The Astronomy and Astrophysics Review

, Volume 17, Issue 2, pp 149–179 | Cite as

Results from the Huygens probe on Titan

  • Jean-Pierre Lebreton
  • Athena Coustenis
  • Jonathan Lunine
  • François Raulin
  • Tobias Owen
  • Darrell Strobel
Review Article


The Cassini–Huygens mission, comprising the NASA Saturn Orbiter and the ESA Huygens Probe, arrived at Saturn in late June 2004. The Huygens probe descended under parachute in Titan’s atmosphere on 14 January 2005, 3 weeks after separation from the Orbiter. We discuss here the breakthroughs that the Huygens probe, in conjunction with the Cassini spacecraft, brought to Titan science. We review the achievements ESA’s Huygens probe put forward and the context in which it operated. The findings include new localized information on several aspects of Titan science: the atmospheric structure and chemical composition; the aerosols distribution and content; the surface morphology and composition at the probe’s landing site; the winds, the electrical properties, and the implications on the origin and evolution of the satellite.


Titan Cassini–Huygens Space missions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atreya SK, Donahue TM, Kuhn WR (1978) Evolution of a nitrogen atmosphere on Titan. Science 201: 611–613CrossRefADSGoogle Scholar
  2. Bar-Nun A, Kleinfeld I, Kochavi E (1988) Trapping of gas mixtures by amorphous water ice. Phys Rev B 38: 7749–7754CrossRefADSGoogle Scholar
  3. Béghin C, Simões F, Karnoselskhikh V, Schwingenschuh K, Berthelier J-J, Besser B, Bettanini C, Grard R, Hamelin M, Lopez-Moreno JJ, Molina-Cuberos GJ, Tokano T (2007) A Schumann-like resonance on Titan driven by Saturn’s magnetosphe possibly revealed by the Huygens Probe. Icarus 191: 251–266. doi: 10.1016/j.icarus.2007.04.005 CrossRefADSGoogle Scholar
  4. Bézard B, Nixon C, Kleiner I, Jennings D (2007) Detection of 13CH3 D on Titan. Icarus 191: 397–400CrossRefADSGoogle Scholar
  5. Biemann K (2006) Astrochemistry: complex organic matter in Titan’s aerosols. Nature 444: E6CrossRefADSGoogle Scholar
  6. Bird MK, Dutta-Roy R, Asmar SW, Rehold TA (1997) Detection of Titan’s ionosphere from Voyager 1 radio occultation. Icarus 130: 426–436CrossRefADSGoogle Scholar
  7. Bird MK et al (2005) The vertical profile of winds on Titan. Nature 438: 800–802. doi: 10.1038/nature04060 CrossRefADSGoogle Scholar
  8. Bockelée-Morvan D et al (1998) Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133: 147–162CrossRefADSGoogle Scholar
  9. Borucki WJ, Levin Z, Whitten RC, Keesee RG, Capone LA, Summers AL, Toon OB, Dubach J (1987) Predictions of the electrical conductivity and charging of the aerosols in Titan’s atmosphere. Icarus 72: 604–622CrossRefADSGoogle Scholar
  10. Borucki WJ, Whitten RC (2008) Influence of high abundances of aerosols on the electrical conductivity of the Titan atmosphere. Planet Space Sci 56: 19–26CrossRefADSGoogle Scholar
  11. Civeit T, Appourchaux T, Lebreton J-P, Luz D, Courtin R, Neiner C, Witasse O, Gautier D (2005) On measuring planetary winds using high-resolution spectroscopy in visible wavelengths. Astron Astrophys 431: 1157–1166CrossRefADSGoogle Scholar
  12. Cochran A (2002) A search for \({{N}^{+}_{2} }\) in spectra of comet C/2002 C1 (Ikeya–Zhang). Astrophys J Lett 576: L165–L168CrossRefADSGoogle Scholar
  13. Cochran AL, Jehin E, Manfroid J, Hutsemékers D, Arpigny C, Zucconi J-M, Schulz R (2006) Nitrogen isotope ratios in comets. In: Santos NC, Pasquini L, Correia ACM, Romaniello M (eds) Precision spectroscopy of astrophysics. Springer, Heidelberg, pp 263–265Google Scholar
  14. Coll P, Coscia D, Gazeau M-C, Raulin F (1998) Review and latest results of laboratory investigation of Titan’s aerosols. Orig Life Evol B 28: 195–213CrossRefGoogle Scholar
  15. Courtin R, Kim CK, Kim SJ, Gautier D (2007) The tropospheric abundance of H 2 on Titan from the Cassini CIRS Investigation 39th DPS meeting, Orlando (Florida), BAAS 39(56.05), 529Google Scholar
  16. Coustenis A, Atreya S, Balint T, Brown RH, Dougherty M, Ferri F, Fulchignoni M, Gautier D, Gowen R, Griffith C, Gurvits L, Jaumann R, Langevin Y, Leese M, Lunine J, McKay CP, Moussas X, Müller-Wodarg I, Neubauer F, Owen T, Raulin F, Sittler E, Sohl F, Sotin C, Tobie G, Tokano T, Turtle E, Wahlund J-E, Waite H, Baines K, Blamont J, Dandouras I, Krimigis T, Lellouch E, Lorenz R, Morse A, Porco C, Hirtizig M, Saur J, Coates A, Spilker T, Zarnecki J, co-authors 113 (2008) TandEM: Titan and Enceladus mission. Exp Astron 23: 893–946. doi: 10.1007/s10686-008-9103-z
  17. Coustenis A, Achterberg R, Conrath B, Jennings D, Marten A, Gautier D, Bjoraker G, Nixon C, Romani P, Carlson R, Flasar M, Samuelson RE, Teanby N, Irwin P, Bézard B, Orton G, Kunde V, Abbas M, Courtin R, Fouchet TH, Hubert A, Lellouch E, Mondellini J, Taylor FW, Vinatier S (2007) The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189: 35–62CrossRefADSGoogle Scholar
  18. Coustenis A, Lunine JI, Lebreton J-P, Matson D, Reh K, Beauchamp P, Edr Ch, and the TSSM team, (2008). TSSM: the in situ exploration. Europlanet Planetary Science Congress, Münster, Germany, 22–26 Sept 2008Google Scholar
  19. Crovisier J (1998) Physics and chemistry of comets: recent results from comets Hyakutake and Hale–Bopp. Answers to old questions and new enigmas. In: Chemistry and physics of molecules and grains in space, Faraday discussions, vol 109. Royal Society of Chemistry, London pp 437–452Google Scholar
  20. Cui J, Yelle RV, Volk K (2008) Distribution and escape of molecular hydrogen in Titan’s thermosphere and exosphere. J Geophys Res (in press)Google Scholar
  21. Flasar FM (1998) The dynamic meteorology of Titan. Planet Space Sci 46: 1125–1147CrossRefADSGoogle Scholar
  22. Folkner WM et al (2006) Winds on Titan from ground-based tracking of the Huygens probe. J Geophys Res 111: E07S02. doi: 10.1029/2005JE002649 CrossRefGoogle Scholar
  23. Fulchignoni M, Ferri F, Angrilli F et al (2005) Titan’s physical characteristics measured by the Huygens Atmospheric Structure Instrument (HASI). Nature 438: 785–791. doi: 10.1038/nature04314 CrossRefADSGoogle Scholar
  24. Gautier D, Hersant F (2005) Formation and composition of planetesimals. Space Sci Rev 116: 25–52. doi: 10.1007/s11214-005-1946-2 CrossRefADSGoogle Scholar
  25. Gautier D et al (2001) Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. Astrophys J 550: L227–L230CrossRefADSGoogle Scholar
  26. Gautier D et al (2001) Erratum: Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. Astrophys J 559: L183–L183CrossRefADSGoogle Scholar
  27. Geiss J (1988) Composition in Halley’s Comet: clues to origin and history of cometary matter. Rev Mod Astron 1: 1–27ADSGoogle Scholar
  28. Grard R, Svedhem H, Brown V, Falkner P, Hamelin M (1995) An experimental investigation of atmospheric electricity and lightning activity to be performed during the descent of the Huygens probe on Titan. J Atmos Terr Phys 57: 575–585CrossRefADSGoogle Scholar
  29. Grard R, Hamelin M, Lopez-Moreno JJ, Schwingenschuh K, Jernej I, Molina-Cuberos GJ, Simões F, Trautner R, Falkner P, Ferri F, Fulchignoni M, Rodrigo R, Svedhem H, Béghin C, Bertherlier J-J, Brown VJG, Chabassiere M, Jeronimo JM, Lara LM, Tokano T (2006) Electric properties and related physical characterisation of the atmosphere of Titan. Planet Space Sci 54: 1124–1136CrossRefADSGoogle Scholar
  30. Grevesse N, Asplund M, Sauval J (2005) The new solar chemical composition. In: Alecian G, Richard O, Vauclair S (ed) Element stratification in stars: 40 years of atomic diffusion. EAS Publications Series 17, pp 21–30Google Scholar
  31. Griffith CA, Penteado P, Rannou P, Brown R, Boudon V, Baines K, Clark R, Drossart P, Buratti B, Nicholson P, Jaumann R, McKay CP, Coustenis A, Negrão A (2006) Evidence for ethane clouds on Titan from Cassini VIMS observations. Science 313: 1620–1622CrossRefADSGoogle Scholar
  32. Hamelin M, Béghin C, Grard R, Lopez-Moreno JJ, Schwingenschuh K, Simões F, Trautner R, Berthelier JJ, Brown VJG, Chabassière M, Falkner P, Ferri F, Fulchignoni M, Jernej I, Jeronimo JM, Molina-Cuberos GJ, Rodrigo R, Svedhem H (2007) Tokano, electron conductivity and density profiles derived from the mutual impedance probe measurements performed during the descent of Huygens through the atmosphere of Titan, planet. Space Sci 55(13): 1964–1977CrossRefADSGoogle Scholar
  33. Hersant F, Gautier D, Tobie G, Lunine JI (2008) An interpretation of the carbon abundance in Saturn measured by Cassini. Planet Space Sci 56: 1103–1111CrossRefADSGoogle Scholar
  34. Hirtzig M, Coustenis A, Gendron E, Drossart P, Negrao A, Combes M, Lai O, Rannou P, Lebonnois S, Luz D (2006) Monitoring atmospheric phenomena on Titan. Astron Astrophys 456: 761–774CrossRefADSGoogle Scholar
  35. Hourdin F et al (1995) Numerical simulation of the general circulation of the atmosphere of Titan. Icarus 117: 358–374CrossRefADSGoogle Scholar
  36. Imanaka H, Khare BN, Elsila JE et al (2004) Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus 168: 344–366CrossRefADSGoogle Scholar
  37. Israël G, Cabane M, Brun JF, Niemann H, Way S, Riedler W, Steller M, Raulin F, Coscia D (2002) The Cassini–Huygens ACP experiment and exobiological implications. Space Sci Rev 104: 435–466CrossRefADSGoogle Scholar
  38. Israël G, 21 co-authors (2005) Evidence for the presence of complex organic matter in Titan’s aerosols by in situ analysis. Nature 438:796–799Google Scholar
  39. Israël G, 21 co-authors (2006) Astrochemistry: complex organic matter in Titan’s aerosols? (Reply). Nature 444:E6-E7Google Scholar
  40. Khare BN, Sagan C, Ogino H et al (1986) Amino acids derived from Titan tholins. Icarus 68: 176–184CrossRefADSGoogle Scholar
  41. Kostiuk T, Fast KE, Livengood TA, Hewagama T, Goldstein JJ, Espenak F, Buhl D (2001) Direct measurement of winds on Titan. Geophys Res Lett 28: 2361–2364CrossRefADSGoogle Scholar
  42. Lebreton J-P, Witasse O, Sollazzo C, Blancquaert T, Couzin P, Schipper A-M, Jones JB, Matson DL, Gurvits LI, Atkinson DH, Kazeminejad B, Perez-Ayucar M (2005) An overview of the descent and landing of the Huygens Probe on Titan. Nature, 8 December 2005. doi: 10.1038/nature04347
  43. Lellouch E, Coustenis A, Gautier D, Raulin F, Dubouloz N, Frere C (1989) Titan’s atmosphere and hypothesized ocean: a reanalysis of the Voyager 1 radio-occultation and IRIS 7.7 μm data. Icarus 79: 328–349CrossRefADSGoogle Scholar
  44. Lorenz RD, Niemann HB, Harpold DN, Way SH, Zarnecki JC (2006) Titan’s damp ground: constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteor Planet Sci 41: 1705–1714ADSCrossRefGoogle Scholar
  45. Lorenz RD, Stiles B, Kirk RL, Allison M, Persidel Marmo P, Iess L, Lunine JI, Ostro SJ, Hensley S (2008) Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319: 1649–1651CrossRefADSGoogle Scholar
  46. Lunine JI, Yung YL, Lorenz RD (1999) On the volatile inventory of Titan from isotopic abundances in nitrogen and methane. Planet Space Sci 47: 1291–1301CrossRefADSGoogle Scholar
  47. Lunine JI, Elachi C, Wall SD, Janssen MA, Allison MD, Anderson Y, Boehmer R, Callahan P, Encrenaz P, Flamini E, Franceschetti G, Gim Y, Hamilton G, Hensley S, Johnson WTK, Kelleher K, Kirk RL, Lopes RM, Lorenz R, Muhleman DO, Orosei R, Ostro SJ, Paganelli F, Paillou P, Picardi G, Posa F, Radebaugh J, Roth LE, Seu R, Shaffer S, Soderblom LA, Stiles B, Stofan ER, Vetrella S, West R, Wood CA, Wye L, Zebker H, Alberti G, Karkoschka E, Rizk B, McFarlane E, See C, Kazeminejad B (2008) Titan’s diverse landscapes as evidenced by Cassini RADAR’s third and fourth looks at Titan. Icarus 195: 415–433CrossRefADSGoogle Scholar
  48. Marty B, Guillot T, Coustenis A et al (2008) KRONOS: exploring the depths of Saturn with probes and remote sensing through an international mission. Expt Astron 23: 947–976. doi: 10.1007/s10686-008-9084-9 CrossRefADSGoogle Scholar
  49. McKay CP, Coustenis A, Samuelson RE, Lemmon MT, Lorenz RD, Cabane M, Rannou P, Drossart P (2000) The physical properties of the organic aerosols and clouds on Titan. Planet Space Sci 49: 79–100CrossRefADSGoogle Scholar
  50. Meibom A, Krot AN, Robert F, Mostefaoui S, Russell SS, Petaev MI, Gounelle M (2007) Nitrogen and carbon isotopic composition of the Sun inferred from a high-temperature solar nebular condensate. Astrophys J 656: L33–L36CrossRefADSGoogle Scholar
  51. Meier R, Owen TC (1999) Cometary deuterium. Space Sci Rev 90: 33–43. doi: 10.1023/A:1005269208310 CrossRefADSGoogle Scholar
  52. Meier R et al (1998) Deuterium in comet C/1995 O1 (Hale-Bopp): detection of DCN. Science 279: 1707–1710CrossRefADSGoogle Scholar
  53. Molina-Cuberos GJ, Lopez-Moreno JJ, Lara LM, Rodrigo R, O’Brien K (1999a) Ionization by cosmic rays of the atmosphere of Titan. Planet Space Sci 47: 1347–1354CrossRefADSGoogle Scholar
  54. Molina-Cuberos GJ, Lopez-Moreno JJ, Rodrigo R, Lara LM (1999b) Chemistry of the galactic cosmic rays of the atmosphere of Titan. J Geophys Res 104(E9): 21997–22024CrossRefADSGoogle Scholar
  55. Nguyen M-J (2007) Ph.D. thesis, University Paris, 12 December 2007Google Scholar
  56. Nguyen M-J, Raulin F, Coll P, Derenne S, Szopa C, Cernogora G, Israël G, Bernard J-M (2007) Carbon isotopic enrichment in Titan’s tholins? Implications for Titan’s aerosols. Planet Space Sci 55: 2010–2014CrossRefADSGoogle Scholar
  57. Niemann HB et al (2008) (personal communication)Google Scholar
  58. Niemann HB, Atreya SK, Bauer SJ et al (2005) The abundances of constituents of Titans’ atmosphere from the GCMS instrument on the Huygens probe. Nature 438: 779–784CrossRefADSGoogle Scholar
  59. Owen T (2005) Preliminary results from Huygens GCMS. Phys Usp 635: 6–38Google Scholar
  60. Owen T, Bar-Nun A (1995) Comets, impacts and atmospheres. Icarus 116: 215–226CrossRefADSGoogle Scholar
  61. Owen T, Bar-Nun A (2000) Volatile contributions from icy planetesimals. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, pp 459–475Google Scholar
  62. Owen T, Mahaffy PR, Niemann HB, Atreya S, Wong M (2001) Protosolar nitrogen. Astrophys J 553: L77–L79CrossRefADSGoogle Scholar
  63. Pollack J, Bodenheimer P (1989) Theories of the origin and evolution of the giant planets. In: Atreya SK, Pollack JB, Matthews MS (eds) Origin and evolution of planetary and satellite atmospheres. University of Arizona Press, Tucson, pp 564–602Google Scholar
  64. Porco CC et al (2005) Imaging of Titan from the Cassini spacecraft. Nature 434: 159–168CrossRefADSGoogle Scholar
  65. Raulin F, Nguyen MJ, Coll P (2007) Titan: an astrobiological laboratory in the solar system. In: Hoover RB, Levin GV, Rozanov AY, Davies PCW (eds) Proc. SPIE 6694. Instruments, methods, and missions for astrobiology X. doi: 10.1117/12.732883
  66. Sagan C, Khare BN (1979) Tholins. Organic chemistry of interstellar grains and gas. Nature 277: 102–107CrossRefADSGoogle Scholar
  67. Sicardy B, Colas F, Widemann T et al (2004) The two stellar occultations of November 14, 2003: revealing Titan’s stratosphere at sub-km resolution. BAAS 36: 1119ADSGoogle Scholar
  68. Simões F, Grard R, Hamelin M, Lopez-Moreno JJ, Schwingenschuh K, Béghin C, Berthelier JJ, Besser B, Brown VJG, Chabassiere M, Falkner P, Ferri F, Fulchignoni M, Hofe RM, Jernej I, Jeronimo JM, Molina-Cuberos GJ, Rodrigo R, Svedhem H, Tokano T, Trautner R (2007) A new numerical model for the simulation of ELF wave propagation and the computation of eigenmodes in the atmosphere of Titan: did Huygens observe any Schumann resonance. Planet Space Sci 55: 1978–1989CrossRefADSGoogle Scholar
  69. Soderblom LA, Tomasko MA, Archinal BA, Becker TL, Bushroe MW, Cook DA, Doose LR, Galuszka DM, Hare TM, Howington-Kraus E, Karkoschka E, Kirk RL, Lunine JI, McFarlane EA, Redding BL, Rizk B, Rosiek MR, See C, Smith PH (2007) Topography and geomorphology of the Huygens landing site on Titan. Planet Space Science 55: 2015–2024CrossRefADSGoogle Scholar
  70. Strobel DF (2008) Titan’s hydrodynamically escaping atmosphere. Icarus 193: 588–594. doi: 10.1016/j.icarus.2007.08.014 CrossRefADSGoogle Scholar
  71. Strobel DF, Sicardy B (1997) Gravity wave and wind shear models. In: Lebreton JP (ed) HUYGENS Science, Payload and Mission. ESA SP, vol 1177, pp 299–311Google Scholar
  72. Strobel DF (1982) Chemistry and evolution of Titan’s atmosphere. Planet Space Sci 30: 839–848CrossRefADSGoogle Scholar
  73. Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005) Titan’s internal structure inferred from a coupled thermal–orbital model. Icarus 175: 496–502CrossRefADSGoogle Scholar
  74. Tobie G, Lunine JL, Sotin C (2006) Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440: 61–64CrossRefADSGoogle Scholar
  75. Tobie G, Èadek O, Sotin C (2008) Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus 196: 642–652CrossRefADSGoogle Scholar
  76. Tokano T (2007) Near-surface winds at the Huygens site on Titan: interpretation by means of a general circulation model. Planet Space Sci 55: 1990–2009CrossRefADSGoogle Scholar
  77. Tokano T, Neubauer F (2002) Tidal winds on Titan caused by Saturn. Icarus 158: 499–515CrossRefADSGoogle Scholar
  78. Tomasko MG, Archinal B, Becker T et al (2005) Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438: 765–778CrossRefADSGoogle Scholar
  79. Tomasko MG, Doose L, Engel S, Dafoe LE, West R, Lemmon M, Karkoschka E, See C (2008) A model of Titan’s aerosols based on measurements made in titan’s atmosphere. Planet Space Sci 56(5): 669–707CrossRefADSGoogle Scholar
  80. Van Dishoeck E et al (1993) The chemical evolution of protostellar and protoplanetary matter. In: Levy EH, Lunine JI (eds) Protostars and planets III. University of Arizona Press, Tucson, pp 163–241Google Scholar
  81. Vervack RJ Jr, Sandel BR, Strobel DF (2004) New perspectives on Titan’s upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations. Icarus 170: 91–112CrossRefADSGoogle Scholar
  82. Vinatier S, Bezard B, Nixon C (2007) The Titan 14 N/15 N and 12 C/13 C isotope ratios in HCN from Cassini CIRS. Icarus 191: 712–721CrossRefADSGoogle Scholar
  83. Walterscheid RL, Schubert G (2006) A tidal explanation for the Titan haze layers. Icarus 183: 471–478CrossRefADSGoogle Scholar
  84. Waite H Jr, Niemann H, Yelle RV, Kasprzak WT et al (2005) Ion neutral mass spectrometer results from the first flyby of Titan. Science 308: 982–986CrossRefADSGoogle Scholar
  85. Waite H, Young DT, Cravens TE, Coates AJ, Crary FJ, Magee B, Westlake J (2007) The process of tholin formation in Titan’s upper atmosphere. Science 316: 870–875CrossRefADSGoogle Scholar
  86. Yelle RV, Strobel DF, Lellouch E, Gautier D (1997) Engineering models for Titan’s atmosphere. In: Lebreton JP (ed), HUYGENS Science, Payload and Mission. ESA SP, vol 1177, pp 243–256Google Scholar
  87. Yelle RV, Cui J, Müller-Wodarg ICF (2008) Methane escape from Titan’s atmosphere. J Geophys Res 113(E10): E10003CrossRefADSGoogle Scholar
  88. Yung Y, Allen M, Pinto JP (1984) Photochemistry of the atmosphere of Titan—comparison between model and observations. Astrophys J Suppl Ser 55: 465–506CrossRefADSGoogle Scholar
  89. Zarnecki JC, Leese MR, Hathi B, Ball AJ, Hagermann A, Towner MC, Lorenz RD, McDonnell JAM, Green SF, Patel MR, Ringrose TJ, Rosenberg PhD, Atkinson KR, Paton MD, Banaszkiewicz M, Clark BC, Ferri F, Fulchignoni M, Ghafoor NAL, Kargl G, Svedhem H, Delderfield J, Grande M, Parker DJ, Challenor PG, Geake JE (2005) A solid surface on Titan as revealed by the Huygens surface science package. Nature 438: 792–795CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jean-Pierre Lebreton
    • 1
  • Athena Coustenis
    • 2
  • Jonathan Lunine
    • 3
  • François Raulin
    • 4
  • Tobias Owen
    • 5
  • Darrell Strobel
    • 6
  1. 1.ESA/ESTEC, SRE-SMNoordwijkThe Netherlands
  2. 2.LESIA, Observatoire de Paris-MeudonMeudon CedexFrance
  3. 3.Department of Planetary SciencesThe University of ArizonaTucsonUSA
  4. 4.LISACNRS and UnivCréteil CedexFrance
  5. 5.Institute for AstronomyUniversity of HawaiiHonoluluUSA
  6. 6.The Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations