The Astronomy and Astrophysics Review

, Volume 18, Issue 1–2, pp 197–277 | Cite as

The quest for the solar g modes

  • T. Appourchaux
  • K. Belkacem
  • A.-M. Broomhall
  • W. J. Chaplin
  • D. O. Gough
  • G. Houdek
  • J. Provost
  • F. Baudin
  • P. Boumier
  • Y. Elsworth
  • R. A. García
  • B. N. Andersen
  • W. Finsterle
  • C. Fröhlich
  • A. Gabriel
  • G. Grec
  • A. Jiménez
  • A. Kosovichev
  • T. Sekii
  • T. Toutain
  • S. Turck-Chièze
Review Article


Solar gravity modes (or g modes)—oscillations of the solar interior on which buoyancy acts as the restoring force—have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well-observed acoustic modes (or p modes). The relative high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this article, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made—from both data and data-analysis perspectives—to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.


Sun Theory Data analysis g modes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelberger EG, Austin SM, Bahcall JN, Balantekin AB, Bogaert G, Brown LS (1998) Solar fusion cross sections. Reviews of Modern Physics 70: 1265–1291ADSGoogle Scholar
  2. Aerts C, Eyer L, Kestens E (1998) The discovery of new gamma Doradus stars from the HIPPARCOS mission. A&A 337: 790–796ADSGoogle Scholar
  3. Aigrain S, Favata F, Gilmore G (2004) Characterising stellar micro-variability for planetary transit searches. A&A 414: 1139–1152ADSGoogle Scholar
  4. Andersen BN (1994) Excitation of solar gravity waves. Sol Phys 152: 241–246ADSGoogle Scholar
  5. Andersen BN (1996) Theoretical amplitudes of solar g modes. A&A 312: 610–614ADSGoogle Scholar
  6. Andersen BN, Andreassen O, Wasberg CE, Leifsen T (1993) Convection and gravity wave interaction in the solar interior. In: Brown TM (eds) GONG 1992. Seismic Investigation of the Sun and Stars, astronomical society of the Pacific conference series, vol 42, pp 49–52Google Scholar
  7. Ando H (1986) Resonant excitation of the solar g modes through coupling of 5- min oscillations. Astrophys Space Sci 118: 177–181ADSGoogle Scholar
  8. Andreassen O, Andersen BN, Wasberg CE (1992) Gravity wave and convection interaction in the solar interior. A&A 257: 763–769ADSGoogle Scholar
  9. Antia HM, Basu S (2006) Determining solar abundances using helioseismology. Astrophys J 644: 1292–1298ADSGoogle Scholar
  10. Antoniou A (1979) Digital filters: analysis and design. McGraw-Hill, New YorkGoogle Scholar
  11. Appourchaux T (1998) The structure of the solar core: an observer’s point of view. In: Korzennik S, Wilson A (eds) Structure and dynamics of the interior of the Sun and sun-like stars, ESA SP-418. ESA Publications Division, Noordwijk, pp 37–46Google Scholar
  12. Appourchaux T (2004) On detecting short-lived p modes in a stellar oscillation spectrum. A&A 428: 1039–1042ADSGoogle Scholar
  13. Appourchaux T, Andersen BN (1990) Observations of low-degree solar oscillations with few detector elements. Sol Phys 128: 91–110ADSGoogle Scholar
  14. Appourchaux T, Toutain T (1998) Detection of solar p modes in the guiding signals of the Luminosity Oscillations Imager. In: Provost J, Schmider FX (eds) Sounding solar and stellar interiors, IAU 181, Poster volume. Kluwer Academic Publishers, Dordrecht, pp 5–8Google Scholar
  15. Appourchaux T, Toutain T, Telljohann U, Jiménez A, Rabello-Soares MC, Andersen BN, Jones AR (1995) Frequencies and splittings of low-degree solar p modes: results of the Luminosity Oscillations Imager. A&A 294: L13–L16ADSGoogle Scholar
  16. Appourchaux T, Andersen BN, Fröhlich C, Jiménez A, Telljohann U, Wehrli C (1997) In-flight performance of the VIRGO Luminosity Oscillations Imager aboard SOHO. Sol Phys 170: 27–41ADSGoogle Scholar
  17. Appourchaux T, Gizon L, Rabello-Soares MC (1998) The art of fitting p-mode spectra. I. Maximum likelihood estimation. A&A 132: 107–119ADSGoogle Scholar
  18. Appourchaux T, Fröhlich C, Andersen BN, Berthomieu G, Chaplin W, Elsworth Y, Finsterle W, Gough D, Hoeksema JT, Isaak G, Kosovichev A, Provost J, Scherrer P, Sekii T, Toutain T (2000) Observational upper limits for low-degree solar g modes. Astrophys J 538: 401–414ADSGoogle Scholar
  19. Appourchaux T, Andersen BN, Sekii T (2002) What have we learnt with the Luminosity Oscillations Imager over the past 6 years?. In: Fröhlich C, Wilson A (eds) From solar min to max: half a solar cycle with SOHO, ESA SP-508. ESA Publications Division, Noordwijk, pp 47–50Google Scholar
  20. Appourchaux T, Leibacher J, Boumier P (2007) On cross-spectrum capabilities for detecting stellar oscillation modes. A&A 463: 1211–1214ADSGoogle Scholar
  21. Appourchaux T, Liewer P, Watt M, Alexander D, Andretta V, Auchère F, D’Arrigo P, Ayon J, Corbard T, Fineschi S, Finsterle W, Floyd L, Garbe G, Gizon L, Hassler D, Harra L, Kosovichev A, Leibacher J, Leipold M, Murphy N, Maksimovic M, Martinez-Pillet V, Matthews BSA, Mewaldt R, Moses D, Newmark J, Régnier S, Schmutz W, Socker D, Spadaro D, Stuttard M, Trosseille C, Ulrich R, Velli M, Vourlidas A, Wimmer-Schweingruber CR, Zurbuchen T (2009) POLAR investigation of the Sun—POLARIS. Exp Astron 23: 1079–1117ADSGoogle Scholar
  22. Asplund M, Grevesse N, Sauval A (2005) The solar chemical composition. In: Barnes TB III, Bash F (eds) Cosmic abundances as records of stellar evolution and nucleosynthesis, vol 336. astronomical society of the Pacific, pp 25–38Google Scholar
  23. Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the Sun. Annu Rev Astron Astrophys 47(1): 481–522Google Scholar
  24. Auré JL (1971) Overstable damping in a stellar semi-convective zone. A&A 11: 345–350ADSGoogle Scholar
  25. Bahcall JN, Serenelli AM, Pinsonneault M (2004) How accurately can we calculate the depth of the solar convective zone?. Astrophys J 614: 464–471ADSGoogle Scholar
  26. Bahcall JN, Basu S, Serenelli AM (2005) What is the neon abundance of the Sun?. Astrophys J 631: 1281–1285ADSGoogle Scholar
  27. Baker NH, Gough DO (1979) Pulsations of model RR Lyrae stars. Astrophys J 234: 232–244ADSGoogle Scholar
  28. Ballot J, García RA, Lambert P (2006) Rotation speed and stellar axis inclination from p modes: how CoRoT would see other Suns. MNRAS 369: 1281–1286ADSGoogle Scholar
  29. Ballot J, Appourchaux T, Toutain T, Guittet M (2008) On deriving p-mode parameters for inclined solar-like stars. A&A 486: 867–875ADSGoogle Scholar
  30. Balmforth NJ (1992a) Solar pulsational stability—part three—acoustical excitation by turbulent convection. MNRAS 255: 639–649ADSGoogle Scholar
  31. Balmforth NJ (1992b) Solar pulsational stability. I—Pulsation-mode thermodynamics. MNRAS 255: 603–649ADSGoogle Scholar
  32. Basu S, Antia HM (2004) Constraining solar abundances using helioseismology. Astrophys J 606: L85–L88ADSGoogle Scholar
  33. Basu S, Antia H (2008) Helioseismology and solar abundances. Phys Rep 457: 217–283ADSGoogle Scholar
  34. Batchelor G (1953) Homogeneous turbulence. Cambridge University Press, CambridgeMATHGoogle Scholar
  35. Baturin VA, Däppen W, Gough DO, Vorontsov SV (2000) Seismology of the solar envelope: sound-speed gradient in the convection zone and its diagnosis of the equation of state. MNRAS 316: 71–83ADSGoogle Scholar
  36. Baudin F, Samadi R, Goupil MJ, Appourchaux T, Barban C, Boumier P, Chaplin WJ, Gouttebroze P (2005) Inferred acoustic rates of solar p modes from several helioseismic instruments. A&A 433: 349–356ADSGoogle Scholar
  37. Belkacem K, Samadi R, Goupil MJ, Kupka F (2006a) A closure model with plumes. I. The solar convection. A&A 460: 173–182ADSGoogle Scholar
  38. Belkacem K, Samadi R, Goupil MJ, Kupka F, Baudin F (2006b) A closure model with plumes. II. Application to the stochastic excitation of solar p modes. A&A 460: 183–190ADSGoogle Scholar
  39. Belkacem K, Samadi R, Goupil MJ, Dupret MA (2008) Stochastic excitation of non-radial modes. I. High-angular-degree p modes. A&A 478: 163–174MATHADSGoogle Scholar
  40. Belkacem K, Samadi R, Goupil MJ, Dupret MA, Brun AS, Baudin F (2009) Stochastic excitation of nonradial modes. II. Are solar asymptotic gravity modes detectable? A&A 494:191–204, 0810.0602Google Scholar
  41. Berger J, Sellke T (1987) Testing of a point null hypothesis: the irreconcilability of significance levels and evidence. J Am Stat Assoc 82(397): 112–139MATHMathSciNetGoogle Scholar
  42. Berger J, Boukai B, Wang Y (1997) Unified frequentist and Bayesian testing of a precise hypothesis. Stat Sci 12(3): 133–160MATHMathSciNetGoogle Scholar
  43. Bertello L, Henney CJ, Ulrich RK, Varadi F, Kosovichev AG, Scherrer PH, Cortés TR, Thiery S, Boumier P, Gabriel AH, Turck-Chièze S (2000a) Comparison of frequencies and rotational splittings of solar acoustic modes of low angular degree from simultaneous MDI and GOLF observations. Astrophys J 535: 1066–1077ADSGoogle Scholar
  44. Bertello L, Varadi F, Ulrich RK, Henney CJ, Kosovichev AG, García RA, Turck-Chièze S (2000b) Identification of solar acoustic modes of low angular degree and low radial order. Astrophys Jl 537: L143–L146ADSGoogle Scholar
  45. Berthomieu G, Provost J (1990) Light and velocity visibility of solar g-mode oscillations. A&A 227: 563–576ADSGoogle Scholar
  46. Berthomieu G, Provost J (1991) The asymptotic spectrum of gravity modes as a function of the solar structure—standard solar model. Sol Phys 133: 127–138ADSGoogle Scholar
  47. Berthomieu G, Gonczi G, Graff P, Provost J, Rocca A (1978) Low frequency gravity modes of a rotating star. A&A 70: 597–606ADSGoogle Scholar
  48. Böhm-Vitense E (1958) Über die wasserstoffkonvektionszone in sternen verschiedener effektivtemperaturen und leuchtkräfte. Zeitsch Astrophysik 46: 108–143ADSGoogle Scholar
  49. Bonnet RM, Crommelynck D, Delaboudinière JP, Delache P, Fossat E, Fröhlich C, Gough DO, Grec G, Simon P, Thuillier G (1981) Disco assessment study, ESA SCI(81)3. Technical report, European Space Agency, ParisGoogle Scholar
  50. Boury A, Gabriel M, Noels A, Scuflaire R, Ledoux P (1975) Vibrational instability of a 1 solar mass star towards non-radial oscillations. A&A 41: 279–285ADSGoogle Scholar
  51. Bracewell RN (2000) The Fourier transform and its applications. McGraw Hill, Boston (McGraw-Hill series in electrical and computer engineering. Circuits and systems)Google Scholar
  52. Broomhall AM, Chaplin WJ, Elsworth Y, Appourchaux T (2007) Needles in haystacks: how to use contemporaneous data in the search for low-frequency modes of oscillation of the Sun. MNRAS 379: 2–10ADSGoogle Scholar
  53. Brown TM (1979) Observed brightness oscillations at the solar limb. Astrophys J 230: 255–260ADSGoogle Scholar
  54. Brown TM (1985) Solar rotation as a function of depth and latitude. Nature 317: 591–594ADSGoogle Scholar
  55. Brown TM, Stebbins RT, Hill HA (1978) Long-period oscillations of the apparent solar diameter— observations. Astrophys J 223: 324–338ADSGoogle Scholar
  56. Brun AS, Turck-Chièze S, Morel P (1998) Standard solar models in the light of new helioseismic constraints. i. The solar core. Astrophys J 506: 913–925ADSGoogle Scholar
  57. Brun AS, Turck-Chièze S, Zahn JP (1999) Standard solar models in the light of new helioseismic constraints. ii. Mixing below the convective zone. Astrophys J 525: 1032–1041ADSGoogle Scholar
  58. Burgers JM (1969) Flow equations for composite gases. Academic Press, New YorkMATHGoogle Scholar
  59. Burston R, Gizon L, Appourchaux T, Ni WT, TheASTROD I Team (2008) Detecting solar g modes with ASTROD. J Phys Conf Seri 118(1): 012043ADSGoogle Scholar
  60. Caffau E, Ludwig HG, Steffen M, Ayres TR, Bonifacio P, Cayrel R, Freytag B, Plez B (2008) The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmospheric models. A&A 488: 1031–1046ADSGoogle Scholar
  61. Caffau E, Maiorca E, Bonifacio P, Faraggiana R, Steffen M, Ludwig HG, Kamp I, Busso M (2009) The solar photospheric nitrogen abundance. Analysis of atomic transitions with 3D and 1D model atmospheres. A&A 498: 877–884ADSGoogle Scholar
  62. Canuto VM, Mazzitelli I (1991) Stellar turbulent convection—a new model and applications. Astrophys J 370: 295–311ADSGoogle Scholar
  63. Castro M, Vauclair S, Richard O (2007) Low abundances of heavy elements in the solar outer layers: comparisons of solar models with helioseismic inversions. A&A 463: 755ADSGoogle Scholar
  64. Caughlan GR, Fowler WA (1988) Thermonuclear reaction rates v. Atom Data Nucl Data Tables 40: 283ADSGoogle Scholar
  65. Chaplin WJ, Elsworth Y, Howe R, Isaak GR, McLeod CP, Miller BA, van der Raay HB, Wheeler SJ, New R (1996) BiSON Perform. Sol Phys 168: 1–18ADSGoogle Scholar
  66. Chaplin WJ, Elsworth Y, Isaak GR, Marchenkov KI, Miller BA, New R, Pinter B, Appourchaux T (2002) Peak finding at low signal-to-noise ratio: low-l solar acoustic eigenmodes at n ≤ 9 from the analysis of BiSON data. MNRAS 336: 979–991ADSGoogle Scholar
  67. Chaplin WJ, Houdek G, Elsworth Y, Gough DO, Isaak GR, New R (2005) On model predictions of the power spectral density of radial solar p modes. MNRAS 360: 859–868ADSGoogle Scholar
  68. Christensen-Dalsgaard J (1980) On adiabatic non-radial oscillations with moderate or large l. A&A 190: 765–791ADSGoogle Scholar
  69. Christensen-Dalsgaard J (1984) Optimized response functions for 2-dimensional observations of solar oscillations. In: Ulrich RK, Harvey J, Rhodes EJ Jr, Toomre J (eds) Solar seismology from space. JPL publication 84-84, pp 219–253Google Scholar
  70. Christensen-Dalsgaard J (1990) Helioseismic investigation of solar internal structure. In: Cribier GBM (eds) IAU Colloq. 121: inside the Sun, Astrophysics and space science library, vol 159. Kluwer Academic publisher, Dordrecht, pp 305–326Google Scholar
  71. Christensen-Dalsgaard J (2002a) Helioseismology. Rev Modern Phys 74: 1073–1129ADSGoogle Scholar
  72. Christensen-Dalsgaard J (2002b) Solar g-mode oscillations: experimental detection efforts and theoretical estimates. Int J Modern PhysD 11: 995–1009ADSGoogle Scholar
  73. Christensen-Dalsgaard J, Berthomieu G (1991) Theory of solar oscillations. In: Solar interior and atmosphere. University of Arizona Press, Tucson, pp 401–478Google Scholar
  74. Christensen-Dalsgaard J, Frandsen S (1983) Stellar 5 min oscillations. Sol Phys 82: 469–486ADSGoogle Scholar
  75. Christensen-Dalsgaard J, Gough DO (1975) Nonadiabatic nonradial oscillations of a solar model. Mémoires Soc Roy Sci Liège 8: 309–316Google Scholar
  76. Christensen-Dalsgaard J, Gough DO (1980) Perturbations in gravitational potential associated with solar oscillations. In: Hill HA, Dziembowski WA (eds) Nonradial and nonlinear. stellar pulsation Lecture Notes in Physics, vol 125. Springer, Berlin, pp 369–380Google Scholar
  77. Christensen-Dalsgaard J, Gough DO (1982) On the interpretation of five-minute oscillations in solar spectrum line shifts’. MNRAS 198: 141–171ADSGoogle Scholar
  78. Christensen-Dalsgaard J, Dilke FWW, Gough DO (1974) The stability of a solar model to non-radial oscillations. MNRAS 169: 429–445ADSGoogle Scholar
  79. Christensen-Dalsgaard J, Proffitt CR, Thompson MJ (1993) Effects of diffusion on solar models and their oscillation frequencies. Astrophys J 403: L75–L78ADSGoogle Scholar
  80. Christensen-Dalsgaard J, Däppen W, Ajukov S, Anderson E, Antia H, Basu S, Baturin V, Berthomieu G, Chaboyer B, Chitre S, Cox A, Demarque P, Donatowicz J, Dziembowski WA, Gabriel M, Gough D, Guenther D, Guzik J, Harvey J, Hill F, Houdek G, Iglesias C, Kosovichev A, Leibacher J, Morel P, Proffitt C, Provost J, Reiter J, Rhodes, E Jr, Rogers F, Roxburgh I, Thompson M, Ulrich R (1996) The current state of solar modeling. Science 272: 1286–1292ADSGoogle Scholar
  81. Claverie A, Isaak G, McLeod C, van der Raay H, Roca Cortés T (1979) Solar structure from global studies of the 5-minute oscillation. Nature 282: 591–594ADSGoogle Scholar
  82. Claverie A, Isaak GR, McLeod CP, van der Raay HB, Roca Cortes T (1981) Structure of the 5-minute solar oscillations—1976–1980. Sol Phys 74: 51–57ADSGoogle Scholar
  83. Corbard T, Berthomieu G, Morel P, Provost J, Schou J, Tomczyk S (1997) Solar internal rotation from LOWL data A. 2D regularized least-squares inversion using B-splines. A&A 324: 298–310ADSGoogle Scholar
  84. Corbard T, Blanc-Féraud L, Berthomieu G, Provost J (1999) Non linear regularization for helioseismic inversions. application for the study of the solar tachocline. A&A 344: 696–708ADSGoogle Scholar
  85. Corbard T, Boumier P, Appourchaux T, Jiménez-Reyes SJ, Gelly B, the PICARD team (2008) Helioseismology program for the PICARD satellite. Astronom Nachr 329:508–516Google Scholar
  86. Couvidat S (2002) Rôle de l’héliosismologie dans la dynamique interne du Soleil et dans le problème des neutrinos solaires, PhD thesis. Université Paris VII, ParisGoogle Scholar
  87. Couvidat S, Turck-Chièze S, Kosovichev A (2003) Solar seismic models and the neutrino predictions. Astrophys J 599: 1434–1448ADSGoogle Scholar
  88. Cowling TG, Newing RA (1949) The oscillations of a rotating star. Astrophys J 109: 149–158MathSciNetADSGoogle Scholar
  89. Cox AN, Guzik JA (2004) Theoretical prediction of an observed solar g-mode. Astrophys J 613: L169–L171ADSGoogle Scholar
  90. Cox JP, Cox AN, Olsen KH, King DS, Eilers DD (1966) Self-Excited radial oscillations in thin stellar envelopes. I. Astrophys J 144: 1038–1068ADSGoogle Scholar
  91. Cox AN, Guzik JA, Kidman RB (1989) Oscillations of solar models with internal element diffusion. Astrophys J 342: 1187–1206ADSGoogle Scholar
  92. Damé L, Hersé M, Thuillier G, Appourchaux T, Crommelynck D, Dewitte S, Joukoff A, Fröhlich C, Laclare F, Delmas C, Boumier P (1999) PICARD: simultaneous measurements of the solar diameter, differential rotation, solar constant and their variations. Adv Space Res 24: 205–214ADSGoogle Scholar
  93. Davenport JWB, Root WL (1958) An introduction to the theory of random signals and noise. International Student Edition. McGraw-Hill Book company, Inc., New YorkGoogle Scholar
  94. De Finetti B (1937) La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré 7, 1:1Google Scholar
  95. Delache P, Scherrer PH (1983) Detection of solar gravity mode oscillations. Nature 306: 651–653ADSGoogle Scholar
  96. Denison DGT, Walden AT (1999) The search for solar gravity-mode oscillations: an analysis using ulysses magnetic field data. Astrophys J 514: 972–978ADSGoogle Scholar
  97. Deubner FL (1975) Observations of low wavenumber nonradial eigenmodes of the Sun. A&A 44: 371–375ADSGoogle Scholar
  98. Deubner FL, Gough D (1984) Helioseismology: oscillations as a diagnostic of the solar interior. Ann Rev Astron Astrophys 22: 593–619ADSGoogle Scholar
  99. Dikpati M, Corbard T, Thompson MJ, Gilman PA (2002) Flux transport solar dynamos with near-surface radial shear. Astrophys J 575: L41–L45ADSGoogle Scholar
  100. Dilke FWW, Gough DO (1972) The solar spoon. Nature 240: 262–264ADSGoogle Scholar
  101. Dintrans B, Rieutord M (2000) Oscillations of a rotating star: a non-perturbative theory. A&A 354: 86–98ADSGoogle Scholar
  102. Dintrans B, Brandenburg A, Nordlund Å, Stein RF (2005) Spectrum and amplitudes of internal gravity waves excited by penetrative convection in solar-type stars. A&A 438: 365–376ADSGoogle Scholar
  103. Domingo V, Fleck B, Poland AI (1995) The SOHO Mission: an Overview. Sol Phys 162: 1–2ADSGoogle Scholar
  104. Duez V, Mathis S, Turch-Chièze S (2009) MNRAS, in pressGoogle Scholar
  105. Dupret MA, Barban C, Goupil MJ, Samadi R, Grigahcène A, Gabriel M (2006a) Theoretical damping rates and phase-lags for solar-like oscillations. In: Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the spherical Sun, ESA SP-624, ESA Publicaton Division, Noordwijk, pp 97–100Google Scholar
  106. Dupret MA, Goupil MJ, Samadi R, Grigahcène A, Gabriel M (2006b) A non-local MLT treatment fitting 3D simulations. In: Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the spherical Sun. ESA SP-624, ESA Publication Division, Noordwijk, pp 78–83Google Scholar
  107. Dupret MA, Samadi R, Grigahcene A, Goupil MJ, Gabriel M (2006c) Non-local time-dependent treatments of convection in A-G type stars. Commun Asteroseismol 147: 85–88ADSGoogle Scholar
  108. Duvall TL Jr (2004) a new method to search for solar gravity mode oscillations. In: Danesy D (eds) SOHO 14 Helio- and Asteroseismology: towards a golden future. ESA SP-559, ESA Publication Division, Noordwijk, pp 412–415Google Scholar
  109. Duvall TL Jr, Jefferies SM, Harvey JW, Pomerantz MA (1993) Time-distance helioseismology. Nature 362: 430–432ADSGoogle Scholar
  110. Dyson J, Schutz BF (1979) Perturbations and stability of rotating stars. I—completeness of normal modes. Roy Soc Lond Proc A 368: 389–410MathSciNetADSGoogle Scholar
  111. Dziembowski W (1982) Nonlinear mode coupling in oscillating stars. I—second order theory of the coherent mode coupling. Acta Astronomica 32: 147–171ADSGoogle Scholar
  112. Dziembowski W (1983) Resonant coupling between solar gravity modes. Sol Phys 82: 259–266ADSGoogle Scholar
  113. Dziembowski W, Kosovichev A (1987) Low frequency oscillations in slowly rotating stars—part one—general properties. Acta Astronomica 37: 313–330ADSGoogle Scholar
  114. Dziembowski WA (1977) Light and radial velocity variations in a nonradially oscillating star. Acta Astronomica 27: 203–211ADSGoogle Scholar
  115. Dziembowski WA, Pamiatnykh Å (1993) The opacity mechanism in B-type stars. I—unstable modes in Beta Cephei star models. MNRAS 262: 204–212ADSGoogle Scholar
  116. Dziembowski WA, Sienkiewicz R (1973) Vibrational stability of 1 m_solar star in the phase of central hydrogen burning. Acta Astronomica 23: 273–281ADSGoogle Scholar
  117. Dziembowski WA, Paterno L, Ventura R (1985) Excitation of solar oscillation gravity modes by magnetic torque. A&A 151: 47–51ADSGoogle Scholar
  118. Eckart C (1960) Hydrodynamics of oceans and atmospheres. Pergamon Press, Oxford, New YorkMATHGoogle Scholar
  119. Eisenfeld J (1969) A completeness theorem for an integro-differential operator. J Math Anal Appl 26: 357–375MATHMathSciNetGoogle Scholar
  120. Elliott JR, Gough DO (1999) Calibration of the thickness of the solar tachocline. Astrophys J 516: 475–481ADSGoogle Scholar
  121. Ellis AN (1986) An improved asymptotic formula for solar gravity-mode periods. In: Seismology of the Sun and the distant stars. Springer Verlag, New York, pp 173–175Google Scholar
  122. Elsworth YP, Baudin F, Chaplin W, Andersen BN, Appourchaux T, Boumier P, Broomhall AM, Corbard T, Finsterle W, Fröhlich C, Gabriel A, García RA, Gough DO, Grec G, Jiménez A, Kosovichev A, Provost J, Sekii T, Toutain T, Turck-Chièze S (2006) The internal structure of the Sun inferred from g modes and low-frequency p modes. In: Proceedings of SOHO 18/GONG 2006/HELAS I, beyond the spherical Sun. ESA SP-624, ESA Publication Division, Noordwijk, pp 22–26Google Scholar
  123. Finsterle W, Fröhlich C (2001) Low-Order p modes from virgo irradiance data. Sol Phys 200: 393–406ADSGoogle Scholar
  124. Fodor IK, Stark PB (1998) Multitaper spectrum estimates. In: Korzennik S (ed) Structure and dynamics of the interior of the Sun and Sun-like stars. ESA SP-418, ESA Publication Division, Noordwijk, pp 171–176Google Scholar
  125. Fossat E, Grec G, Pomerantz M (1981) Solar pulsations observed from the geographic South Pole—initial results. Sol Phys 74: 59–63ADSGoogle Scholar
  126. Frandsen S, Carrier F, Aerts C, Stello D, Maas T, Burnet M, Bruntt H, Teixeira TC, de Medeiros JR, Bouchy F, Kjeldsen H, Pijpers F, Christensen-Dalsgaard J (2002) Detection of Solar-like oscillations in the G7 giant star xi Hya. A&A 394: L5–L8ADSGoogle Scholar
  127. Fröhlich C (1984) Wavelength dependence of solar luminosity fluctuations in the five minutes range. MemSAIt 55: 237–243ADSGoogle Scholar
  128. Fröhlich C, Andersen BN (1995) Low frequency helioseismology. In: Hoeksema JT, Domingo BV, Battrick B (eds) Helioseismology, ESA SP-376, vol 1, ESA Publications Division, Noordwijk, pp 137–144Google Scholar
  129. Fröhlich C, Delache P (1984a) Solar gravity modes from ACRIM-SWM irradiance data. In: Ulrich RK, Harvey J, Rhodes EJ Jr, Toomre J (eds) Solar Seismology from Space, JPL 84-84, pp 183–193Google Scholar
  130. Fröhlich C, Delache P (1984b) Solar gravity modes from acrim/smm irradiance data. Memorie della Società Astronomica Italiana 55: 99–105ADSGoogle Scholar
  131. Fröhlich C, Romero J, Roth H, Wehrli C, Andersen BN, Appourchaux T, Domingo V, Telljohann U, Berthomieu G, Delache P, Provost J, Toutain T, Crommelynck DA, Chevalier A, Fichot A, Däppen W, Gough D, Hoeksema T, Jiménez A, Gómez MF, Herreros JM, Cortés TR, Jones AR, Pap JM, Willson RC (1995) VIRGO: experiment for Helioseismology and solar irradiance monitoring. Sol Phys 162: 101–128ADSGoogle Scholar
  132. Fröhlich C, Andersen BN, Appourchaux T, Berthomieu G, Crommelynck DA, Domingo V, Fichot A, Finsterle W, Gomez MF, Gough D, Jiménez A, Leifsen T, Lombaerts M, Pap JM, Provost J, Cortés TR, Romero J, Roth H, Sekii T, Telljohann U, Toutain T, Wehrli C (1997) First results from VIRGO, the experiment for helioseismology and solar irradiance monitoring on SOHO. Sol Phys 170: 1–25ADSGoogle Scholar
  133. Gabriel AH (2006) g-Mode search and the solar cycle. In: Proceedings of SOHO 18/GONG 2006/HELAS I, beyond the spherical Sun. ESA SP-624, ESA Publication Division, Noordwijk, pp 126–128Google Scholar
  134. Gabriel AH, Grec G, Charra J, Robillot JM, Roca Cortés T, Turck-Chièze S, Bocchia R, Boumier P, Cantin M, Cespédes E, Cougrand B, Crétolle J, Damé L, Decaudin M, Delache P, Denis N, Duc R, Dzitko H, Fossat E, Fourmond JJ, García RA, Gough DO, Grivel C, Herreros JM, Lagardère H, Moalic JP, Pallé PL, Pétrou N, Sanchez M, Ulrich R, van der Raay HB (1995) Global Oscillations at Low Frequency from the SOHO mission (GOLF). Sol Phys 162: 61–99ADSGoogle Scholar
  135. Gabriel AH, Turck-Chièze S, García R, Pallé P, Boumier P, Thiery S, Grec G, ulrich R, Bertello L, Roca Cortés T, Robillot JM (1998) Search for g-mode frequencies in the golf oscillations spectrum’. In: Korzennik S, Wilson A (eds) Structure and dynamics of the interior of the Sun and Sun-like stars, ESA SP-418, ESA Publications Division, Noordwijk, The Netherlands, pp 61–66Google Scholar
  136. Gabriel AH, Turck-Chièze S, García RA, Pallé PL, Boumier P, Thiery S, Baudin F, Grec G, Ulrich RK, Bertello L, Roca Cortés T, Robillot JM (1999) Results from the GOLF instrument on SOHO. Adv Space Res 24: 147–155ADSGoogle Scholar
  137. Gabriel AH, Baudin F, Boumier P, García RA, Turck-Chièze S, Appourchaux T, Bertello L, Berthomieu G, Charra J, Gough DO, Pallé PL, Provost J, Renaud C, Robillot JM, Roca Cortés T, Thiery S, Ulrich RK (2002) A search for solar g modes in the GOLF data. A&A 390: 1119–1131ADSGoogle Scholar
  138. Gabriel M (1994) The probability-density function of a Fourier line. A&A 287: 685–691ADSGoogle Scholar
  139. Gabriel M (1996) Solar oscillations: theory. Bull Astron Soc India 24: 233–243ADSGoogle Scholar
  140. Gabriel M (1997) Influence of heavy element and rotationally induced diffusions on the solar models. A&A 327: 771–778ADSGoogle Scholar
  141. Gabriel M, Scuflaire R, Noels A, Boury A (1975) Influence of convection on the vibrational stability of stars towards non-radial oscillations. A&A 40: 33–39ADSGoogle Scholar
  142. Garaud P (2002) Dynamics of the solar tachocline—I. An incompressible study. MNRAS 329: 1–17ADSGoogle Scholar
  143. García RA, Jefferies SM, Toner CG, Pallé PL (1999) Improving the signal-to-noise ratio in solar oscillation spectra. A&A 346: L61–L64ADSGoogle Scholar
  144. García RA, Bertello L, Turck-Chièze S, Couvidat S, Gabriel AH, Henney CJ, Régulo C, Robillot JM, Roca Cortés T, Ulrich RK, Varadi F (2001a) Analysis of low frequency signal with the GOLF experiment: methodology and results. In: Pallé PL, Wilson A (eds) Structure and dynamics of the interior of the Sun and Sun-like stars, ESA SP-464, ESA Publications Division, Noordwijk, The Netherlands, pp 473–478Google Scholar
  145. García RA, Régulo C, Turck-Chièze S, Bertello L, Kosovichev AG, Brun AS, Couvidat S, Henney CJ, Lazrek M, Ulrich RK, Varadi F (2001b) Low-degree low-order solar p modes as seen by GOLF on board SOHO. Sol Phys 200: 361–379ADSGoogle Scholar
  146. García RA, Corbard T, Chaplin WJ, Couvidat S, Eff-Darwich A, Jiménez-Reyes SJ, Korzennik SG, Ballot J, Boumier P, Fossat E, Henney CJ, Howe R, Lazrek M, Lochard J, Pallé PL, Turck-Chièze S (2004) About the rotation of the solar radiative interior. Sol Phys 220: 269–285ADSGoogle Scholar
  147. García RA, Turck-Chièze S, Jiménez-Reyes SJ, Ballot J, Pallé PL, Eff-Darwich A, Mathur S, Provost J (2007) Tracking solar gravity modes: the dynamics of the solar core. Science 316: 1591–1593ADSGoogle Scholar
  148. García RA, Jiménez A, Mathur S, Ballot J, Eff-Darwich A, Jiménez-Reyes SJ, Pallé PL, Provost J, Turck-Chièze S (2008a) Update on g-mode research. Astronomische Nachrichten 329: 476–484ADSGoogle Scholar
  149. García RA, Mathur S, Ballot J, Eff-Darwich A, Jiménez-Reyes SJ, Korzennik SG (2008b) Influence of low-degree high-order p-mode splittings on the solar rotation profile. Sol Phys 251:119–133, 0802.1510Google Scholar
  150. Gautschy A, Saio H (1995) Stellar pulsations across the HR diagram: part 1. Ann Rev Astron Astrophys 33: 75–114ADSGoogle Scholar
  151. Gautschy A, Saio H (1996) Stellar pulsations across the HR diagram: part 2. Ann Rev Astron Astrophys 34: 551–606ADSGoogle Scholar
  152. Georgobiani D, Stein RF, Nordlund Å (2006) Spatial and temporal spectra of solar convection. In: Leibacher J, Stein RF, Uitenbroek H (eds) Solar MHD theory and observations: a high spatial resolution perspective. Astronomical society of the Pacific conference series, vol 354. Astronomical Society of the Pacific, San Francisco, pp 109–114Google Scholar
  153. Giamperi G, Polnarev A, Roxburgh I, Vorontsov S (2000) The effect of solar oscillations on space gravitational wave experiments. Astrophys Space Sci 261: 35–36ADSGoogle Scholar
  154. Gizon L (2006) Helioseismology with solar orbiter: science objectives, observational strategies and requirements. In: Proceedings of the second solar orbiter workshop, Athens, Greece. ESA SP-641, ESA Publication Division, NoordwijkGoogle Scholar
  155. Gizon L, Solanki SK (2003) Determining the inclination of the rotation axis of a Sun-like star. Astrophys J 589: 1009–1019ADSGoogle Scholar
  156. Gizon L, Appourchaux T, Gough DO (1998) LOI/SOHO constraints on oblique rotation of the solar core. In: Deubner FL, Christensen-Dalsgaard J, Kurtz D (eds) New eyes to see inside the Sun and stars, IAU Symposium, vol 185, pp 37–40Google Scholar
  157. Goldreich P, Keeley DA (1977a) Solar seismology I. The stability of the solar p modes. Astrophys J 211: 934–942ADSGoogle Scholar
  158. Goldreich P, Keeley DA (1977b) Solar seismology. II—the stochastic excitation of the solar p modes by turbulent convection. Astrophys J 212: 243–251ADSGoogle Scholar
  159. Goldreich P, Kumar P (1990) Wave generation by turbulent convection. Astrophys J 363: 694–704ADSGoogle Scholar
  160. Goldreich P, Kumar P (1991) Thermal and mechanical damping of solar p modes. Astrophys J 374: 366–368ADSGoogle Scholar
  161. Goldreich P, Nicholson PD (1977) Turbulent viscosity and Jupiter’s tidal Q. Icarus 30: 301–304ADSGoogle Scholar
  162. Goldreich P, Murray N, Kumar P (1994) Excitation of solar p modes. Astrophys J 424: 466–479ADSGoogle Scholar
  163. Goode PR, Thompson MJ (1992) The effect of an inclined magnetic field on solar oscillation frequencies. Astrophys J 395: 307–315ADSGoogle Scholar
  164. Gott JRI (1994) Future prospects discussed. Nature 368: 106–108ADSGoogle Scholar
  165. Gough DO (1965) The pulsational stability of a convective atmosphere. In: Geophysical fluid dynamics, vol II, Woods Hole Oceanographic Institution, Woods Hole, pp 49–84Google Scholar
  166. Gough DO (1969) The anelastic approximation for thermal convection. J Atmos Sci 26: 448–456ADSGoogle Scholar
  167. Gough DO (1977a) Mixing-length theory for pulsating stars. Astrophys J 214: 196–213ADSGoogle Scholar
  168. Gough DO (1977) The current state of stellar mixing-length theory. In: Spiegel EA, Zahn JP (eds) Problems of stellar convection. Lecture Notes in Physics, vol 71. Springer Verlag, Berlin, pp 15–56Google Scholar
  169. Gough DO (1980) Some theoretical remarks on solar oscillations. In: Hill HA, Dziembowski WA (eds) Nonradial and nonlinear stellar pulsation. Lecture Notes in Physics, vol 125. Springer Verlag, Berlin, pp 273–299Google Scholar
  170. Gough DO (1985) Theory of solar oscillations. In: future missions in solar, heliospheric and space plasma physics, ESA SP-235, ESA Publication Division, Noordwijk, pp 183–197Google Scholar
  171. Gough DO (1993) Linear adiabatic stellar pulsation. In: Astrophysical fluid dynamics—Les Houches 1987, pp 399–560Google Scholar
  172. Gough DO (1996) Testing solar models: the inverse problem. In: Roca Cortés T, Sánchez F (eds) The structure of the Sun. Cambridge University Press, pp 141–228Google Scholar
  173. Gough DO (2002) How is solar activity influencing the structure of the Sun? In: Wilson A (ed) Proceedings of the SOHO 11 symposium, from solar minimum to solar maximum: half a solar cycle with SOHO, vol 611, ESA Special Publications, Noordwijk, pp 577–592Google Scholar
  174. Gough DO (2004) The power of helioseismology to address issues of fundamental physics. In: Čelebonović V, Gough D, Däppen W (eds) Equation-of-state and phase-transition in models of ordinary astrophysical matter. American Institute of Physics Conference Series, vol 731, pp 119–138Google Scholar
  175. Gough DO (2007) An elementary introduction to the JWKB approximation. Astronomische Nachrichten 328: 273–285MATHADSGoogle Scholar
  176. Gough DO (2009) Angular-momentum coupling through the tachocline. In: Hasan SS, Rutten R (eds) Magnetic coupling between the interior and the atmosphere of the Sun, Astr. Sp. Sci. Proc., Heidelberg, pp 67–85 (in press)Google Scholar
  177. Gough DO, Kosovichev AG (1993) It is possible to determine whether a star is rotating about a unique axis? In: Weiss WW, Baglin A (eds) IAU Colloq. 137: Inside the Stars. Astronomical Society of the Pacific conference series, vol 40, pp 566–568Google Scholar
  178. Gough DO, Latour J (1984) On the identification of normal modes of oscillation from observations of the solar periphery. Astron Exp 1: 9–24ADSGoogle Scholar
  179. Gough DO, Mcintyre ME (1998) Inevitability of a magnetic field in the Sun’s radiative interior. Nature 394: 755–757ADSGoogle Scholar
  180. Gough DO, Kosovichev AG, Toutain T (1995) Constraints on oblique rotation of the solar core from low-degree modes. In: Ulrich RK, Rhodes Jr EJ, Dappen W (eds) GONG 1994. Helio- and astero-seismology from the earth and space. Astronomical Society of the Pacific conference series, vol 76, pp 55–58Google Scholar
  181. Gough DO, Kosovichev AG, Toomre J, Anderson E, Antia HM, Basu S, Chaboyer B, Chitre SM, Christensen-Dalsgaard J, Dziembowski WA, Eff-Darwich A, Elliott JR, Giles PM, Goode PR, Guzik JA, Harvey JW, Hill F, Leibacher JW, Monteiro MJPFG, Richard O, Sekii T, Shibahashi H, Takata M, Thompson MJ, Vauclair S, Vorontsov SV (1996) The seismic structure of the Sun. Science 272: 1296–1300ADSGoogle Scholar
  182. Grec G (1981) Thèse de doctorat. PhD thesis, Université de NiceGoogle Scholar
  183. Grec G, Fossat E, Pomerantz M (1980) Solar oscillations—full disk observations from the geographic South Pole. Nature 288: 541–544ADSGoogle Scholar
  184. Grec G, Provost J, Renaud C (2009) GOLF: analysis of the low frequency spectrum and comparison with a calculated solar g-mode spectrum. In: Dikpati M, Arentoft T, Gonzalez-Hernandez I, Hill F (eds) On solar-stellar dynamos as revealed by helio- and asteroseismology, ASP Conference Series (in press)Google Scholar
  185. Green EM, Fontaine G, Reed MD, Callerame K, Seitenzahl IR, White BA, Hyde EA, Østensen R, Cordes O, Brassard P, Falter S, Jeffery EJ, Dreizler S, Schuh SL, Giovanni M, Edelmann H, Rigby J, Bronowska A (2003) Discovery of a new class of pulsating stars: gravity-mode pulsators among subdwarf B stars. Astrophys Jl 583: L31–L34ADSGoogle Scholar
  186. Grevesse N, Noels A (1993) Cosmic abundances of the elements. In: Prantzos N, Vangioni-Flam E, Cassé (eds) Origin and evolution of the elements. Cambridge University press, pp 15–25Google Scholar
  187. Grevesse N, Sauval A (1998) Standard solar composition. Space Sci Rev 85: 161–174ADSGoogle Scholar
  188. Grigahcène A, Dupret MA, Gabriel M, Garrido R, Scuflaire R (2005) Convection-pulsation coupling. I. A mixing-length perturbative theory. A&A 434: 1055–1062ADSGoogle Scholar
  189. Guenther DB, Demarque P (1984) Resonant three-wave interactions of solar g modes. Astrophys Jl 277: L17–L19ADSGoogle Scholar
  190. Guenther DB, Demarque P, Kim YC, Pinsonneault MH (1992) Standard solar model. Astrophys J 387: 372–393ADSGoogle Scholar
  191. Guzik JA (2006) Reconciling the revised solar abundances with helioseismic constraints. In: Fletcher K, Thompson M (eds) Beyond the spherical Sun. ESA SP-624, ESA Publication Division, Noordwijk, pp 17–27Google Scholar
  192. Guzik JA, Watson L, Cox A (2005) Can enhanced diffusion improve helioseismic agreement for solar models with revised abundances?. Astrophys J 627: 1049–1056ADSGoogle Scholar
  193. Harvey J (1985) High-resolution helioseismology. In: Rolfe E, Battrick B (eds) Future missions in solar, heliospheric and space plasma physics, ESA SP-235, ESA Publications Division, Noordwijk, pp 199–208Google Scholar
  194. Harvey JW, Hill F, Hubbard R, Kennedy JR, Leibacher JW, Pintar JA, Gilman PA, Noyes RW, Title AM, Toomre J, Ulrich RK, Bhatnagar A, Kennewell JA, Marquette W, Patrón J, Saá O, Yasukawa E (1996) The Global Oscillation Network Group (GONG) Project. Science 272: 1284–1286ADSGoogle Scholar
  195. Hill HA (1985) Detection and classication of resolved multiplet members of the solar 5 minute oscillations through solar diameter-type observations. Astrophys J 290: 765–781ADSGoogle Scholar
  196. Hill HA (1992) Tests of the detection and mode classifications of low-degree solar gravity modes with 1978 solar diameter observations. Astrophys Js 78: 283–300ADSGoogle Scholar
  197. Holweger H (2001) Photospheric abundances: problems, updates, implications. In: Wimmer-Schweingruber RF (ed) Joint SOHO/ACE workshop “solar and galactic composition”. American Institute of Physics Conference Series, vol 598, pp 23–30Google Scholar
  198. Hoogeveen GW, Riley P (1998) The search for solar gravity-mode oscillations in the solar wind using it Ulysses plasma data. Sol Phys 179: 167–177ADSGoogle Scholar
  199. Houdek G (2003) Excitation mechanisms in roAp stars. In: Balona LA, Henrichs HF, Medupe R (eds) Magnetic fields in O, B and A stars: origin and connection to pulsation, rotation and mass loss. Astronomical society of the Pacific conference series, vol 305, pp 45–54Google Scholar
  200. Houdek G (2006) Stochastic excitation and damping of solar-like oscillations. In: Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the spherical Sun. ESA SP-624, ESA Publication Division, Noordwijk, pp 28–39Google Scholar
  201. Houdek G, Gough DO (2002) Modelling pulsation amplitudes of ξ Hydrae. MNRAS 336: L65–L69ADSGoogle Scholar
  202. Houdek G, Balmforth NJ, Christensen-Dalsgaard J (1995) Amplitude ratios and phase shifts in the solar atmosphere. In: Hoeksama J, Domingo V, Fleck B, Battrick B (eds) Proceedings of the 4th SOHO workshop, helioseismology. ESA SP-376, ESA Publication Division, Noordwijk, pp 447–452Google Scholar
  203. Houdek G, Balmforth NJ, Christensen-Dalsgaard J, Gough DO (1999) Amplitudes of stochastically excited oscillations in main-sequence stars. A&A 351: 582–596ADSGoogle Scholar
  204. Hughes D, Rosner R, Weiss N (2005) Stellar MHD: magnetohydrodynamics of stellar interiors. Astron Geophys 46(4):4.39–4.37, 040,000-4Google Scholar
  205. Jeffreys H (1925) On certain approximate solutions of linear differential equations of the second order. Proc Lond Math Soc 23: 426–428Google Scholar
  206. Jiménez A, García RA (2009) On the solar origin of the 220.7 signal. Astrophys J 184: 288–297Google Scholar
  207. Jiménez A, Palle PL, Roca Cortes T, Domingo V, Korzennik S (1987) Ground-based measurements of solar intensity oscillations. A&A 172: 323–326ADSGoogle Scholar
  208. Jordinson C, Gough DO (2000) The effect of the solar cycle on the resonant coupling of g modes. In: Szabados L, Kurtz D (eds) IAU Colloq. 176: the impact of large-scale surveys on pulsating star research. astronomical society of the Pacific conference series, vol 203, pp 390–390Google Scholar
  209. Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluid for very large reynolds’ numbers. Akad Nauk SSSR Dokl 30: 301–305ADSGoogle Scholar
  210. Komm RW, Gu Y, Hill F, Stark PB, Fodor IK (1999) Multitaper spectral analysis and wavelet denoising applied to helioseismic data. Astrophys J 519: 407–421ADSGoogle Scholar
  211. Koopmans L (1974) The spectral analysis of time series. Academic Press, Inc., LondonMATHGoogle Scholar
  212. Kosovichev AG (1986a) A method for the mathematical treatment of solar oscillation data obtained with a photodiode array. Izv Ord Tr Krasn Znam Krym Astrofiz Obs 75: 22–33ADSGoogle Scholar
  213. Kosovichev AG (1986b) Processing photodiode array solar oscillation observations. Bull Crimean Astrophys Obs 75: 19–29ADSGoogle Scholar
  214. Kosovichev AG (1996) Helioseismic constraints on the gradient of angular velocity at the base of the solar convection zone. Astrophys Jl 469: L61–L64ADSGoogle Scholar
  215. Kosovichev AG, Duvall TL Jr (2003) Imaging of the solar interior: possibilities and limitations. In: Keil SL, Avakyan SV (eds) Society of Photo-optical instrumentation engineers (SPIE) conference series, vol 4853, pp 327–340Google Scholar
  216. Kosovichev AG, Severny AB (1985) Chemical composition effects on the stability of the Sun’s natural gravitational oscillations. Bull Crimean Astrophys Obs 72: 162ADSGoogle Scholar
  217. Kosovichev AG, Schou J, Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Aloise J, Bacon L, Burnette A, de Forest C, Giles PM, Leibrand K, Nigam R, Rubin M, Scott K, Williams SD, Basu S, Christensen-Dalsgaard J, Dappen W, Rhodes EJ, Duvall TL, Howe R, Thompson MJ, Gough DO, Sekii T, Toomre J, Tarbell TD, Title AM, Mathur D, Morrison M, Saba JLR, Wolfson CJ, Zayer I, Milford PN (1997) Structure and rotation of the solar interior: initial results from the MDI medium-l program. Sol Phys 170: 43–61ADSGoogle Scholar
  218. Kraichnan RH (1957) Relation of fourth-order to second-order moments in stationary isotropic turbulence. Phys Rev 107: 1485–1490MATHMathSciNetADSGoogle Scholar
  219. Kumar P, Quataert EJ, Bahcall JN (1996) Observational searches for solar g modes: some theoretical considerations. Astrophys Jl 458: L83–L85ADSGoogle Scholar
  220. Kupka F, Robinson FJ (2007) On the effects of coherent structures on higher order moments in models of solar and stellar surface convection. MNRAS 374: 305–322ADSGoogle Scholar
  221. Lebreton Y, Monteiro M, Montalbán J, Moya A, A B, Christensen-Dalsgaard J, Goupil MJ, Michel E, Provost J, Roxburgh I, Scuflaire R (2008) The CoRoT evolution and seismic tools activity—goals and tasks. Astrophys Space Sci 316: 1–12ADSGoogle Scholar
  222. Ledoux P (1951) The nonradial oscillations of gaseous stars and the problem of beta canis majoris. Astrophys J 114: 373–384ADSGoogle Scholar
  223. Ledoux P, Sauvenier-Goffin E (1950) The vibrational stability of white dwarfs. Astrophys J 111: 611–624ADSGoogle Scholar
  224. Ledoux P, Walraven T (1958) Variable stars. Handb Physik 51: 353–604ADSGoogle Scholar
  225. Leighton RB, Noyes RW, Simon GW (1962) Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys J 135: 474–509ADSGoogle Scholar
  226. Lighthill MJ (1952) On sound generated aerodynamically. I. General theory. Roy Soc Lond Proc A 211: 564–587MATHMathSciNetADSGoogle Scholar
  227. Mathis S, Zahn JP (2005) Transport and mixing in the radiation zones of rotating stars. II. Axisymmetric magnetic field. A&A 440: 653–666ADSGoogle Scholar
  228. Mathis S, Talon S, Pantillon FP, Zahn JP (2008) Angular momentum transport in the Sun’s radiative zone by gravito-inertial waves. Sol Phys 251: 101–118ADSGoogle Scholar
  229. Mathur S, Turck-Chièze S, Couvidat S, García RA (2007) On the Characteristics of the solar gravity mode frequencies. Astrophys J 668: 594–602ADSGoogle Scholar
  230. Mathur S, Eff-Darwich A, García RA, Turck-Chièze S (2008) Sensitivity of helioseismic gravity modes to the dynamics of the solar core. A&A 484: 517–522ADSGoogle Scholar
  231. Michaud G, Proffitt CR (1993) Particle transport processes. In: Baglin A, Weiss W (eds) Inside the stars, ASP, San Franciso, astronomical society of the Pacific conference series, vol 40, pp 246–259Google Scholar
  232. Miesch MS, Brun AS, DeRosa ML, Toomre J (2008) Structure and evolution of giant cells in global models of solar convection. Astrophys J 673: 557–575ADSGoogle Scholar
  233. Montalbán J, Schatzman E (2000) Mixing by internal waves. III. Li and Be abundance dependence on spectral type, age and rotation. A&A 354: 943–959ADSGoogle Scholar
  234. Montalbán J, Miglio A, Noels A, Grevesse N, di Mauro MP (2004) Solar Model with CNO revised abundances. In: Danesy D (ed) Helio- and asteroseismology: towards a golden future, ESA SP-559, ESA Publications Division, Noordwijk, pp 574–576Google Scholar
  235. Montalbán J, Miglio A, Theado S, Noels A, Grevesse N (2006) The new solar abundances—part ii: the crisis and possible solutions. Commun Asteroseismol 147: 80–84ADSGoogle Scholar
  236. Monteiro MJPFG (2009) Evolution and seismic tools for stellar astrophysics. SpringerGoogle Scholar
  237. Mordant N, Lévêque E, Pinton JF (2004) Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J Phys 6: 116–159Google Scholar
  238. Morel P (1997) CESAM: a code for stellar evolution calculations. A&As 124: 597–614MathSciNetADSGoogle Scholar
  239. Morel P, Provost J, Berthomieu G (1997) Updated solar models. A&A 327: 349–360ADSGoogle Scholar
  240. Morel P, Provost J, Berthomieu G (1998) How solar models fit the soho observations? In: Korzennik S, Wilson A (eds) Structure and dynamics of the interior of the Sun and Sun-like stars. ESA SP-418, ESA Publication Division, Noordwijk pp 499–504Google Scholar
  241. Moya A, Christensen-Dalsgaard J, Charpinet S, Lebreton Y, Miglio A, Montalban J, Monteiro M, Provost J, Roxburgh I, Scuflaire R, Suarez J, Suran M (2008) Intercomparison of the g, f and p modes calculated using different oscillation codes for a given stellar model. Astrophys Space Sci 316: 231–249ADSGoogle Scholar
  242. Musielak ZE, Rosner R, Stein RF, Ulmschneider P (1994) On sound generation by turbulent convection: A new look at old results. Astrophys J 423: 474–487ADSGoogle Scholar
  243. Ni WT (2007) ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD I. Nuclear Phys B 166: 153–158Google Scholar
  244. Noels A, Boury A, Scuflaire R, Gabriel M (1974) Pulsational instability towards non-radial oscillations in homogeneous stars of small mass. A&A 31: 185–188ADSGoogle Scholar
  245. Nyquist H (1924) Certain factors affecting telegraph speed. Bell Syst Tech J 3: 324–352Google Scholar
  246. Oleson JR, Zanoni CA, Hill HA, Healy AW, Clayton PD, Patz DL (1974) SCLERA: an astrometric telescope for experimental relativity. Appl Opt 13: 206–211ADSGoogle Scholar
  247. Olver FWJ (1956) The asymptotic solution of linear differential equations of the second order in a domaine containing one transition point. Roy Soc Lond Philos Trans A 249: 65–97MathSciNetADSGoogle Scholar
  248. Osaki Y (1975) Nonradial oscillations of a 10 solar mass star in the main-sequence stage. Publ Astron Soc JPn 27: 237–258ADSGoogle Scholar
  249. Osaki Y (1990) Excitation mechanisms of solar oscillations. In: Osaki Y, Shibahashi H (eds) Progress of seismology of the Sun and stars. Lecture notes in physics, vol 367. Springer, Berlin, p 75Google Scholar
  250. Pallé PL, Roca Cortés T, Gelly B, Pérez-Hernández F, the GOLF Team (1998) The exact fractions technique applied to the search of solar gravity modes. In: Korzennik S (ed) Structure and dynamics of the interior of the Sun and Sun-like stars. ESA SP-418, ESA Publication Division, Noordwijk, pp 279–284Google Scholar
  251. Pamyatnykh Å (1999) Pulsational instability domains in the upper main sequence. Acta Astronomica 49: 119–148ADSGoogle Scholar
  252. Pinsonneault MH, Kawaler SD, Sofia S, Demarque P (1989) Evolutionary models of the rotating Sun. Astrophys J 338: 424–452ADSGoogle Scholar
  253. Polnarev AG, Roxburgh IW, Baskaran D (2009) Response of a spaceborne gravitational wave antenna to solar oscillations. Phys Rev D 79(8): 082001ADSGoogle Scholar
  254. Poyet JP (1983) Derivation of the amplitude equations of acoustic modes of an unstable semi-infinite polytrope. Sol Phys 82: 267–296ADSGoogle Scholar
  255. Press WH (1981) Radiative and other effects from internal waves in solar and stellar interiors. Astrophys J 245: 286–303MathSciNetADSGoogle Scholar
  256. Press WH, Rybicki GB (1989) Fast algorithm for spectral analysis of unevenly sampled data. Astrophys J 338: 277–280ADSGoogle Scholar
  257. Proffitt CR, Michaud G (1991) Gravitational settling in solar models. Astrophys J 380: 238–250ADSGoogle Scholar
  258. Provost J (2008) NOSC: nice oscillations code. Astrophys Space Sci 316: 135–140ADSGoogle Scholar
  259. Provost J, Berthomieu G (1986) Asymptotic properties of low degree solar gravity modes. A&A 165: 218–226MATHADSGoogle Scholar
  260. Provost J, Berthomieu G, Morel P (2000) Low-frequency p- and g-mode solar oscillations. A&A 353: 775–785ADSGoogle Scholar
  261. Rashba TI, Semikoz VB, Valle JWF (2006) Radiative zone solar magnetic fields and g modes. MNRAS 370: 845–850ADSGoogle Scholar
  262. Rashba TI, Semikoz VB, Turck-Chièze S, Vall JWF (2007) Probing the internal solar magnetic field through g modes. MNRAS 377: 453–458ADSGoogle Scholar
  263. Richard O, Vauclair S, Charbonnel C, Dziembowski WA (1996) New solar models including helioseismological constraints and light-element depletion. A&A 312: 1000–1011ADSGoogle Scholar
  264. Rogers TM, Glatzmaier GA (2005) Gravity waves in the Sun. MNRAS 364: 1135–1146ADSGoogle Scholar
  265. Rozelot JP (2009) What is coming: issues raised from observation of the shape of the Sun. Lecture Notes in Physics, vol 765. Springer Verlag, Berlin, pp 15–43Google Scholar
  266. Rogers TM, MacGregor KB, Glatzmaier GA (2008) Non-linear dynamics of gravity wave driven flows in the solar radiative interior. MNRAS 387: 616–630ADSGoogle Scholar
  267. Rosenbluth MN, Bahcall JN (1973) Nonspherical thermal instabilities. Astrophys J 184: 9–16ADSGoogle Scholar
  268. Rosenthal CS (1998) Peaks and troughs in helioseismology: the power spectrum of solar oscillations. Astrophys J 508: 864–875ADSGoogle Scholar
  269. Saio H (1980) Stability of nonradial g/+/-mode pulsations in 1 solar mass models. Astrophys J 240: 685–692ADSGoogle Scholar
  270. Salabert D, Garcia RA (2008) Low-frequency solar p modes as seen by GOLF and GONG instruments. ArXiv e-prints 0810.1696Google Scholar
  271. Salabert D, Turck-Chièze S, Barriere JC, Carton PH, Daniel-Thomas P, Delbart A, Garcia RA, Granelli R, Jiménez-Reyes SJ, Lahonde-Hamdoun C, Loiseau D, Mathur S, Nunio F, Palle PL, Piret Y, Robillot JM, Simoniello R (2008) First performances of the GOLF-NG instrumental prototype observing the Sun in Tenerife. ArXiv e-prints 0810.3393Google Scholar
  272. Salabert D, Leibacher J, Appourchaux T, Hill F (2009) Measurement of low signal-to-noise ratio solar p modes in spatially resolved helioseismic data. Astrophys J 696: 653–667ADSGoogle Scholar
  273. Samadi R, Goupil MJ (2001) Excitation of stellar p modes by turbulent convection. i. theoretical formulation. A&A 370: 136–146ADSGoogle Scholar
  274. Samadi R, Nordlund Å, Stein RF, Goupil MJ, Roxburgh I (2003a) Numerical 3D constraints on convective eddy time-correlations: consequences for stochastic excitation of solar p modes. A&A 404: 1129–1137ADSGoogle Scholar
  275. Samadi R, Nordlund Å, Stein RF, Goupil MJ, Roxburgh I (2003b) Numerical constraints on the model of stochastic excitation of solar-type oscillations. A&A 403: 303–312ADSGoogle Scholar
  276. Samadi R, Goupil MJ, Alecian E, Baudin F, Georgobiani D, Trampedach R, Stein R, Nordlund Å (2005) Excitation of solar-like oscillations: from PMS to MS stellar models. J Astrophys Atr 26: 171–184ADSGoogle Scholar
  277. Samadi R, Georgobiani D, Trampedach R, Goupil MJ, Stein RF, Nordlund Å (2007) Excitation of solar-like oscillations across the HR diagram. A&A 463: 297–308ADSGoogle Scholar
  278. Samadi R, Belkacem K, Goupil MJ, Dupret MA, Kupka F (2008) Modelling the excitation of acoustic modes in Alpha Cen A. A&A 489: 291–299ADSGoogle Scholar
  279. Sawford BL (1991) Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys Fluids 3: 1577–1586ADSGoogle Scholar
  280. Scargle JD (1982) Studies in astronomical time series analysis. II—statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263: 835–853ADSGoogle Scholar
  281. Schatzman E (1993) Transport of angular momentum and diffusion by the action of internal waves. A&A 279: 431–446ADSGoogle Scholar
  282. Schatzman E (1996) Do not forget gravity waves. Sol Phys 169: 245–252ADSGoogle Scholar
  283. Scherrer PH, Wilcox JM, Kotov VA, Severny AB, Tsap TT (1979) Observations of solar oscillations with periods of 160 minutes. Nature 277: 635ADSGoogle Scholar
  284. Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Kosovichev AG, Schou J, Rosenberg W, Springer L, Tarbell TD, Title A, Wolfson CJ, Zayer I (1995) The solar oscillations investigation—Michelson Doppler Imager. Sol Phys 162: 129–188ADSGoogle Scholar
  285. Schou J (1992) On the analysis of helioseismic data. PhD thesis, Århus Universitet, DenmarkGoogle Scholar
  286. Scuflaire R (1974) The non radial oscillations of condensed polytropes. A&A 36: 107–111ADSGoogle Scholar
  287. Sellke T, Bayarri MJ, Berger J (2001) Calibration of p-values for testing precise null hypotheses. Am Stat 55: 62–71MathSciNetGoogle Scholar
  288. Serenelli AM, Bahcall JN, Basu S, Pinsonneault MH (2004) Helioseismological implications of recent solar abundance determinations. In: Danesy D (ed) Helio- and Asteroseismology: towards a Golden Future, ESA SP-559, ESA Publications Division, Noordwijk, pp 623–626Google Scholar
  289. Severnyi AB, Kotov VA, Tsap TT (1976) Observations of solar pulsations. Nature 259: 87–89ADSGoogle Scholar
  290. Shannon CE (1949) Communication in the presence of noise. Proc IRE 37: 10–21MathSciNetGoogle Scholar
  291. Shibahashi H, Osaki Y, Unno W (1975) Nonradial g-mode oscillations and the stability of the Sun. Publ Astron Soc JPn 27: 401–410ADSGoogle Scholar
  292. Spiegel EA, Zahn JP (1992) The solar tachocline. A&A 265: 106–114ADSGoogle Scholar
  293. Stahn T, Gizon L (2008) Fourier analysis of gapped time series: improved estimates of solar and stellar oscillation parameters. Sol Phys 251: 31–52ADSGoogle Scholar
  294. Stein R, Georgobiani D, Trampedach R, Ludwig HG, Nordlund Å (2004) Excitation of radial P modes in the Sun and stars. Sol Phys 220: 229–242ADSGoogle Scholar
  295. Stein RF (1966) Generation and propagation of acoustic and gravity waves in the solar atmosphere, PhD Thesis. PhD thesis, Goddard Space Flight Center & Columbia University, New YorkGoogle Scholar
  296. Stein RF (1967) Generation of acoustic and gravity waves by turbulence in an isothermal stratified atmosphere. Sol Phys 2: 385–432ADSGoogle Scholar
  297. Stein RF, Nordlund Å (2001) Solar oscillations and convection. II. Excitation of radial oscillations. Astrophys J 546: 585–603ADSGoogle Scholar
  298. Sturrock PA, Scargle JD (2009) A Bayesian assessment of p-values for significance estimation of power spectra and an alternative procedure, with application to solar neutrino data. ArXiv e-prints 0904.1713Google Scholar
  299. Sturrock PA, Scargle JD, Walther G, Wheatland MS (2005) Combined and comparative analysis of power spectra. Sol Phys 227: 137–153ADSGoogle Scholar
  300. Takata M (2006) Analysis of adiabatic dipolar oscillations of stars. Publ Astron Soc JPn 58: 893–908ADSGoogle Scholar
  301. Talon S, Charbonnel C (2003) Angular momentum transport by internal gravity waves I. Pop I main sequence stars. A&A 405: 1025–1032ADSGoogle Scholar
  302. Talon S, Zahn JP (1998) Towards a hydrodynamical model predicting the observed solar rotation profile. A&A 329: 315–318ADSGoogle Scholar
  303. Talon S, Kumar P, Zahn JP (2002) Angular momentum extraction by gravity waves in the Sun. Astrophys Jl 574: L175–L178ADSGoogle Scholar
  304. Tassoul M (1980) Asymptotic approximations for stellar nonradial pulsations. Astrophys J S 43: 469–490ADSGoogle Scholar
  305. Thompson MJ, Toomre J, Anderson E, Antia HM, Berthomieu G, Burtonclay D, Chitre SM, Christensen-Dalsgaard J, Corbard T, Derosa M, Genovese CR, Gough DO, Haber DA, Harvey JW, Hill F, Howe R, Korzennik SG, Kosovichev AG, Leibacher JW, Pijpers FP, Provost J, Rhodes EJ, Schou J, Sekii T, Stark PB, Wilson P (1996) Differential rotation and dynamics of the solar interior. Science 272: 1300–1305ADSGoogle Scholar
  306. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70: 1055–1096Google Scholar
  307. Thomson DJ, Maclennan CG, Lanzerotti LJ (1995) Propagation of solar oscillations through the interplanetary medium. Nature 376: 139–144ADSGoogle Scholar
  308. Thoul A, Bahcall JN, Loeb A (1994) Element diffusion in the solar interior. Astrophys J 421: 828–842ADSGoogle Scholar
  309. Toner CG, Jefferies SM, Toutain T (1999) Increasing the visibility of solar oscillations. Astrophys Jl 518: L127–L130ADSGoogle Scholar
  310. Toutain T, Fröhlich C (1992) Characteristics of solar p modes—results from the IPHIR experiment. A&A 257: 287–297ADSGoogle Scholar
  311. Toutain T, Kosovichev AG (2000) Optimal masks for low-degree solar acoustic modes. Astrophys Jl 534: L211–L214ADSGoogle Scholar
  312. Toutain T, Appourchaux T, Baudin F, Fröhlich C, Gabriel AH, Scherrer P, Andersen BN, Bogart R, Bush R, Finsterle W, García RA, Grec G, Henney CJ, Hoeksema JT, Jiménez A, Kosovichev A, Roca Cortés T, Turck-Chièze S, Ulrich R, Wehrli C (1997) Tri-phonic helioseismology: comparison of solar p modes observed by the helioseismology instruments aboard SOHO. Sol Phys 175: 311–328ADSGoogle Scholar
  313. Toutain T, Appourchaux T, Fröhlich C, Kosovichev AG, Nigam R, Scherrer PH (1998) Asymmetry and frequencies of low-degree p modes and the structure of the Sun’s core. Astrophys J 506: L147–L150ADSGoogle Scholar
  314. Toutain T, Berthomieu G, Provost J (1999) Light perturbation from stellar nonradial oscillations: an application to solar oscillations. A&A 344: 188–198ADSGoogle Scholar
  315. Turck-Chièze S, Däppen W, Fossat E, Provost J, Schatzman E, Vignaud D (1993) The solar interior. Phys Rep 230: 57–235ADSGoogle Scholar
  316. Turck-Chièze S, Couvidat S, Kosovichev AG, Gabriel AH, Berthomieu G, Brun AS, Christensen-Dalsgaard J, García RA, Gough DO, Provost J, Roca-Cortes T, Roxburgh IW, Ulrich RK (2001) Solar neutrino emission deduced from a seismic model. Astrophys J 555: L69–L73ADSGoogle Scholar
  317. Turck-Chièze S, Couvidat S, Piau L, Ferguson J, Lambert P, Ballot RA Jand Garcia, Nghiem P (2004a) Surprising Sun: a new step towards a complete picture? Phys Rev Letters 93:211102.1–211102.4Google Scholar
  318. Turck-Chièze S, García RA, Couvidat S, Ulrich RK, Bertello L, Varadi F, Kosovichev AG, Gabriel AH, Berthomieu G, Brun AS, Lopes I, Pallé P, Provost J, Robillot JM, Roca Cortés T (2004b) Looking for gravity-mode multiplets with the GOLF experiment aboard SOHO. Astrophys J 604: 455–468ADSGoogle Scholar
  319. Turck-Chièze S, Carton PH, Ballot J, Barrière JC, Daniel-Thomas P, Delbart A, Desforges D, Garcia RA, Granelli R, Mathur S, Nunio F, Piret Y, Pallé PL, Jiménez AJ, Jiménez-Reyes SJ, Robillot JM, Fossat E, Eff-Darwich AM, Gelly B (2006) GOLF-NG spectrometer, a space prototype for studying the dynamics of the deep solar interior. Adv Space Res 38: 1812–1818ADSGoogle Scholar
  320. Turck-Chièze S, Carton PH, Mathur S, Barriére JC, Daniel-Thomas P, Lahonde-Hamdoun C, Granelli R, Loiseau D, Nunio F, Piret Y, Robillot JM (2008) Laboratory performances of the solar multichannel resonant scattering spectrometer prototype of the GOLF-New Generation instrument. Astronomische Nachrichten 329: 521–529ADSGoogle Scholar
  321. Unno W (1966) Generation of acoustic noise in convective zones. Trans Int Astronom Union B 12: 555–558Google Scholar
  322. Unno W (1967) Stellar radial pulsation coupled with the convection. Publ Astron Soc JPn 19: 140–153ADSGoogle Scholar
  323. Unno W, Osaki Y, Ando H, Saio H, Shibahashi H (1989) Nonradial oscillations of stars, 2nd ed. University of Tokyo Press, TokyoGoogle Scholar
  324. van der Raay HB (1988) Long period solar oscillations. In: Domingo V, Rolfe E (eds) Seismology of the Sun and Sun-Like Stars, ESA SP-286, ESA Publications Division, Noordwijk, pp 339–351Google Scholar
  325. Vandakurov YV (1968) The frequency distribution of stellar oscillations. Soviet Astron 11: 630–638ADSGoogle Scholar
  326. Varadi F, Pap JM, Ulrich RK, Bertello L, Henney CJ (1999) Searching for signal in noise by random-lag singular spectrum analysis. Astrophys J 526: 1052–1061ADSGoogle Scholar
  327. Varadi F, Ulrich RK, Bertello L, Henney CJ (2000) Random-lag singular cross-spectrum analysis. Astrophys Jl 528: L53–L56ADSGoogle Scholar
  328. Vecchio A, Carbone V, Lepreti F, Primavera L, Sorriso-Valvo L, Veltri P, Alfonsi G, Straus T (2005) Proper orthogonal decomposition of solar photospheric motions. Phys Rev Lett 95(6): 061102ADSGoogle Scholar
  329. Wachter R, Schou J, Kosovichev A, Scherrer PH (2002) Optimal masks for g-mode detection in MIDI velocity data. In: Fröhlich C, Wilson A (eds) Symposium on from solar min to max: half a solar cycle with SOHO, SOHO-11, a symposium dedicated to Roger M. Bonnet, ESA SP-508, ESA Publications Division, Noordwijk, pp 115–118Google Scholar
  330. Waelkens C (1991) Slowly pulsating B stars. A&A 246: 453–468ADSGoogle Scholar
  331. Wentzel DG (1987) Solar oscillations—generation of a g-mode by two p modes. Astrophys J 319: 966–970ADSGoogle Scholar
  332. Wersinger JM, Finn JM, Ott E (1980) Bifurcation and strange behaviour in instability saturation by nonlinear three-wave mode coupling. Phys Fluids 23: 1142–1154MATHMathSciNetADSGoogle Scholar
  333. Willson RC (1979) Active cavity radiometer type IV. Appl Opt 18: 179–188ADSGoogle Scholar
  334. Winget DE, Kepler SO (2008) Pulsating White Dwarf Stars and Precision asteroseismology. Ann Rev Astron Astrophys 46: 157–199ADSGoogle Scholar
  335. Wolff CL, O’Donovan AE (2007) Coupled groups of g modes in a S with a mixed core. Astrophys J 661: 568–585ADSGoogle Scholar
  336. Woodard M, Hudson H (1983) Solar oscillations observed in the total irradiance. Sol Phys 82: 67–73ADSGoogle Scholar
  337. Yang WM, Bi SL (2007) Solar models with revised abundances and opacities. Astrophys J 658: L67–L70ADSGoogle Scholar
  338. Zaatri A, Provost J, Berthomieu G, Morel P, Corbard T (2006) How does the change on solar abundances affect low degree modes? In: Fletcher K, Thompson M (eds) Beyond the spherical Sun, ESA SP-624, ESA Publications Division, Noordwijk, pp 92–95Google Scholar
  339. Zaatri A, Provost J, Berthomieu G, Morel P, Corbard T (2007) Sensitivity of the low degree oscillations to the change of solar abundances. A&A 469: 1145–1149ADSGoogle Scholar
  340. Zahn JP (1991) Convective penetration in stellar interiors. A&A 252: 179–188ADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • T. Appourchaux
    • 1
  • K. Belkacem
    • 2
  • A.-M. Broomhall
    • 3
  • W. J. Chaplin
    • 3
  • D. O. Gough
    • 4
  • G. Houdek
    • 5
    • 6
  • J. Provost
    • 7
  • F. Baudin
    • 1
  • P. Boumier
    • 1
  • Y. Elsworth
    • 3
  • R. A. García
    • 8
  • B. N. Andersen
    • 9
  • W. Finsterle
    • 10
  • C. Fröhlich
    • 10
  • A. Gabriel
    • 1
  • G. Grec
    • 7
  • A. Jiménez
    • 11
  • A. Kosovichev
    • 12
  • T. Sekii
    • 13
  • T. Toutain
    • 14
  • S. Turck-Chièze
    • 8
  1. 1.Institut d’Astrophysique SpatialeOrsay CedexFrance
  2. 2.Institut d’Astrophysique et GéophysiqueUniversité de LiègeLiègeBelgium
  3. 3.School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  4. 4.Department of Applied Mathematics and Theoretical Physics, Institute of AstronomyUniversity of CambridgeCambridgeUK
  5. 5.Institute of AstronomyUniversity of ViennaViennaAustria
  6. 6.Institute of AstronomyUniversity of CambridgeCambridgeUK
  7. 7.Université de Nice Sophia-AntipolisCNRS, Laboratoire CassiopéeNice Cedex 4France
  8. 8.Laboratoire AIM, CEA/DSM—CNRSUniversité Paris DiderotGif-sur-YvetteFrance
  9. 9.Norwegian Space CentreOsloNorway
  10. 10.Physikalisch-Meteorologisches Observatorium DavosWorld Radiation CenterDavos DorfSwitzerland
  11. 11.Instituto de Astrofisica de CanariasLa Laguna, TenerifeSpain
  12. 12.W.W. Hansen Experimental Physics LaboratoryStanford UniversityStanfordUSA
  13. 13.National Astronomical Observatory of JapanMitaka, TokyoJapan
  14. 14.Center for Information TechnologyUniversity of OsloOsloNorway

Personalised recommendations