecology. III. Runaway collisions in young compact star clusters. Astron Astrophys 348: 117–126 arXiv:astro-ph/9812006Google Scholar
  110. Portegies Zwart SF, Baumgardt H, Hut P, Makino J, McMillan SLW (2004) Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428: 724–726. doi: 10.1038/nature02448 astro-ph/0402622ADSGoogle Scholar
  111. Quataert E, Gruzinov A (2000) Convection-dominated accretion flows. Astrophys J 539: 809–814. doi: 10.1086/309267 arXiv:astro-ph/9912440ADSGoogle Scholar
  112. Reed D, Governato F, Quinn T, Gardner J, Stadel J, Lake G (2005) Dark matter subhaloes in numerical simulations. Mon Notices R Astron Soc 359: 1537–1548. doi: 10.1111/j.1365-2966.2005.09020.x arXiv:astro-ph/0406034ADSGoogle Scholar
  113. Rees MJ (1978) Structure and properties of nearby galaxies. Proceedings of the symposium, bad Muenstereifel, West Germany, August 22–26, 1977 (A79-13481 03-90). D. Reidel Publishing Co., Dordrecht, pp 237–242; Discussion, pp 242–244Google Scholar
  114. Regan JA, Haehnelt MG (2009) Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures >10000K. Mon Notices R Astron Soc 396: 343–353. doi: 10.1111/j.1365-2966.2009.14579.x 0810.2802ADSGoogle Scholar
  115. Ricotti M, Ostriker JP, Mack KJ (2008) Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys J 680: 829–845. doi: 10.1086/587831 0709.0524ADSGoogle Scholar
  116. Ripamonti E, Haardt F, Ferrara A, Colpi M (2002) Radiation from the first forming stars. Mon Notices R Astron Soc 334: 401–418. doi: 10.1046/j.1365-8711.2002.05516.x arXiv:astro-ph/0107095ADSGoogle Scholar
  117. Ripamonti E, Mapelli M, Ferrara A (2007) The impact of dark matter decays and annihilations on the formation of the first structures. Mon Notices R Astron Soc 375: 1399–1408. doi: 10.1111/j.1365-2966.2006.11402.x arXiv:astro-ph/0606483ADSGoogle Scholar
  118. Saijo M, Baumgarte TW, Shapiro SL, Shibata M (2002) Collapse of a rotating supermassive star to a supermassive black hole: post-newtonian simulations. Astrophys J 569: 349–361. doi: 10.1086/339268 astro-ph/0202112ADSGoogle Scholar
  119. Salvaterra R, Haardt F, Volonteri M (2007) Unresolved X-ray background: clues on galactic nuclear activity at z > 6. Mon Notices R Astron Soc 374: 761–768. doi: 10.1111/j.1365-2966.2006.11195.x astro-ph/0610329ADSGoogle Scholar
  120. Santoro F, Shull JM (2006) Critical metallicity and fine-structure emission of primordial gas enriched by the first stars. Astrophys J 643: 26–37. doi: 10.1086/501518 astro-ph/0509101ADSGoogle Scholar
  121. Schneider R, Omukai K, Inoue AK, Ferrara A (2006) Fragmentation of star-forming clouds enriched with the first dust. Mon Notices R Astron Soc 369: 1437–1444. doi: 10.1111/j.1365-2966.2006.10391.x arXiv:astro-ph/0603766ADSGoogle Scholar
  122. Schödel R, Ott T, Genzel R, Eckart A, Mouawad N, Alexander T (2003) Stellar dynamics in the central arcsecond of our galaxy. Astrophys J 596: 1015–1034. doi: 10.1086/378122 arXiv:astro-ph/0306214ADSGoogle Scholar
  123. Sesana A, Volonteri M, Haardt F (2007) The imprint of massive black hole formation models on the LISA data stream. Mon Notices R Astron Soc 377: 1711–1716. doi: 10.1111/j.1365-2966.2007.11734.x arXiv:astro-ph/0701556ADSGoogle Scholar
  124. Shapiro SL (2004) Formation of supermassive black holes: simulations in general relativity. In: Ho LC (ed) Coevolution of black holes and galaxies, from the Carnegie Observatories Centennial Symposia. Published by Cambridge University Press, as part of the Carnegie Observatories Astrophysics Series. p 103Google Scholar
  125. Shapiro SL (2005) Spin, accretion, and the cosmological growth of supermassive black holes. Astrophys J 620: 59–68. doi: 10.1086/427065 ADSGoogle Scholar
  126. Sheth RK, Tormen G (1999) Large-scale bias and the peak background split. Mon Notices R Astron Soc 308: 119–126ADSGoogle Scholar
  127. Shibata M, Shapiro SL (2002) Collapse of a rotating supermassive star to a supermassive black hole: fully relativistic simulations. Astrophys J Lett 572: L39–L43. doi: 10.1086/341516 arXiv:astro-ph/0205091ADSGoogle Scholar
  128. Shlosman I, Frank J, Begelman MC (1989) Bars within bars—a mechanism for fuelling active galactic nuclei. Nature 338: 45–47. doi: 10.1038/338045a0 ADSGoogle Scholar
  129. Soltan A (1982) Masses of quasars. Mon Notices R Astron Soc 200: 115–122ADSGoogle Scholar
  130. Spaans M, Silk J (2006) Pregalactic black hole formation with an atomic hydrogen equation of state. Astrophys J 652: 902–906. doi: 10.1086/508444 arXiv:astro-ph/0601714ADSGoogle Scholar
  131. Spitzer L (1987) Dynamical evolution of globular clusters. Princeton University Press, Princeton, p 191Google Scholar
  132. Spolyar D, Freese K, Gondolo P (2008) Dark matter and the first stars: a new phase of stellar evolution. Phys Rev Lett 100(5): 051,101. doi: 10.1103/PhysRevLett.100.051101 0705.0521Google Scholar
  133. Springel V, Wang J, Vogelsberger M, Ludlow A, Jenkins A, Helmi A, Navarro JF, Frenk CS, White SDM (2008) The aquarius project: the subhaloes of galactic haloes. Mon Notices R Astron Soc 391: 1685–1711. doi: 10.1111/j.1365-2966.2008.14066.x 0809.0898ADSGoogle Scholar
  134. Stacy A, Greif TH, Bromm V (2009) The first stars: formation of binaries and small multiple systems. ArXiv e-prints 0908.0712Google Scholar
  135. Tan JC, McKee CF (2004) The formation of the first stars. I. Mass infall rates, accretion disk structure, and protostellar evolution. Astrophys J 603: 383–400. doi: 10.1086/381490 arXiv:astro-ph/0307414ADSGoogle Scholar
  136. Tanaka T, Haiman Z (2009) The assembly of supermassive black holes at high redshifts. Astrophys J 696: 1798–1822. doi: 10.1088/0004-637X/696/2/1798 0807.4702ADSGoogle Scholar
  137. Tegmark M, Silk J, Rees MJ, Blanchard A, Abel T, Palla F (1997) How small were the first cosmological objects. Astrophys J 474: 1. doi: 10.1086/303434 arXiv:astro-ph/9603007ADSGoogle Scholar
  138. Tisserand P, Le Guillou L, Afonso C, Albert JN, Andersen J, Ansari R, Aubourg É, Bareyre P, Beaulieu JP, Charlot X, Coutures C, Ferlet R, Fouqué P, Glicenstein JF, Goldman B, Gould A, Graff D, Gros M, Haissinski J, Hamadache C, de Kat J, Lasserre T, Lesquoy É, Loup C, Magneville C, Marquette JB, Maurice É, Maury A, Milsztajn A, Moniez M, Palanque-Delabrouille N, Perdereau O, Rahal YR, Rich J, Spiro M, Vidal-Madjar A, Vigroux L, Zylberajch S, The EROS-2 Collaboration (2007) Limits on the macho content of the galactic halo from the eros-2 survey of the magellanic clouds. Astron Astrophys 469:387–404. doi: 10.1051/0004-6361:20066017, arXiv:astro-ph/0607207Google Scholar
  139. Tremaine S, Gebhardt K, Bender R, Bower G, Dressler A, Faber SM, Filippenko AV, Green R, Grillmair C, Ho LC, Kormendy J, Lauer TR, Magorrian J, Pinkney J, Richstone D (2002) The slope of the black hole mass versus velocity dispersion correlation. Astrophys J 574: 740–753. doi: 10.1086/341002 ADSGoogle Scholar
  140. Trenti M, Stiavelli M, Michael Shull J (2009) Metal-free Gas supply at the edge of reionization: late-epoch population III star formation. Astrophys J 700: 1672–1679. doi: 10.1088/0004-637X/700/2/1672 0905.4504ADSGoogle Scholar
  141. Turk MJ, Abel T, O’Shea B (2009) The formation of population III binaries from cosmological initial conditions. Science 325: 601. doi: 10.1126/science.1173540 0907.2919ADSGoogle Scholar
  142. Valluri M, Ferrarese L, Merritt D, Joseph CL (2005) The low end of the supermassive black hole mass function: constraining the mass of a nuclear black hole in ngc 205 via stellar kinematics. Astrophys J 628: 137–152. doi: 10.1086/430752 arXiv:astro-ph/0502493ADSGoogle Scholar
  143. van den Bosch FC, Abel T, Croft RAC, Hernquist L, White SDM (2002) The angular momentum of gas in protogalaxies. I. implications for the formation of disk galaxies. Astrophys J 576: 21–35. doi: 10.1086/341619 astro-ph/0201095ADSGoogle Scholar
  144. Van Wassenhove S, Volonteri M, Walker MG, Gair JR (2010) Massive black holes lurking in Milky Way satellites. ArXiv e-prints 1001.5451Google Scholar
  145. Vernaleo JC, Reynolds CS (2006) AGN feedback and cooling flows: problems with simple hydrodynamic models. Astrophys J 645: 83–94. doi: 10.1086/504029 arXiv:astro-ph/0511501ADSGoogle Scholar
  146. Volonteri M, Gnedin N (2009) Relative role of stars and quasars in cosmic reionization. ArXiv e-prints 0905.0144Google Scholar
  147. Volonteri M, Natarajan P (2009) Journey to the M_BH–sigma relation: the fate of low mass black holes in the Universe. ArXiv e-prints 0903.2262Google Scholar
  148. Volonteri M, Rees MJ (2005) Rapid growth of high-redshift black holes. Astrophys J 633: 624–629. doi: 10.1086/466521 ADSGoogle Scholar
  149. Volonteri M, Rees MJ (2006) Quasars at z=6: the survival of the fittest. Astrophys J 650: 669–678. doi: 10.1086/507444 arXiv:astro-ph/0607093ADSGoogle Scholar
  150. Volonteri M, Haardt F, Madau P (2003) The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys J 582: 559–573. doi: 10.1086/344675 ADSGoogle Scholar
  151. Volonteri M, Haardt F, Gültekin K (2008) Compact massive objects in Virgo galaxies: the black hole population. Mon Notices R Astron Soc 384: 1387–1392. doi: 10.1111/j.1365-2966.2008.12911.x arXiv:0710.5770ADSGoogle Scholar
  152. Volonteri M, Lodato G, Natarajan P (2008) The evolution of massive black hole seeds. Mon Notices R Astron Soc 383: 1079–1088. doi: 10.1111/j.1365-2966.2007.12589.x arXiv:0709.0529ADSGoogle Scholar
  153. Walker MG, Mateo M, Olszewski EW (2009) Stellar velocities in the carina, fornax, sculptor, and sextans dsph galaxies: data from the magellan/mmfs survey. Astron J 137: 3100–3108. doi: 10.1088/0004-6256/137/2/3100 0811.0118ADSGoogle Scholar
  154. Walker MG, Mateo M, Olszewski EW (2009) Stellar velocities in the carina, fornax, sculptor, and sextans dsph galaxies: data from the Magellan/MMFS survey. Astron J 137: 3100–3108. doi: 10.1088/0004-6256/137/2/3100 0811.0118ADSGoogle Scholar
  155. Walter M, Carilli C, Bertoldi F, Menten K, Cox P, Lo KY, Fan X, Strauss MA (2003) Resolved molecular gas in a quasar host galaxy at redshift z=6.42. Astrophys J Lett 615: L17–L20. doi: 10.1086/426017 ADSGoogle Scholar
  156. Wehner EH, Harris WE (2006) From supermassive black holes to dwarf elliptical nuclei: a mass continuum. Astrophys J Lett 644: L17–L20. doi: 10.1086/505387 astro-ph/0603801ADSGoogle Scholar
  157. White SDM, Rees MJ (1978) Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon Notices R Astron Soc 183: 341–358ADSGoogle Scholar
  158. Willott CJ, McLure RJ, Jarvis MJ (2003) A 3 billion solar masses black hole in the quasar SDSS J1148+5251 at z=6. Astrophys J Lett 41(587): L15–L18. doi: 10.1086/375126 ADSGoogle Scholar
  159. Willott CJ, Percival WJ, McLure RJ, Crampton D, Hutchings JB, Jarvis MJ, Sawicki M, Simard L (2005) Imaging of SDSS z>6 quasar fields: gravitational lensing, companion galaxies, and the host dark matter halos. Astrophys J 626: 657–665. doi: 10.1086/430168 ADSGoogle Scholar
  160. Wise JH, Turk MJ, Abel T (2008) Resolving the formation of protogalaxies. II. Central gravitational collapse. Astrophys J 682: 745–757. doi: 10.1086/588209 0710.1678ADSGoogle Scholar
  161. Woosley SE, Weaver TA (1986) The physics of supernova explosions. Annu Rev Astron Astrophys 24: 205–253. doi: 10.1146/annurev.aa.24.090186.001225 ADSGoogle Scholar
  162. Yoshida N, Omukai K, Hernquist L, Abel T (2006) Formation of primordial stars in a ΛCDM universe. Astrophys J 652: 6–25. doi: 10.1086/507978 arXiv:astro-ph/0606106ADSGoogle Scholar
  163. Yu Q, Tremaine S (2002) Observational constraints on growth of massive black holes. Mon Notices R Astron Soc 335: 965–976. doi: 10.1046/j.1365-8711.2002.05532.x ADSGoogle Scholar
  164. Zel’Dovich YB, Novikov ID (1967) The hypothesis of cores retarded during expansion and the hot cosmological model. Sov Astron 10: 602ADSGoogle Scholar
  165. Zeldovich YB, Novikov ID (1971) Relativistic astrophysics. vol 1: stars and relativity. University of Chicago Press, ChicagoGoogle Scholar
  166. Zhang W, Woosley SE, Heger A (2008) Fallback and black hole production in massive stars. Astrophys J 679: 639–654. doi: 10.1086/526404 arXiv:astro-ph/0701083ADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Astronomy DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations