The Astronomy and Astrophysics Review

, Volume 18, Issue 1–2, pp 67–126 | Cite as

Accurate masses and radii of normal stars: modern results and applications

Review Article

Abstract

This article presents and discusses a critical compilation of accurate, fundamental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known within errors of ±3% accuracy or better. All of them are non-interacting systems, and so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (Astron Astrophys Rev 3:91–126, 1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with unprecedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay between convection, diffusion, and other non-classical effects in stellar models. The amount and quality of the data also allow us to analyse the tidal evolution of the systems in considerable depth, testing prescriptions of rotational synchronisation and orbital circularisation in greater detail than possible before. We show that the formulae for pseudo-synchronisation of stars in eccentric orbits predict the observed rotations quite well, except for very young and/or widely separated stars. Deviations do occur, however, especially for stars with convective envelopes. The superior data set finally demonstrates that apsidal motion rates as predicted from General Relativity plus tidal theory are in good agreement with the best observational data. No reliable binary data exist, which challenge General Relativity to any significant extent. The new data also enable us to derive empirical calibrations of M and R for single (post-) main-sequence stars above \({0.6\,M_{\odot}}\). Simple, polynomial functions of T eff, log g and [Fe/H] yield M and R within errors of 6 and 3%, respectively. Excellent agreement is found with independent determinations for host stars of transiting extrasolar planets, and good agreement with determinations of M and R from stellar models as constrained by trigonometric parallaxes and spectroscopic values of T eff and [Fe/H]. Finally, we list a set of 23 interferometric binaries with masses known to be better than 3%, but without fundamental radius determinations (except α Aur). We discuss the prospects for improving these and other stellar parameters in the near future.

Keywords

Stars: fundamental parameters Stars: binaries: eclipsing Stars: binaries: spectroscopic Stars: interiors Stars: evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

159_2009_25_MOESM1_ESM.txt (27 kb)
ESM 1 (TXT 27 kb)
159_2009_25_MOESM2_ESM.txt (15 kb)
ESM 2 (TXT 15 kb)
159_2009_25_MOESM3_ESM.txt (5 kb)
ESM 3 (TXT 5 kb)
159_2009_25_MOESM4_ESM.txt (9 kb)
ESM 4 (TXT 9 kb)

References

  1. Albrecht S (2008) Stars and planets at high spatial and spectral resolution. PhD Thesis, Leiden University, The NetherlandsGoogle Scholar
  2. Albrecht S, Reffert S, Snellen I, Quirrenbach A, Mitchell DS (2007) The spin axes orbital alignment of both stars within the eclipsing binary system V1143 Cyg using the Rossiter-McLaughlin effect. Astron Astrophys 474: 565–573ADSGoogle Scholar
  3. Alecian E, Catala C, van’t Veer-Menneret C, Goupil M-J, Balona L (2005) Pulsations and metallicity of the pre-main sequence eclipsing spectroscopic binary RS Cha. Astron Astrophys 442: 993–1002Google Scholar
  4. Alencar SHP, Vaz LPR, Helt BE (1997) Absolute dimensions of eclipsing binaries. XXI. V906 Scorpii: a triple system member of M7. Astron Astrophys 326: 709–721ADSGoogle Scholar
  5. Andersen J (1975) Spectroscopic observations of eclipsing binaries IV. Absolute dimensions of the giant system SZ Centauri. Astron Astrophys 45: 203–208ADSGoogle Scholar
  6. Andersen J (1983) Spectroscopic observations of eclipsing binaries. V—Accurate mass determination for the B-type systems V539 Arae and ζ Phoenicis. Astron Astrophys 118: 255–261ADSGoogle Scholar
  7. Andersen J (1991) Accurate masses and radii of normal stars. Astron Astrophysr 3: 91–126ADSGoogle Scholar
  8. Andersen J, Clausen JV (1989) Absolute dimensions of eclipsing binaries. XV—EM Carinae. Astron Astrophys 213: 183–194ADSGoogle Scholar
  9. Andersen J, Giménez A (1985) Absolute dimensions of eclipsing binaries. VII—V1647 Sagittarii. Astron Astrophys 145: 206–214ADSGoogle Scholar
  10. Andersen J, Vaz LPR (1984) Absolute dimensions of eclipsing binaries. III—KM Hydrae—a detached AM system with unequal components. Astron Astrophys 130: 102–110ADSGoogle Scholar
  11. Andersen J, Vaz LPR (1987) Erratum—Absolute dimensions of eclipsing binaries. III—KW Hydrae—a detached system with unequal components. Astron Astrophys 175: 355ADSGoogle Scholar
  12. Andersen J, Gjerløff H, Imbert M (1975) Spectroscopic observations of eclipsing binaries. II—Absolute dimensions, evolutionary state, and helium content of RZ Chamaeleontis. Astron Astrophys 44: 349–353ADSGoogle Scholar
  13. Andersen J, Clausen JV, Nordström B (1984) Absolute dimensions of eclipsing binaries. V—VV Pyxidis, a detached early A-type system with equal components. Astron Astrophys 134: 147–157ADSGoogle Scholar
  14. Andersen J, Clausen JV, Nordström B, Reipurth B (1983) Absolute dimensions of eclipsing binaries. I—The early-type detached system QX Carinae. Astron Astrophys 121: 271–280ADSGoogle Scholar
  15. Andersen J, Clausen JV, Nordström B, Popper DM (1985) Absolute dimensions of eclipsing binaries. VIII—V760 Scorpii. Astron Astrophys 151: 329–339ADSGoogle Scholar
  16. Andersen J, Clausen JV, Nordström B (1987a) Absolute dimensions of eclipsing binaries. XII—TZ Mensae. Astron Astrophys 175: 60–70ADSGoogle Scholar
  17. Andersen J, García JM, Giménez A, Nordström B (1987b) Absolute dimensions of eclipsing binaries. X—V1143 Cygni. Astron Astrophys 174: 107–115ADSGoogle Scholar
  18. Andersen J, Clausen JV, Nordström B, Gustafsson B, VandenBerg DA (1988) Absolute dimensions of eclipsing binaries. XIII—AI Phoenicis: a case study in stellar evolution. Astron Astrophys 196: 128–140ADSGoogle Scholar
  19. Andersen J, Clausen JV, Magain P (1989) Absolute dimensions of eclipsing binaries. XIV—UX Mensae. Astron Astrophys 211: 346–352ADSGoogle Scholar
  20. Andersen J, Nordström B, Clausen JV (1990) Absolute dimensions of eclipsing binaries. XVI—V1031 Orionis. Astron Astrophys 228: 365–378ADSGoogle Scholar
  21. Andersen J, Clausen JV, Nordström B, Tomkin J, Mayor M (1991) Absolute dimensions of eclipsing binaries. XVII—TZ Fornacis: stellar and tidal evolution in a binary with a fully-fledged red giant. Astron Astrophys 246: 99–117ADSGoogle Scholar
  22. Andersen J, Clausen JV, Giménez A (1993) Absolute dimensions of eclipsing binaries. XX. GG Lupi: young metal deficient B-stars. Astron Astrophys 277: 439–451ADSGoogle Scholar
  23. Bagnuolo WG Jr, Gies DR (1991) Tomographic separation of composite spectra—the components of the O-star spectroscopic binary AO Cassiopeiae. Astrophys J 376: 266–271ADSGoogle Scholar
  24. Bagnuolo WG Jr, Taylor SF, McAlister HA, ten Brummelaar T, Gies DR, Ridgway ST, Sturmann J, Sturmann L, Turner NH, Berger DH, Gudehus D (2006) First results from the CHARA Array. V. Binary star astrometry: the case of 12 Persei. Astron J 131: 2695–2699ADSGoogle Scholar
  25. Balega YY, Beuzit J-L, Delfosse X, Forveille T, Perrier C, Mayor M, Ségransan D, Udry S, Tokovinin AA, Schertl D, Weigelt G, Balega II, Malogolovets EV (2007) Accurate masses of low mass stars GJ 765.2AB \({(0.83\,{M}_{\odot}+0.76\,{M}_{\odot})}\). Astron Astrophys 464: 635–640ADSGoogle Scholar
  26. Barembaum MJ, Etzel PB (1995) A photometric analysis of the apsidal motion binary system PV Cassiopeiae. Astron J 109: 2680–2689ADSGoogle Scholar
  27. Bedford DK, Fuensalida JJ, Arevalo MJ (1987) The BVJK lightcurves of the short-period eclipsing binary CG Cygni. Astron Astrophys 182: 264–270ADSGoogle Scholar
  28. Bell SA, Hilditch RW, Adamson AJ (1986) A photometric and spectroscopic study of the early-type binary AH Cephei. Mon Not R Astron Soc 223: 513–528ADSGoogle Scholar
  29. Benedict GF, McArthur BE, Franz OG, Wasserman LH, Henry TJ (2000) Interferometric astrometry of the low-mass binary GL 791.2 (= HU Del) using Hubble Space Telescope fine guidance sensor 3: parallax and component masses. Astron J 120: 1106–1112ADSGoogle Scholar
  30. Benedict GF, McArthur BE, Franz OG, Wasserman LH, Henry TJ, Takato T, Strateva IV, Crawford JL, Ianna PA, McCarthy DW, Nelan E, Jefferys WH, van Altena W, Shelus PJ, Hemenway PD, Duncombe RL, Story D, Whipple AL, Bradley AJ, Fredrick LW (2001) Precise masses for Wolf 1062 AB from Hubble Space Telescope interferometric astrometry and MCDonald Observatory radial velocities. Astron J 121: 1607–1613ADSGoogle Scholar
  31. Berger DH, Gies DR, McAlister HA, ten Brummelaar TA, Henry TJ, Sturmann J, Sturmann L, Turner NH, Ridgway ST, Aufdenberg JP, Mérand A (2006) First results from the CHARA Array. IV. The interferometric radii of low-mass stars. Astrophys J 644: 475–483ADSGoogle Scholar
  32. Boden AF, Koresko CD, van Belle GT, Colavita MM, Dumont PJ, Gubler J, Kulkarni SR, Lane BF, Mobley D, Shao M, Wallace JK, The PTI Collaboration, Henry GW (1999a) The visual orbit of ι Pegasi. Astrophys J 515: 356–364Google Scholar
  33. Boden AF, Lane BF, Creech-Eakman MJ, Colavita MM, Dumont PJ, Gubler J, Koresko CD, Kuchner MJ, Kulkarni SR, Mobley DW, Pan XP, Shao M, van Belle GT, Wallace JK, Oppenheimer BR (1999b) The visual orbit of 64 Piscium. Astrophys J 527: 360–368ADSGoogle Scholar
  34. Boden AF, Torres G, Hummel CA (2005) Testing stellar models with an improved physical orbit for 12 Bootis. Astrophys J 627: 464–476ADSGoogle Scholar
  35. Boden AF, Torres G, Latham DW (2006) A physical orbit for the high proper motion binary HD 9939. Astrophys J 644: 1193–1201ADSGoogle Scholar
  36. Bouzid MY, Sterken C, Pribulla T (2005) Photometric study of the eclipsing binary V1034 Sco. Astron Astrophys 437: 769–774ADSGoogle Scholar
  37. Chabrier G, Gallardo J, Baraffe I (2007) Evolution of low-mass star and brown dwarf eclipsing binaries. Astron Astrophys 472: L17–L20ADSGoogle Scholar
  38. Claret A (1995) Stellar models for a wide range of initial chemical compositions until helium burning. I. From X =  0.60 to X =  0.80 for Z =  0.02. Astron Astrophyss 109: 441–446ADSGoogle Scholar
  39. Claret A (1997) The apsidal motion test of stellar structure in relativistic systems. Astron Astrophys 327: 11–21ADSGoogle Scholar
  40. Claret A (1998) Some notes on the relativistic apsidal motion of DI Herculis. Astron Astrophys 330: 533–540ADSGoogle Scholar
  41. Claret A (2007) Does convective core overshooting depend on stellar mass? Tests using double-lined eclipsing binaries. Astron Astrophys 475: 1019–1025ADSGoogle Scholar
  42. Claret A, Giménez A (1995) Stellar and tidal evolution of TZ Fornacis: a case of asynchronism. Astron Astrophys 296: 180–184ADSGoogle Scholar
  43. Claret A, Willems B (2002) New results on the apsidal-motion test to stellar structure and evolution including the effects of dynamic tides. Astron Astrophys 388: 518–530ADSGoogle Scholar
  44. Claret A, Giménez A, Martin EL (1995) A test case of stellar evolution: the eclipsing binary EK Cephei. A system with accurate dimensions, apsidal motion rate and lithium depletion level. Astron Astrophys 302: 741–744ADSGoogle Scholar
  45. Claret A, Giménez A, Zahn J-P (eds) (2005) Tidal evolution and oscillations in binary stars. Third granada workshop on stellar structure. ASP Conference Series, vol 333Google Scholar
  46. Clausen JV (1991) Absolute dimensions of eclipsing binaries. XIX: BW Aquarii—a late F-type indicator of overshooting. Astron Astrophys 246: 397–406ADSGoogle Scholar
  47. Clausen JV (1996) V539 Arae: first accurate dimensions of a slowly pulsating B star. Astron Astrophys 308: 151–169ADSGoogle Scholar
  48. Clausen JV, Giménez A (1991) Absolute dimensions of eclipsing binaries. XVIII—The Cepheus OB 3 member CW Cephei. Astron Astrophys 241: 98–106ADSGoogle Scholar
  49. Clausen JV, Grønbech B (1977) Four-colour photometry of eclipsing binaries. VIII—CV Velorum, light curves, photometric elements and absolute dimensions. Astron Astrophys 58: 131–137ADSGoogle Scholar
  50. Clausen JV, Nordström B (1978) Four-colour photometry of eclipsing binary, XA—Photometric elements, absolute dimensions and helium abundance of χ2 Hydrae. Astron Astrophys 67: 15–22ADSGoogle Scholar
  51. Clausen JV, Nordström B (1980) Four-colour photometry of eclipsing binaries. XIA. Photometric elements, absolute dimensions, and helium abundance of RS Chamaleontis. Astron Astrophys 83: 339–347ADSGoogle Scholar
  52. Clausen JV, Giménez A, Scarfe C (1986) Absolute dimensions of eclipsing binaries. XI—V451 Ophiuchi. Astron Astrophys 167: 287–296ADSGoogle Scholar
  53. Clausen JV, Baraffe I, Claret A, Vandenberg DA (1999) Do 0.7–1.1 \({{M}_{\odot}}\) eclipsing binaries pose a problem for current stellar evolutionary models? In: Theory and tests of convection in stellar structure, ASP Conference Series, vol 173, pp 265–268Google Scholar
  54. Clausen JV, Torres G, Bruntt H, Andersen J, Nordström B, Stefanik RP, Latham DW, Southworth J (2008) Absolute dimensions of eclipsing binaries. XXVI. Setting a new standard: masses, radii, and abundances for the F-type systems AD Bootis VZ Hydrae, and WZ Ophiuchi. Astron Astrophys 487: 1095–1117ADSGoogle Scholar
  55. Clausen JV, Bruntt H, Claret A, Larsen A, Andersen J, Nordström B, Giménez A (2009) Absolute dimensions of solar-type eclipsing binaries. II. V636 Centauri: A 1.05 \({{M}_{\odot}}\) primary with an active, cool, oversize 0.85 \({{M}_{\odot}}\) secondary. Astron Astrophys 502:253–265Google Scholar
  56. Company R, Portilla M, Giménez A (1988) On the apsidal motion of DI Herculis. Astrophys J 335: 962–964ADSGoogle Scholar
  57. Csizmadia S, Illés-Almár E, Borkovits T (2009) On the apsidal motion of BP Vulpeculae. New Astron 14: 413–428ADSGoogle Scholar
  58. D’Antona F, Ventura P, Mazzitelli I (2000) First results on pre-main-sequence evolution, including a magnetic field. Astrophys J Lett 543: L77–L80ADSGoogle Scholar
  59. Dariush A, Riazi N, Afroozeh A (2005) Photometric observations and apsidal motion study of V1143 Cyg. Astrophys Space Sci 296: 141–144ADSGoogle Scholar
  60. Debernardi Y, North P (2001) Eclipsing binaries with candidate CP stars. II. Parameters of the system V392 Carinae. Astron Astrophys 374: 204–212ADSGoogle Scholar
  61. Demarque P, Woo J-H, Kim Y-C, Yi SK (2004) Y 2 isochrones with an improved core overshoot treatment. Astrophys J Suppl Ser 155: 667–674ADSGoogle Scholar
  62. de Landtsheer AC, Mulder PS (1983) IUE observations of the eclipsing binaries TV Cas and YZ Cas. Astron Astrophys 127: 297–300ADSGoogle Scholar
  63. Edvardsson B, Andersen J, Gustafsson B, Lambert DL, Nissen PE, Tomkin J (1993) The chemical evolution of the Galactic disk—part one—analysis and results. Astron Astrophys 275: 101–152ADSGoogle Scholar
  64. Fekel FC, Scarfe CD, Barlow DJ, Duquennoy A, McAlister HA (1997) New and improved parameters of HD 202908  =  ADS 14839: a spectroscopic-visual triple system. Astron J 113: 1095–1105ADSGoogle Scholar
  65. Flower PJ (1996) Transformations from theoretical Hertzsprung-Russell diagrams to color-magnitude diagrams: effective temperatures, B-V colors, and bolometric corrections. Astrophys J 469: 355–365ADSGoogle Scholar
  66. Fekel FC, Boden AF, Tomkin J, Torres G (2009) HR 8257: a three-dimensional orbit and basic properties. Astrophys J 695: 1527–1536ADSGoogle Scholar
  67. Forveille T, Beuzit J-L, Delfosse X, Segransan D, Beck F, Mayor M, Perrier C, Tokovinin A, Udry S (1999) Accurate masses of very low mass stars. I. GL 570BC \({(0.6 {M}_{\odot}+0.4 {M}_{\odot})}\). Astron Astrophys 351: 619–626ADSGoogle Scholar
  68. Giménez A (2007) The apsidal motion test in eclipsing binaries. IAU Symposium 240, pp 290–298Google Scholar
  69. Giménez A, Clausen JV (1994) AG Persei: absolute dimensions and membership of Perseus OB2. Astron Astrophys 291: 795–804ADSGoogle Scholar
  70. Giménez A, Clausen JV, Jensen KS (1986) Four-colour photometry of eclipsing binaries. XXIV—Apsidal motion of QX Carinae, ζ Phoenicis and NO Puppis. Astron Astrophys 159: 157–165ADSGoogle Scholar
  71. Girardi L, Bressan A, Bertelli G, Chiosi C (2000) Evolutionary tracks and isochrones for low- and intermediate-mass stars: from 0.15 to 7 \({{M}_{\odot}}\), and from Z = 0.0004 to 0.03. Astron Astrophyss 141: 371–383ADSGoogle Scholar
  72. González JF, Levato H (2006) Separation of composite spectra: the spectroscopic detection of an eclipsing binary star. Astron Astrophys 448: 283–292ADSGoogle Scholar
  73. Grønbech B, Gyldenkerne K, Jørgensen HE (1977) Four-colour photometry of eclipsing binaries. VII—SZ Cen, light curves, photometric elements, absolute dimensions and determination of helium content. Astron Astrophys 55: 401–409ADSGoogle Scholar
  74. Grundahl F, Clausen JV, Hardis S, Frandsen S (2008) A new standard: age and distance for the open cluster NGC 6791 from the eclipsing binary member V20. Astron Astrophys 492: 171–184ADSGoogle Scholar
  75. Haberreiter M, Schmutz W, Kosovichev AG (2008) Solving the discrepancy between the seismic and photospheric solar radius. Astrophys J Lett 675: L53–L56ADSGoogle Scholar
  76. Hadrava P (1995) Orbital elements of multiple spectroscopic stars. Astron Astrophys Suppl 114: 393–396ADSGoogle Scholar
  77. Henry GW, Fekel FC, Sowell JR, Gearhart JS (2006) HD 71636, a newly discovered eclipsing binary. Astron J 132: 2489–2495ADSGoogle Scholar
  78. Hensberge H, Pavlovski K, Verschueren W (2000) The eclipsing binary V578 Mon in the Rosette nebula: age and distance to NGC 2244 using Fourier disentangled component spectra. Astron Astrophys 358: 553–571ADSGoogle Scholar
  79. Hillenbrand LA, White RJ (2004) An assessment of dynamical mass constraints on pre-main-sequence evolutionary tracks. Astrophys J 604: 741–757ADSGoogle Scholar
  80. Holmberg J, Nordström B, Andersen J (2007) The Geneva-Copenhagen survey of the Solar neighbourhood II. New uvby calibrations and rediscussion of stellar ages, the G dwarf problem, age-metallicity diagram, and heating mechanisms of the disk. Astron Astrophys 475: 519–537ADSGoogle Scholar
  81. Holmgren DE, Hill G, Fisher W (1990) Absolute dimensions of early-type eclipsing binary stars. II—AH Cephei. Astron Astrophys 236: 409–415ADSGoogle Scholar
  82. Holmgren DE, Hill G, Fisher W (1991) Absolute dimensions of early-type eclipsing binary stars. III—U Ophiuchi. Astron Astrophys 248: 129–138ADSGoogle Scholar
  83. Hoxie DT (1973) The low-mass main-sequence: the comparison between theory and observation. Astron Astrophys 26: 437–441ADSGoogle Scholar
  84. Hummel CA, Mozurkewich D, Armstrong JT, Hajian AR, Elias NM II, Hutter DJ (1998) Navy prototype optical interferometer observations of the double stars Mizar A and Matar. Astron J 116: 2536–2548ADSGoogle Scholar
  85. Hummel CA, Carquillat J-M, Ginestet N, Griffin RF, Boden AF, Hajian AR, Mozurkewich D, Nordgren TE (2001) Orbital and stellar parameters of Omicron Leonis from spectroscopy and interferometry. Astron J 121: 1623–1635ADSGoogle Scholar
  86. Hut P (1981) Tidal evolution in close binary systems. Astron Astrophys 99: 126–140MATHADSGoogle Scholar
  87. Hynes RI, Maxted PFL (1998) A critique of disentangling as a method of deriving spectroscopic orbits. Astron Astrophys 331: 167–170ADSGoogle Scholar
  88. Imbert M (2002) Photoelectric radial velocities of eclipsing binaries VI. Orbital and physical elements of 12 double stars. Astron Astrophys 387: 850–860ADSGoogle Scholar
  89. Jørgensen HE, Gyldenkerne K (1975) Four-colour photometry of eclipsing binaries. II—RZ Cha, light curves, photometric elements and determination of helium content. Astron Astrophys 44: 343–347ADSGoogle Scholar
  90. Kervella P, Thévenin F, Ségransan D, Berthomieu G, Lopez B, Morel P, Provost J (2003) The diameters of α Centauri A and B. A comparison of the asteroseismic and VINCI/VLTI views. Astron Astrophys 404: 1087–1097ADSGoogle Scholar
  91. Kozyreva vs, Zakharov Al (2001) Apsidal motion in the close binary IT Cassiopeiae. Astron Lett 27:712–718Google Scholar
  92. Kumar P, Goodman J (1996) Nonlinear damping of oscillations in tidal-capture binaries. Astrophys J 466: 946–956ADSGoogle Scholar
  93. Lacy CH (1977) Radii of nearby stars: an application of the Barnes-Evans relation. Astrophys J Suppl Ser 34: 479–492ADSGoogle Scholar
  94. Lacy CH (1981) Absolute dimensions and masses of eclipsing binaries. II—YZ Cassiopeiae. Astrophys J 251: 591–596ADSGoogle Scholar
  95. Lacy CH (1987) Properties of the main-sequence eclipsing binary AY Camelopardalis. Astron J 94: 1670–1672ADSGoogle Scholar
  96. Lacy CH, Frueh ML (1985) Absolute dimensions and masses of eclipsing binaries. V—IQ Persei. Astrophys J 295: 569–579ADSGoogle Scholar
  97. Lacy CH, Frueh ML (1987) Properties of the main-sequence eclipsing binary V442 Cygni. Astron J 94: 712–722ADSGoogle Scholar
  98. Lacy CH, Popper DM (1984) Absolute dimensions and masses of eclipsing binaries. IV—EE Pegasi is a triple star. Astrophys J 281: 268–275ADSGoogle Scholar
  99. Lacy CHS, Sabby JA (1999) Absolute properties of ZZ Ursae Majoris. Inf Bull Var Stars 4755: 1–4Google Scholar
  100. Lacy CHS, Torres G, Latham DW, Zakirov MM, Arzumanyants GC (1997) Absolute dimensions and masses of IT Cassiopeiae. Astron J 114: 1206–1220ADSGoogle Scholar
  101. Lacy CHS, Torres G, Claret A, Stefanik RP, Latham DW, Sabby JA (2000) Absolute properties of the eclipsing binary star FS Monocerotis. Astron J 119: 1389–1397ADSGoogle Scholar
  102. Lacy CHS, Torres G, Claret A, Sabby JA (2002) Absolute properties of the main-sequence eclipsing binary star WW Camelopardalis. Astron J 123: 1013–1022ADSGoogle Scholar
  103. Lacy CHS, Torres G, Claret A, Sabby JA (2003) Absolute properties of the main-sequence eclipsing binary star BP Vulpeculae. Astron J 126: 1905–1915ADSGoogle Scholar
  104. Lacy CHS, Claret A, Sabby JA (2004a) Absolute properties of the eclipsing binary star V459 Cassiopeiae. Astron J 128: 1340–1347ADSGoogle Scholar
  105. Lacy CHS, Claret A, Sabby JA (2004b) Absolute properties of the upper main-sequence eclipsing binary star MU Cassiopeiae. Astron J 128: 1840–1846ADSGoogle Scholar
  106. Lacy CHS, Claret A, Sabby JA, Hood B, Secosan F (2004c) Absolute properties of the eclipsing binary star V396 Cassiopeiae. Astron J 128: 3005–3011ADSGoogle Scholar
  107. Lacy CHS, Vaz LPR, Claret A, Sabby JA (2004d) Absolute properties of the main-sequence eclipsing binary star V885 Cygni. Astron J 128: 1324–1330ADSGoogle Scholar
  108. Lacy CHS, Torres G, Claret A, Vaz LPR (2005) Absolute properties of the eclipsing binary star RW Lacertae. Astron J 130: 2838–2846ADSGoogle Scholar
  109. Lacy CHS, Torres G, Claret A, Menke JL (2006) Absolute properties of the main-sequence eclipsing binary star EY Cephei. Astron J 131: 2664–2672ADSGoogle Scholar
  110. Lacy CHS, Torres G, Claret A (2008) Absolute properties of the main-sequence eclipsing binary star GX Geminorum: constraints on convective core overshooting. Astron J 135: 1757–1765ADSGoogle Scholar
  111. Lastennet E, Valls-Gabaud D (2002) Detached double-lined eclipsing binaries as critical tests of stellar evolution. Age and metallicity determinations from the HR diagram. Astron Astrophys 396: 551–580ADSGoogle Scholar
  112. Latham DW, Nordström B, Andersen J, Torres G, Stefanik RP, Thaller M, Bester MJ (1996) Accurate mass determination for double-lined spectroscopic binaries by digital cross-correlation spectroscopy: DM Virginis revisited. Astron Astrophys 314: 864–870ADSGoogle Scholar
  113. Linnell AP, Hubeny I, Lacy CHS (1996) EE Pegasi revisited: a spectrum synthesis and new light synthesis study. Astrophys J 459: 721–728ADSGoogle Scholar
  114. López-Morales M (2007) On the correlation between the magnetic activity levels, metallicities, and radii of low-mass stars. Astrophys J 660: 732–739ADSGoogle Scholar
  115. López-Morales M, Ribas I (2005) GU Bootis: a new 0.6 \({{M}_{\odot}}\) detached eclipsing binary. Astrophys J 631: 1120–1133ADSGoogle Scholar
  116. Lyubimkov LS, Rachkovskaya TM, Rostopchin SI (1996) Chemical composition of the components of the binary Am star β Aur. Astron Rep 40: 802–811ADSGoogle Scholar
  117. Martín EL, Rebolo R (1993) EK Cephei B: a test object for pre-ZAMS models of solar-type stars. Astron Astrophys 274: 274–278ADSGoogle Scholar
  118. Mazeh T (2008) Observational evidence for tidal interaction in close binary systems. EAS Publ Ser 29: 1–65Google Scholar
  119. Meibom S, Grundahl F, Clausen JV, Mathieu RD, Frandsen S, Pigulski A, Narwid A, Steslicki M, Lefever K (2009) Age and distance for the old open cluster NGC 188 from the eclipsing binary member V12. Astron J 137: 5086–5098ADSGoogle Scholar
  120. Morales JC, Ribas I, Jordi C (2008) The effect of activity on stellar temperatures and radii. Astron Astrophys 478: 507–512ADSGoogle Scholar
  121. Morales JC, Ribas I, Jordi C, Torres G, Gallardo J, Guinan EF, Charbonneau D, Wolf M, Latham DW, Anglada-Escudé G, Bradstreet DH, Everett ME, O’Donovan FT, Mandushev G, Mathieu RD (2009) Absolute properties of the low-mass eclipsing binary CM Draconis. Astrophys J 691: 1400–1411ADSGoogle Scholar
  122. Mullan DJ, MacDonald J (2001) Are magnetically active low-mass M dwarfs completely convective?. Astrophys J 559: 353–371ADSGoogle Scholar
  123. Muterspaugh MW, Lane BF, Konacki M, Burke BF, Colavita MM, Kulkarni SR, Shao M (2005) PHASES high-precision differential astrometry of δ Equulei. Astron J 130: 2866–2875ADSGoogle Scholar
  124. Muterspaugh MW, Lane BF, Konacki M, Burke BF, Colavita MM, Kulkarni SR, Shao M (2006) PHASES differential astrometry and the mutual inclination of the V819 Herculis triple star system. Astron Astrophys 446: 723–732ADSGoogle Scholar
  125. Muterspaugh MW, Lane BF, Fekel FC, Konacki M, Burke BF, Kulkarni SR, Colavita MM, Shao M, Wiktorowicz SJ (2008) Masses, luminosities, and orbital coplanarities of the μ Orionis quadruple-star system from phases differential astrometry. Astron J 135: 766–776ADSGoogle Scholar
  126. Nordström B, Johansen KT (1994) Radii and masses for β Aurigae. Astron Astrophys 291: 777–785ADSGoogle Scholar
  127. Nordström B, Mayor M, Andersen J, Holmberg J, Pont F, Jørgensen BR, Olsen EH, Udry S, Mowlavi N (2004) The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ~14,000 F and G dwarfs. Astron Astrophys 418: 989–1019ADSGoogle Scholar
  128. North JR, Davis J, Bedding TR, Ireland MJ, Jacob AP, O’Byrne J, Owens SM, Robertson JG, Tango WJ, Tuthill PG (2007) The radius and mass of the subgiant star β Hyi from interferometry and asteroseismology. Mon Not R Astron Soc 380: L80–L83ADSGoogle Scholar
  129. North JR, Davis J, Robertson JG, Bedding TR, Bruntt H, Ireland MJ, Jacob AP, Lacour S, O’Byrne JW, Owens SM, Stello D, Tango WJ, Tuthill PG (2009) The radius and other fundamental parameters of the F9V star β Virginis. Mon Not R Astron Soc 393: 245–252ADSGoogle Scholar
  130. Pavlovski K, Hensberge H (2005) Abundances from disentangled component spectra: the eclipsing binary V578 Mon. Astron Astrophys 439: 309–315ADSGoogle Scholar
  131. Pavlovski K, Southworth J (2009) Chemical evolution of high-mass stars in close binaries—I. The eclipsing binary V453 Cygni. Mon Not R Astron Soc 394: 1519–1528ADSGoogle Scholar
  132. Perryman MAC et al (1997) The Hipparcos and Tycho catalogues (ESA SP-1200). ESA, NoordwjikGoogle Scholar
  133. Pietrzyński G, Thompson IB, Graczyk D, Gieren W, Udalski A, Szewczyk O, Minniti D, Kołaczkowski Z, Bresolin F, Kudritzki R-P (2009) The Araucaria Project. Determination of the Large Magellanic Cloud distance from late-type eclipsing binary systems. I. OGLE-051019.64-685812.3. Astrophys J 697: 862–866ADSGoogle Scholar
  134. Pols OR, Tout CA, Schroder K-P, Eggleton PP, Manners J (1997) Further critical tests of stellar evolution by means of double-lined eclipsing binaries. Mon Not R Astron Soc 289: 869–881ADSGoogle Scholar
  135. Popper DM (1971) Some double-lined eclipsing binaries with metallic-line spectra. Astrophys J 169: 549–562ADSGoogle Scholar
  136. Popper DM (1974) Rediscussion of eclipsing binaries. X. The B stars AG Persei and CW Cephei. Astrophys J 188: 559–565ADSGoogle Scholar
  137. Popper DM (1982) Rediscussion of eclipsing binaries. XIII—DI Herculis, a B-type system with an eccentric orbit. Astrophys J 254: 203–213ADSGoogle Scholar
  138. Popper DM (1984) Rediscussion of eclipsing binaries. XIV—The bright Am system V624 Herculis. Astron J 89: 1057–1062ADSGoogle Scholar
  139. Popper DM (1987a) A pre-main sequence star in the detached binary EK Cephei. Astrophys J Lett 313: L81–L83ADSGoogle Scholar
  140. Popper DM (1987b) Rediscussion of eclipsing binaries. XVI—The detached early A type binaries PV Cassiopeiae and WX Cephei. Astron J 93: 672–677ADSGoogle Scholar
  141. Popper DM (1988) VZ Canum Venaticorum and AI Hydrae, detached F type binaries with variable components. Astron J 95: 190–198ADSGoogle Scholar
  142. Popper DM (1994) Orbits of detached main-sequence eclipsing binaries of types late F to K, I: RT Andromedae and CG Cygni. Astron J 108: 1091–1100ADSGoogle Scholar
  143. Popper DM (1997) Orbits of detached main-sequence eclipsing binaries of types late F to K. II. UV Leonis, UV Piscium, and BH Virginis. Astron J 114: 1195–1205ADSGoogle Scholar
  144. Popper DM, Etzel PB (1981) Photometric orbits of seven detached eclipsing binaries. Astron J 86: 102–120ADSGoogle Scholar
  145. Popper DM, Hill G (1991) Rediscussion of eclipsing binaries. XVII—Spectroscopic orbits of OB systems with a cross-correlation procedure. Astron J 101: 600–615ADSGoogle Scholar
  146. Popper DM, Jeong Y-C (1994) Procedures for radial velocities of close binaries from spectra obtained with the Lick echelle-CCD spectrometer. Publ Astron Soc Pac 106: 189–199ADSGoogle Scholar
  147. Popper DM, Andersen J, Clausen JV, Nordström B (1985) Absolute dimensions of eclipsing binaries. IX—The early AM system GZ Canis Majoris. Astron J 90: 1324–1333ADSGoogle Scholar
  148. Popper DM, Lacy CH, Frueh ML, Turner AE (1986) Properties of main-sequence eclipsing binaries—Into the G stars with HS Aurigae, FL Lyrae, and EW Orionis. Astron J 91: 383–404ADSGoogle Scholar
  149. Porto de Mello GF, Lyra W, Keller GR (2008) The Alpha Centauri binary system. Atmospheric parameters and element abundances. Astron Astrophys 488: 653–666ADSGoogle Scholar
  150. Pourbaix D, Nidever D, McCarthy C, Butler RP, Tinney CG, Marcy GW, Jones HRA, Penny AJ, Carter BD, Bouchy F, Pepe F, Hearnshaw JB, Skuljan J, Ramm D, Kent D (2002) Constraining the difference in convective blueshift between the components of α Centauri with precise radial velocities. Astron Astrophys 386: 280–285ADSGoogle Scholar
  151. Ribas I (2003) The 0.4-M\({{M}_{\odot}}\) eclipsing binary CU Cancri. Absolute dimensions, comparison with evolutionary models and possible evidence for a circumstellar dust disk. Astron Astrophys 398: 239–251ADSGoogle Scholar
  152. Ribas I, Jordi C, Torra J (1999) CD Tau: a detached eclipsing binary with a solar-mass companion. Mon Not R Astron Soc 309: 199–207ADSGoogle Scholar
  153. Rucinski SM (1992) Spectral-line broadening functions of W UMa-type binaries. I—AW UMa. Astron J 104: 1968–1981ADSGoogle Scholar
  154. Ségransan D, Delfosse X, Forveille T, Beuzit J-L, Udry S, Perrier C, Mayor M (2000) Accurate masses of very low mass stars. III. 16 new or improved masses. Astron Astrophys 364: 665–673ADSGoogle Scholar
  155. Sestito P, Randich S, Mermilliod J-C, Pallavicini R (2003) The evolution of lithium depletion in young open clusters: NGC 6475. Astron Astrophys 407: 289–301ADSGoogle Scholar
  156. Simon KP, Sturm E (1994) Disentangling of composite spectra. Astron Astrophys 281: 286–291ADSGoogle Scholar
  157. Siviero A, Munari U, Sordo R, Dallaporta S, Marrese PM, Zwitter T, Milone EF (2004) Asiago eclipsing binaries program. I. V432 Aurigae. Astron Astrophys 417: 1083–1092ADSGoogle Scholar
  158. Smith B (1948) A spectroscopic study of β Aurigae. Astrophys J 108: 504–509ADSGoogle Scholar
  159. Söderhjelm S (1999) Visual binary orbits and masses post HIPPARCOS. Astron Astrophys 341: 121–140ADSGoogle Scholar
  160. Southworth J, Clausen JV (2007) Absolute dimensions of eclipsing binaries. XXIV. The Be star system DW Carinae, a member of the open cluster Collinder 228. Astron Astrophys 461: 1077–1093ADSGoogle Scholar
  161. Southworth J, Maxted PFL, Smalley B (2004) Eclipsing binaries in open clusters—II. V453 Cyg in NGC 6871. Mon Not R Astron Soc 351: 1277–1289ADSGoogle Scholar
  162. Southworth J, Smalley B, Maxted PFL, Claret A, Etzel PB (2005) Absolute dimensions of detached eclipsing binaries—I. The metallic-lined system WW Aurigae. Mon Not R Astron Soc 363: 529–542ADSGoogle Scholar
  163. Southworth J, Bruntt H, Buzasi DL (2007) Eclipsing binaries observed with the WIRE satellite. II. β Aurigae and non-linear limb darkening in light curves. Astron Astrophys 467: 1215–1226ADSGoogle Scholar
  164. Standish EM (1995) Report of the IAU WGAS sub-group on numerical standards. Highlights Astron 10: 180–184ADSGoogle Scholar
  165. Stassun KG, Mathieu RD, Vaz LPR, Stroud N, Vrba FJ (2004) Dynamical mass constraints on low-mass pre-main-sequence stellar evolutionary tracks: an eclipsing binary in Orion with a 1.0 \({{M}_{\odot}}\) primary and a 0.7 \({{M}_{\odot}}\) secondary. Astrophys J Suppl Ser 151: 357–385ADSGoogle Scholar
  166. Stickland DJ, Koch RH, Pfeiffer RJ (1992) Spectroscopic binary orbits from ultraviolet radial velocities. X—CW Cephei (HD 218066). The Observatory 112: 277–281ADSGoogle Scholar
  167. Švaříček P, Wolf M, Claret A, Kotková L, Brát L, Šmelcer L, Zejda M (2008) Rapid apsidal motion in eccentric eclipsing binaries: OX Cassiopeia, PV Cassiopeia, and CO Lacertae. Astron Astrophys 477: 615–620ADSGoogle Scholar
  168. Tomasella L, Munari U, Cassisi S, Siviero A, Dallaporta S, Sordo R, Zwitter T (2008a) Asiago eclipsing binaries program. III. V570 Persei. Astron Astrophys 483: 263–270ADSGoogle Scholar
  169. Tomasella L, Munari U, Siviero A, Cassisi S, Dallaporta S, Zwitter T, Sordo R (2008b) Asiago eclipsing binaries program. II. V505 Persei. Astron Astrophys 480: 465–473ADSGoogle Scholar
  170. Tomkin J, McAlister HA, Hartkopf WI, Fekel FC (1987) The orbit of the speckle and double-lined spectroscopic binary χ Draconis. Astron J 93: 1236–1244ADSGoogle Scholar
  171. Torres G, Ribas I (2002) Absolute dimensions of the M-type eclipsing binary YY Geminorum (Castor C): a challenge to evolutionary models in the lower main sequence. Astrophys J 567: 1140–1165ADSGoogle Scholar
  172. Torres G, Stefanik RP, Andersen J, Nordström B, Latham DW, Clausen JV (1997a) Absolute dimensions of eclipsing binaries. XXII. The unevolved F-type system HS Hydrae. Astron J 114: 2764–2777ADSGoogle Scholar
  173. Torres G, Stefanik RP, Latham DW (1997b) The Hyades binaries θ 1 Tauri and θ2 Tauri: the distance to the cluster and the mass-luminosity relation. Astrophys J 485: 167–181ADSGoogle Scholar
  174. Torres G, Lacy CHS, Claret A, Zakirov MM, Arzumanyants GC, Bayramov N, Hojaev AS, Stefanik RP, Latham DW, Sabby JA (1999) Absolute dimensions of the A-type eclipsing binary V364 Lacertae. Astron J 118: 1831–1844ADSGoogle Scholar
  175. Torres G, Andersen J, Nordström B, Latham DW (2000a) Absolute dimensions of eclipsing binaries. XXIII. The F-type system EI Cephei. Astron J 119: 1942–1955ADSGoogle Scholar
  176. Torres G, Lacy CHS, Claret A, Sabby JA (2000b) Absolute dimensions of the unevolved B-type eclipsing binary GG Orionis. Astron J 120: 3226–3243ADSGoogle Scholar
  177. Torres G, Boden AF, Latham DW, Pan M, Stefanik RP (2002) Testing models of stellar evolution for metal-poor stars: an interferometric-spectroscopic orbit for the binary HD 195987. Astron J 124: 1716–1737ADSGoogle Scholar
  178. Torres G, Lacy CH, Marschall LA, Sheets HA, Mader JA (2006) The eclipsing binary V1061 Cygni: confronting stellar evolution models for active and inactive solar-type stars. Astrophys J 640: 1018–1038ADSGoogle Scholar
  179. Torres G, Latham DW, Stefanik RP (2007) Cross-correlation in four dimensions: application to the quadruple-lined spectroscopic system HD 110555. Astrophys J 662: 602–612ADSGoogle Scholar
  180. Torres G, Vaz LPR, Sandberg Lacy CH (2008a) Absolute properties of the spotted eclipsing binary star CV Boötis. Astron J 136: 2158–2171ADSGoogle Scholar
  181. Torres G, Winn JN, Holman MJ (2008b) Improved parameters for extrasolar transiting planets. Astrophys J 677: 1324–1342ADSGoogle Scholar
  182. Torres G, Claret A, Young PA (2009) Binary orbit, physical properties, and evolutionary state of Capella (α Aurigae). Astrophys J 700: 1349–1381ADSGoogle Scholar
  183. Tremko J, Papoušek J, Vetešník M (1979) Photoelectric photometry of close binary system MY Cygni. Contrib Astron Obs Skaln Pleso 8: 159–199ADSGoogle Scholar
  184. Tucker RS, Sowell JR, Williamon RM, Coughlin JL (2009) Orbital solutions and absolute elements of the eclipsing binary MY Cygni. Astron J 137: 2949–2955ADSGoogle Scholar
  185. Valenti JA, Fischer DA (2005) Spectroscopic properties of cool stars (SPOCS). I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programs. Astrophys J Suppl Ser 159: 141–166ADSGoogle Scholar
  186. VandenBerg DA, Bergbusch PA, Dowler PD (2006) The Victoria-Regina stellar models: evolutionary tracks and isochrones for a wide range in mass and metallicity that allow for empirically constrained amounts of convective core overshooting. Astrophys J Suppl Ser 162: 375–387ADSGoogle Scholar
  187. VandenBerg DA, Gustafsson B, Edvardsson B, Eriksson K, Ferguson J (2007) A constraint on \({Z_{\odot}}\) from fits of isochrones to the color-magnitude diagram of M67. Astrophys J Lett 666: L105–L108ADSGoogle Scholar
  188. van Leeuwen F (2007) Hipparcos, the new reduction of the raw data. Astrophysics and Space Science Library, vol 350Google Scholar
  189. Vaz LPR, Andersen J (1984a) Absolute dimensions of eclipsing binaries. IV—PV Puppis, a detached late A-type system with equal, intrinsically variable components. Astron Astrophys 132: 219–228ADSGoogle Scholar
  190. Vaz LPR, Andersen J (1984b) Erratum—Absolute dimension of eclipsing binaries. IV—PV Puppis—a detached late A-type system with equal intrinsically variable components. Astron Astrophys 135: 413ADSGoogle Scholar
  191. Vaz LPR, Cunha NCS, Vieira EF, Myrrha MLM (1997) V3903 Sagittarii: a massive main-sequence (O7V+O9V) detached eclipsing binary. Astron Astrophys 327: 1094–1106ADSGoogle Scholar
  192. Vaz LPR, Andersen J, Claret A (2007) Absolute dimensions of eclipsing binaries. XXV. U Ophiuchi and the evolution and composition of 5 \({{M}_{\odot}}\) stars. Astron Astrophys 469: 285–296ADSGoogle Scholar
  193. Wachmann AA (1974) UBV photometry and orbital elements of V453 Cygni. Astron Astrophys 34: 317–323ADSGoogle Scholar
  194. Willems B, van Hoolst T, Smeyers P (2003) Nonadiabatic resonant dynamic tides and orbital evolution in close binaries. Astron Astrophys 397: 973–985ADSGoogle Scholar
  195. Williamon RM (1975) Photometric study of MY Cygni. Astron J 80: 976–985ADSGoogle Scholar
  196. Williamon RM, Sowell JR, Van Hamme W (2004) Orbital solutions and absolute elements of the eclipsing binary AY Camelopardalis. Astron J 128: 1319–1323ADSGoogle Scholar
  197. Williams SJ (2009) System parameters for the eclipsing B-star binary HD 42401. Astron J 137: 3222–3229ADSGoogle Scholar
  198. Wilson RE, Devinney EJ (1971) Realization of accurate close-binary light curves: application to MR Cygni. Astrophys J 166: 605–619ADSGoogle Scholar
  199. Witte MG, Savonije GJ (1999a) The dynamical tide in a rotating 10 \({{M}_{\odot}}\) main sequence star. A study of g- and r-mode resonances. Astron Astrophys 341: 842–852ADSGoogle Scholar
  200. Witte MG, Savonije GJ (1999b) Tidal evolution of eccentric orbits in massive binary systems. A study of resonance locking. Astron Astrophys 350: 129–147ADSGoogle Scholar
  201. Witte MG, Savonije GJ (2002) Orbital evolution by dynamical tides in solar type stars. Application to binary stars and planetary orbits. Astron Astrophys 386: 222–236ADSGoogle Scholar
  202. Wolf M (2000) Apsidal motion in southern eccentric eclipsing binaries: YY Sgr, V523 Sgr, V1647 Sgr, V2283 Sgr and V760 Sco. Astron Astrophys 356: 134–140ADSGoogle Scholar
  203. Wolf M (2009) On the apsidal motion of MY Cygni. Astron Astrophys 498: 821–823ADSGoogle Scholar
  204. Wolf M, Zejda M (2005) Apsidal motion in southern eccentric eclipsing binaries: V539 Ara, GG Lup, V526 Sgr and AO Vel. Astron Astrophys 437: 545–551ADSGoogle Scholar
  205. Wolf M, Kučáková H, Kolasa M, Štastný P, Bozkurt Z, Harmanec P, Zejda M, Brát L, Hornoch K (2006) Apsidal motion in eccentric eclipsing binaries: CW Cephei, V478 Cygni, AG Persei, and IQ Persei. Astron Astrophys 456: 1077–1083ADSGoogle Scholar
  206. Yakut K, Aerts C, Morel T (2007) The early-type close binary CV Velorum revisited. Astron Astrophys 467: 647–655ADSGoogle Scholar
  207. Yi S, Demarque P, Kim Y-C, Lee Y-W, Ree CH, Lejeune T, Barnes S (2001) Toward better age estimates for stellar populations: the Y 2 isochrones for Solar mixture. Astrophys J Suppl Ser 136: 417–437ADSGoogle Scholar
  208. Zasche P, Wolf M (2007) Combining astrometry with the light-time effect: the case of VW Cep, ζ Phe and HT Vir. Astron Nachr 328: 928–937ADSGoogle Scholar
  209. Zhao M, Monnier JD, Torres G, Boden AF, Claret A, Millan-Gabet R, Pedretti E, Berger J-P, Traub WA, Schloerb FP, Carleton NP, Kern P, Lacasse MG, Malbet F, Perraut K (2007) Physical orbit for λ Virginis and a test of stellar evolution models. Astrophys J 659: 626–641ADSGoogle Scholar
  210. Zucker S, Mazeh T (1994) Study of spectroscopic binaries with TODCOR. I: A new two-dimensional correlation algorithm to derive the radial velocities of the two components. Astrophys J 420: 806–810ADSGoogle Scholar
  211. Zucker S, Torres G, Mazeh T (1995) Study of spectroscopic binaries with TODCOR. III. Application to triple-lined systems. Astrophys J 452: 863–869ADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.The Niels Bohr Institute, AstronomyUniversity of CopenhagenCopenhagenDenmark
  3. 3.Nordic Optical Telescope Scientific AssociationLa PalmaSpain
  4. 4.Centro de Astrobiología (CSIC/INTA)Torrejon de ArdozSpain

Personalised recommendations