The Astronomy and Astrophysics Review

, Volume 17, Issue 2, pp 181–249 | Cite as

What makes a planet habitable?

  • H. Lammer
  • J. H. Bredehöft
  • A. Coustenis
  • M. L. Khodachenko
  • L. Kaltenegger
  • O. Grasset
  • D. Prieur
  • F. Raulin
  • P. Ehrenfreund
  • M. Yamauchi
  • J.-E. Wahlund
  • J.-M. Grießmeier
  • G. Stangl
  • C. S. Cockell
  • Yu. N. Kulikov
  • J. L. Grenfell
  • H. Rauer
Review Article

Abstract

This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane–ethane surface lakes on Saturn’s large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life.

Keywords

Habitability Origin of life Terrestrial planets Subsurface oceans Atmosphere evolution Earth-like exoplanets Space weather Astrobiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Anderson KA, Carlson CW, McFadden J, Curtis DW, Mitchell D, Reme H, Mazelle C, Sauvaud JA, d’Uston C, Cros A, Medale JL, Bauer SJ, Cloutier P, Mayhew M, Winterhalter D, Ness NF (1998) Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor mission. Science 279: 1676ADSGoogle Scholar
  2. Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Mitchell D, Anderson KA, Carlson CW, McFadden J, Reme H, Mazelle C, Vignes D, Bauer SJ, Cloutier P, Ness NF (2001) Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J Geophys Res 106: 23403. doi:10.1029/2000JE001404 ADSGoogle Scholar
  3. Aguilar DA (2008) Earth: a borderline planet for life? Harvard-Smithsonian Center for Astrophysics, CfA Press Release No. 2008-02 For Release: Wednesday, January 09, 2008 11:00:00 AM ESTGoogle Scholar
  4. Alfvén H, Fälthammar CG (1963) Cosmical electrodynamics, fundamental principles. Clarendon, OxfordMATHGoogle Scholar
  5. Allamandola LJ, Hudgins DM, Sandford SA (1999) Carbon chain abundance in the diffuse interstellar medium. ApJ 511: 115ADSGoogle Scholar
  6. Ambruster CW, Pettersen BR, Hawley S, Coleman LA, Sandman WH (1986) An episode of mass expulsions from the M-dwarf flare star EV Lacertae? In: Rolfe EJ (ed) New insights in astrophysics. Eight Years of UV Astronomy with IUE, European Space Agency, Paris, ESA SP-263, pp 137–140Google Scholar
  7. Ansan V v, Vergely P, Masson Ph (1996) Model of formation of Ishtar Terra, Venus. Planet Space Sci 44: 817ADSGoogle Scholar
  8. Arndt NT (2004) Crustal growth rates. In: Eriksson PG et al (eds) The precambrian Earth: tempos and events. Dev Precambrian Geol 12:155Google Scholar
  9. Audard M, Güdel M, Drake JJ, Kashyap VL (2000) Extreme-ultraviolet flare activity in late-type stars. Astrophys J 541: 396ADSGoogle Scholar
  10. Ayres TR (1997) Evolution of the solar ionizing flux. J Geophys Res 102: 1641ADSGoogle Scholar
  11. Bada JL, Lazcano A (2003) Prebiotic soup—revisiting the Miller experiment. Science 300: 745Google Scholar
  12. Beaugé S, Ferraz-Mello S, Michtchenko TA (2008) Planetary masses and orbital parameters from radial velocity measurements. In: Dvorak D (eds) Extrasolar planets. Wiley-VCH, Weinheim, pp 1–26Google Scholar
  13. Becker L, Bunch TE (1997) Fullerenes, fulleranes and PAHs in the Allende meteorite. Meteoritics 32: 479Google Scholar
  14. Bibring J-P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307: 1576ADSGoogle Scholar
  15. Bond HE, Mullan DJ, O’Brien MS, Sion EM (2001) Detection of coronal mass ejections in V471 Tauri with the Hubble Space Telescope. ApJ 560: 919ADSGoogle Scholar
  16. Boss AP (2004) From molecular clouds to circumstellar disks. In: Festou M et al (eds) Comets II. University of Arizona Press, Tucson, pp 67–80Google Scholar
  17. Brace LH, Theis RF, Hoegy WR (1982) Plasma clouds above the ionopause of Venus and their implications. Planet Space Sci 30: 29ADSGoogle Scholar
  18. Brasier MD, Green OR, Lindsay JF, McLoughlin N, Steele A, Stoakes C (2005) Critical testing of Earth’s oldest putative fossil assemblage from the ~3.5 Ga Apex chert, Chinaman Creek, Western Australia, Precambrian Research, vol 140, p 55Google Scholar
  19. Bredehöft JH, Meierhenrich UJ (2008) Amino acid structures from UV irradiation of simulated interstellar ices. In: Takenaka N (eds) Photochemistry in ice. Research Signpost, Kerala, IndiaGoogle Scholar
  20. Breuer D, Spohn T (2003) Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. J Geophys Rev 108: 5072. doi:10.1029/2002JE001999 Google Scholar
  21. Breuer D, Zhou H, Yuen A, Spohn T (1996) Phase transitions in the martian mantle: implications for the planet’s volcanic history. J Geophys Res 101: 7531ADSGoogle Scholar
  22. Breuer D, Yuen A, Spohn T (1997) Phase transitions in the Martian mantle: implications for partially layered convection. Earth Planet Sci Lett 148: 457ADSGoogle Scholar
  23. Briggs R, Ertem G, Ferris JP, Greenberg JM, McCain PJ, Mendoza-Gomez CX, Schutte W (1992) Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Orig Life Evol Biosph 22: 287–307ADSGoogle Scholar
  24. Brown RH, Soderblom LA, Soderblom JM, Clark RN, Jaumann R, Barnes JW, Sotin C, Buratti B, Baines KH, Nicholson PD (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454: 607ADSGoogle Scholar
  25. Brownlee D, The stardust preliminary examination science team (2006) Comet 81P/Wild 2 under a microscope. Science 314:Google Scholar
  26. Cabrol NA, Grin EA (2005) Ancient and recent lakes on Mars. In: Tetsuya Tokano (eds) Water on Mars and life. Springer, Heidelberg, p 235Google Scholar
  27. Cain JC, Beaumont P, Holter W, Wang Z, Nevanlinna H (1995) The magnetic bode fallacy. J Geophys Res 100: 9439ADSGoogle Scholar
  28. Christensen UR, Aubert J (2006) Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys J Int 166: 97ADSGoogle Scholar
  29. Cernicharo J, Crovisier J (2005) Water in space: the water world of ISO. Space Sci Rev 119: 29ADSGoogle Scholar
  30. Chappell CR, Olsen RC, Green JL, Johnson JFE, Waite JH Jr (1982) The Discovery of nitrogen ions in the Earth’s magnetosphere. Geophys Res Lett 9: 937ADSGoogle Scholar
  31. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery, and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355: 125ADSGoogle Scholar
  32. Cockell CS (1999) Life on Venus. Planet Space Sci 47: 1487ADSGoogle Scholar
  33. Cockell CS, Herbst T, Léger A, Absil O, Beichmann C, Benz W, Brack A, Chazelas B, Chelli A, Cottin H, Coudédu Foresto V, Danchi W, Defrère D, den Herder J-W, Eiroa C, Fridlund M, Hennin T, Johnston K, Kaltenegger L, Labadie L, Lammer H, Launhardt R, Lawson P, Lay o P, Liseau R, Martin SR, Mawet D, Mourard D, Moutou C, Mugnier L, Paresce F, Quirrenbach A, Rabbia Y, Rottgering HJA, Rouan D, Santos N, Selsis F, Serabyn E, Westall F, White G, Ollivier M, Bordé P (2009) Darwin—an experimental astronomy mission to search for extrasolar planets. Exp Astron 23: 435. doi:10.1007/s10686-008-9121-x ADSGoogle Scholar
  34. Connerney JEP, Acuña MH, Wasilewski PJ, Kletetschka G, Ness NF, Rème H, Lin RP, Mitchell DL (2001) The global magnetic field of Mars and implications for crustal evolution. Geophys Res Lett 28: 4015ADSGoogle Scholar
  35. Connerney JEP, Acuña MH, Ness NF, Spohn T (2004) Mars crustal. Sci Rev 111: 1ADSGoogle Scholar
  36. Coustenis A, Taylor F (2008) Titan: exploring an Earthlike World. Series on atmospheric, oceanic and planetary physics, vol 4. World Scientific, SingaporeGoogle Scholar
  37. Coustenis A, Achterberg R, Conrath B, Jennings D, Marten A, Gautier D, Bjoraker G, Nixon C, Romani P, Carlson R, Flasar M, Samuelson R E, Teanby N, Irwin P, Bézard B, Orton G, Kunde V, Abbas M, Courtin R, Fouchet Th, Hubert A, Lellouch E, Mondellini J, Taylor F W, Vinatier S (2007) The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189: 35ADSGoogle Scholar
  38. Coustenis A et al (2009) TandEM: Titan and Enceladus mission. Exp Astron 23: 893. doi:10.1007/s10686-008-9103-z ADSGoogle Scholar
  39. Cully SL, Fisher GH, Abbott MJ, Siegmund OHW (1994) A coronal mass ejection model for the 1992 July flare on AU Microscopii observed by the Extreme Ultraviolet Explorer. ApJ 435: 449ADSGoogle Scholar
  40. Cully CM, Donovan EF, Yau AW, Arkos GG (2003) Akebono/Suprathermal Mass Spectrometer observations of low energy ion outflow: dependence on magnetic activity and solar wind conditions. J Geophys Res 108: 1093. doi:10.1029/2001JA009200 Google Scholar
  41. DesMarais DJ, Harwit MO, Jucks KW, Kasting JF, Lin DNC, Lunine JI, Schneider J, Seager S, Traub WA, Woolf NJ (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2: 153ADSGoogle Scholar
  42. Dehant V, Lammer H, Kulikov Yu N, Grießmeier J-M, Breuer D, Verhoeven O, Karatekin Ö, Van Hoolst T, Korablev O, Lognonnè E (2007) Planetary magnetic dynamo effext on atmospheric protection of early Earth and Mars. Space Sci Rev 129: 279ADSGoogle Scholar
  43. Ehrenfreund P, Charnley SB (2000) Organic molecules in the interstellar medium, comets, and meteorites: A voyage from dark clouds to the early Earth. Annu Rev Astron Astrophys 38: 427ADSGoogle Scholar
  44. Ehrenfreund P, Spaans M (2007) Cosmic carbon chemistry American Chemical Society. In: ACS Symposium: Chemical Evolution I: Chemical Change Across Space and Time. 233rd ACS, Chicago. Oxford University Press, Oxford, pp 232–246Google Scholar
  45. Ehrenfreund P, Irvine W, Becker L, Blank J, Brucato J, Colangeli L, Derenne S, Despoi D, Dutrey A, Fraaije H, Lazcano A, Owen T, Robert F (2002) Astrophysical and astrochemical insights into the origin of life. Rep Prog Phys 65: 1427ADSGoogle Scholar
  46. Ehrenfreund P, Cox N, Foing BH (2006) Natural fullerenes and related structures of elemental carbon. Ser Dev Fuller Sci 6: 57Google Scholar
  47. Eriksson PG, Catuneanu O (2004) A commentary on Precambrian plate tectonics. In: Eriksson PG, Altermann W, Nelson DR et al (eds) The precambrian Earth: tempos and events. Dev Precambrian Geol 12:201Google Scholar
  48. Evans JV (1977) Satellite beacon contributions to studies of the structure of the ionosphere. Rev Geophys 15: 325ADSGoogle Scholar
  49. Foing BH, Ehrenfreund P (1994) Detection of two interstellar absorption bands coincident with spectral features of C60+. Nature 369: 296ADSGoogle Scholar
  50. Fortes AD (2000) Exobiological implications of a possible ammonia-water ocean inside Titan. Icarus 146: 444ADSGoogle Scholar
  51. Franck S, Block A, von Bloh W, Bounama C, Schellnhuber H-J, Svirezhev Y (2000) Habitable zone for Earth-like planets in the Solar System. Planet Space Sci 48: 1099ADSGoogle Scholar
  52. Fridlund M, Kaltenegger L (2008) Mission requirements: how to search for extrasolar planets. In: Dvorak D (eds) Extrasolar planets. Wiley-VCH, Weinheim, pp 51–78Google Scholar
  53. Futaana Y, Barabash S., Yamauchi M, McKenna-Lawlor S, Lundin R, Luhmann JG, Brain D, Carlsson E, Sauvaud J-A, Winningham JD, Frahm RA, Wurz P, Holmström M, Gunell H, Kallio E, Baumjohann W, Lammer H, Sharber JR, Hsieh KC, Andersson H, Grigoriev A, Brinkfeldt K, Nilsson H, Asamura K, Zhang TL, Coates AJ, Linder DR, Kataria DO, Curtis CC, Sandel BR, Fedorov A, Mazelle C, Thocaven J-J, Grande M, Koskinen HEJ, Sales T, Schmidt W, Riihela P, Kozyra J, Krupp N, Woch J, Fränz M, Dubinin E, Orsini S, Cerulli-Irelli R, Mura A, Milillo A, Maggi M, Roelof E, Brandt P, Szego K, Scherrer J, Bochsler P (2008) Mars express and Venus express multi-point observations of geoeffective solar flare events in December 2006. Planet Space Sci 56: 873ADSGoogle Scholar
  54. Gershberg RE (2005) Solar-type activity in main-sequence Stars. Springer, BerlinGoogle Scholar
  55. Gibb EL, Whittet DCB, Boogert ACA, Tielens AGGM (2004) Interstellar ice: the infrared space observatory legacy. ApJ S 151: 35ADSGoogle Scholar
  56. Gilbert W (1986) Origin of life: the RNA world. Nature 319: 618ADSGoogle Scholar
  57. Grasset O, Sotin C, Deschamps F (2000) On the internal structure and dynamics of Titan. Planet Space Sci 48: 7Google Scholar
  58. Grenfell JL, Stracke B, von Paris P, Patzer B, Titz R, Segura A, Rauer H (2007) The response of atmospheric chemistry on Earth-like planets around F, G and K stars to small variations in orbital distance. Planet Space Sci 55: 661ADSGoogle Scholar
  59. Grenfell JL, von Paris P, Stracke B, Rauer H (2008) Photochemical responses of biomarkers in Super-Earth atmospheres. Planet Space Sci (to be submitted)Google Scholar
  60. Grießmeier J-M, Stadelmann A, Penz T, Lammer H, Selsis F, Ribas I, Guinan IF, Motschmann U, Biernat HK, Weiss WW (2004) The effect of tidal locking on the magnetospheric and atmospheric evolution of “Hot Jupiters”. Astron Astrophys 425: 753ADSGoogle Scholar
  61. Grießmeier J-M, Stadelmann A, Motschmann U, Belisheva NK, Lammer H, Biernat HK (2005) Cosmic ray impact on extrasolar Earth-like planets in close-in habitable zones. Astrobiology 5: 587ADSGoogle Scholar
  62. Grießmeier J-M, Stadelmann A, Grenfell JL, Lammer H, Motschmann U (2008) On the protection of extrasolar Earth-like planets around light K/heavy M stars against galactic cosmic rays. Icarus (accepted)Google Scholar
  63. Hamilton DC, Gloeckler G, Ipavich FM, Studemann W, Wilken B, Kremser G (1986) Ring current development during the great geomagnetic storm of February. J Geophys Res 93: 14343ADSGoogle Scholar
  64. Hart MH (1978) The evolution of the atmosphere of the earth. Icarus 33: 23ADSGoogle Scholar
  65. Hart MH (1979) Habitable zones around main sequence stars. Icarus 37: 351ADSGoogle Scholar
  66. Heikkila WJ, Winningham JD (1971) Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps. J Geophys Res 76: 883ADSGoogle Scholar
  67. Henning T, Salama F (1998) Carbon in the Universe. Science 282: 2204ADSGoogle Scholar
  68. Henning T, Jäger C, Mutschke H (2004) Laboratory studies of carbonaceous dust analogs. In: Witt AW, Clayton GC, Draine BT (eds) Astrophysics of Dust, ASP Conference Series, vol 309, p 603Google Scholar
  69. Holtom PD, Bennett CJ, Osamura Y, Mason NJ, Kaiser RI (2005) A combined experimental and theoretical study on the formation of the amino acid glycine (NH2CH2COOH) and its isomer (CH3NHCOOH) in extraterrestrial ices. Astrophys J 626: 940–952ADSGoogle Scholar
  70. Holzwarth V, Jardine M (2007) Mass loss rates and wind ram pressures of cool stars. Astron Astrophys 463: 11MATHADSGoogle Scholar
  71. Houdebine ER, Foing BH, Rodonò M (1990) Dynamics of flares on late-type dMe stars. I. Flare mass ejections and stellar evolution. Astron Astrophys 238: 249ADSGoogle Scholar
  72. Huang SS (1959) Occurrence of life in the universe. Am Sci 47: 397Google Scholar
  73. Huang SS (1960) The sizes of habitable planets. Publ Astron Soc Pac 72: 489ADSGoogle Scholar
  74. Ingersoll AP (1969) The runaway greenhouse: a history of water on Venus. J Atmos Sci 26: 1191ADSGoogle Scholar
  75. Israël G, Szopa C, Raulin F, Cabane M, Niemann HB, Atreya SK, Bauer SJ, Brun J-F, Chassefière E, Coll P, Condé E, Coscia D, Hauchecorne A, Millian P, Nguyen MJ, Owen T, Riedler W, Samuelson RE, Siguier J-M, Steller M, Sternberg R, Vidal-Madjar C (2005) Evidence for the presence of complex organic matter in Titan’s aerosols by in situ analysis. Nature 438: 796ADSGoogle Scholar
  76. Janle P, Jannsen D (1984) Tectonics of the southern escarpment of Ishtar Terra on Venus from observations of morphology and gravity. Earth Moon Planets 31: 141. doi:10.1007/BF00055526 ADSGoogle Scholar
  77. Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418: 214ADSGoogle Scholar
  78. Khare BN, Sagan C, Ogino H, Nagy B, Er C, Schram KH, Arakawa ET (1986) Amino acids derived from Titan tholins. Icarus 68: 176ADSGoogle Scholar
  79. Kaltenegger L, Selsis F (2007) Biomarkers set in context, in Extrasolar Planets. In: Dvorak R (eds) Extrasolar planets. Wiley-VCH, Berlin, pp 75–98Google Scholar
  80. Kaltenegger L, Eiroa C, Fridlund M (2009) Target star catalogue for Darwin: Nearby Stellar sample for a search for terrestrial planets. A&A, arXiv:0810.5138v1<http://arxiv.org/abs/0810.5138v1> (in press)
  81. Kasting JF (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74: 472ADSGoogle Scholar
  82. Kasting JF (1992) Venus: The case for a wet origin and a runaway greenhouse. In: Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus, pp 54–55Google Scholar
  83. Kasting JF (2004) When methane made climate. Sci Am 291: 80Google Scholar
  84. Kasting JF, Catling D (2003) Evolution of a habitable planet. Ann Rev Astron Astrophys 41: 429. doi:10.1146/annurev.astro.41.071601.170049 ADSGoogle Scholar
  85. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101: 108ADSGoogle Scholar
  86. Keppens R, MacGregor KB, Charbonneau P (1995) On the evolution of rotational velocity distributions for solar-type stars. Astron Astrophys 294: 469ADSGoogle Scholar
  87. Khodachenko ML, Lammer H, Lichtenegger HIM, Langmayr D, Erkaev NV, Grießmeier J-M, Leitner M, Penz T, Biernat HK, Motschmann U, Rucker HO (2007a) Mass loss of “Hot Jupiters”—implications for CoRoT discoveries. Part I: the importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections. Planet Space Sci 55: 631ADSGoogle Scholar
  88. Khodachenko ML, Ribas I, Lammer H, Grießmeier J-M, Leitner M, Selsis F, Eiroa C, Hanslmeier A, Biernat HK, Farrugia CJ, Rucker HO (2007b) Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. Astrobiology 7: 167ADSGoogle Scholar
  89. Kiyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci USA 99: 14628–14631ADSGoogle Scholar
  90. Kliore AJ, Luhmann JG (1991) Solar cycle effects on the structure of the electron density profiles in the dayside ionosphere of Venus. J Geophys Res 96: 21281ADSGoogle Scholar
  91. Kraft RP (1967) Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. ApJ 150: 551ADSGoogle Scholar
  92. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C(60): Buckminsterfullerene. Nature 318: 162ADSGoogle Scholar
  93. Kuan Y, Charnley SB, Huang H, Tseng W, Kisiel Z (2003) Interstellar glycine. Astrophys J 593: 848ADSGoogle Scholar
  94. Kulikov Yu N, Lammer H, Lichtenegger HIM, Terada N, Ribas I, Kolb C, Langmayr D, Lundin R, Guinan EF, Barabash S, Biernat HK (2006) Atmospheric and water loss from early Venus. Planet Space Sci 54: 1425ADSGoogle Scholar
  95. Kulikov Yu N, Lammer H, Lichtenegger HIM, Penz T, Breuer D, Spohn T, Lundin R, Biernat HK (2007) A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus and Mars. Space Sci Rev 129: 207. doi:10.1007/s11214-007-9192-4 ADSGoogle Scholar
  96. Kwok S (2004) The synthesis of organic and inorganic compounds in evolved stars. Nature 430: 985ADSGoogle Scholar
  97. Lammer H (2007) Preface: M Star planet habitability. Astrobiology 7(1): 27ADSGoogle Scholar
  98. Lammer H, Lichtenegger HIM, Kulikov YN, Grießmeier J-M, Terada N, Erkaev NV, Biernat HK, Khodachenko ML, Ribas I, Penz T, Selsis F (2007) Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7: 185ADSGoogle Scholar
  99. Lammer H, Kasting JF, Chassefière E, Johnson RE, Kulikov YuN, Tian F (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev. doi:10.1007/s11214-008-9413-5
  100. Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci 92(18): 8158ADSGoogle Scholar
  101. Langlais B, Leblanc F, Fouchet T, Barabash S, Breuer D, Chassefière E, Coates A, Dehant V, Forget F, Lammer H, Lewis S, Lopez-Valverde M, Mandea M, Menvielle M, Pais A, Paetzold M, Read P, Sotin C, Tarits P, Vennerstrom S, Branduardi-Raymont G, Cremonese G, Merayo JGM, Ott T, Rème H, Trotignon JG, , (2009) Mars environment and magnetic orbiter model payload. Exp Astron 23: 761. doi:10.1007/s10686-008-9101-1 ADSGoogle Scholar
  102. Lenardic A, Kaula WM, Bindschadler DL (1991) The tectonic evolution of western Ishtar Terra, Venus. Geophys Res Lett 18: 2209ADSGoogle Scholar
  103. Léger A, Selsis F, Sotin C, Guillot T, Despois D, Mawet D, Ollivier M, Labèque FA, Valette Brachet C, Chazelas B, Lammer H (2004) A new family of planetes? “Ocean-Planets”. Icarus 169: 499ADSGoogle Scholar
  104. Lillis RJ, Manga M, Mitchell DL, Lin RP, Acuña MH (2006) Unusual magnetic signature of the Hadriaca Patera Volcano: Implications for early Mars. Geophys Res Lett 33: L03202. doi:10.1029/2005GL024905 Google Scholar
  105. Lim J, White SM (1996) Limits to mass outflows from late-type dwarf stars. ApJ 462: L91ADSGoogle Scholar
  106. Lin DNC, Bodenheimer P, Richardson DC (1996) Orbital migration of the planetary companion of 51 Pegasis to its present location. Nature 380: 606ADSGoogle Scholar
  107. Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science. doi:10.1126/science.1167856
  108. Lorenz RD The Cassini RADAR team (2008) Fluvial channels on Titan: initial Cassini RADAR observations. Planet Space Sci 56: 1132ADSGoogle Scholar
  109. Luisi PL, Varela FJ (1989) Self-replicating micelles—a chemical version of a minimal autopoietic system. Orig Life Evol Biosph 19(6): 633–643ADSGoogle Scholar
  110. Luisi PL, Walde P, Oberholzer T (1999) Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloid Interface Sci 4(1): 33–39Google Scholar
  111. Lundin R, Zakharov A, Pellinen R, Barabasj SW, Borg H, Dubinin EM, Hultqvist B, Koskinen H, Liede I, Pissarenko N (1990) ASPER/PHOBOS measurements of the ion outflow from the Martian ionosphere. Geophys Res Lett 17: 873ADSGoogle Scholar
  112. Lundin R, Lammer H, Ribas I (2007) Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci Rev. doi:10.1007/s11214-007-9176-4
  113. Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 97: 82–87CrossRefGoogle Scholar
  114. Manning CV, McKay CP, Zahnle KJ (2006) Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180: 38ADSGoogle Scholar
  115. Matson DJ, Atreya SJ, Castillo-Rogez JJ, Johnson T, Adams E, Lunine J (2007) Endogenic Origin of Titan’s N2 American Geophysical Union, Fall Meeting 2007, abstract #P21D-04Google Scholar
  116. Mathis JS, Mezger PG, Panagia N (1983) Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. ApJ 128: 212ADSGoogle Scholar
  117. McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178: 274ADSGoogle Scholar
  118. McKay CP, Stoker CR (1989) The early environment and its evolution on Mars: implications for life. Rev Geophys 27: 189ADSGoogle Scholar
  119. Meierhenrich UJ, Muñoz Caro GM, Bredehöft JH, Jessberger EK, Thiemann WH-P (2004) Identification of diamino acids in the murchison meteorite. Proc Natl Acad Sci USA 101: 9182–9186ADSGoogle Scholar
  120. Melosh HJ, Vickery AM (1989) Impact erosion ofthe primordial atmosphere of Mars. Nature 338: 487ADSGoogle Scholar
  121. Mennella V, Colangeli L, Bussoletti E, Palumbo P, Rotundi A (1998) A new approach to the puzzle of the ultraviolet interstellar extinction bump. ApJ 507: 177ADSGoogle Scholar
  122. Mihalov JD, Russell CT, Kasprzak WT, Knudsen WC (1995) Observations of ionospheric escape on Venus’ nightside. J Geophys Res 100: 19579ADSGoogle Scholar
  123. Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117: 528–529ADSGoogle Scholar
  124. Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334: 609–611ADSGoogle Scholar
  125. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive Earth. Science 130: 245ADSGoogle Scholar
  126. Mishima O, Endo S (1978) Melting curve of ice VII. J Chem Phys 68: 4417ADSGoogle Scholar
  127. Moore TE, Lundin R, Alcayde D, Andre M, Ganguli SB, Temerin M, Yau A (1999) Source processes in the high-latitude ionosphere, Ch. 2 in Source and loss processes of the magnetospheric plasma. Space Sci Rev 88: 7ADSGoogle Scholar
  128. Mullan DJ, Stencel RE, Backman DE (1989) Far-infrared properties of flare stars and dM stars. ApJ 343: 400ADSGoogle Scholar
  129. Nelson DR (2004) Earth’s formation and first billion years. In: Eriksson PG et al (eds) The Precambrian Earth: tempos and events. Dev Precambrian Geol 12:3Google Scholar
  130. Newkirk G Jr (1980) Solar variability on time scales of 105 years to 109.6 years. Geochim Cosmochim Acta Suppl 13: 293Google Scholar
  131. Nguyen M-J, Raulin F, Coll P, Derenne S, Szopa C, Cernogora G, Israël G, Bernard J-M (2007) Carbon isotopic enrichment in Titan’s tholins? Implications for Titan’s aerosols. Planet Space Sci 55: 2010ADSGoogle Scholar
  132. Nielsen PE (1993) Peptide nucleic acid (PNA): a model structure for the primordial genetic material?. Orig Life Evol Biosph 23: 323–327ADSGoogle Scholar
  133. Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE, Frost RL, Gautier D, Haberman JA, Harpold DN, Hunten DM, Israel G, Lunine JI, Kasprzak WT, Owen TC, Paulkovich M, Raulin F., Raaen E, Way SH (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438: 779ADSGoogle Scholar
  134. Nijman W, De Vries ST (2004) Early archaean crustal collapse structures and sedimentary basin dynamics. In: Eriksson PG et al (eds) The precambrian Earth: tempos and events. Dev Precambrian Geol 12:139Google Scholar
  135. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409: 1083ADSGoogle Scholar
  136. Olson P, Christensen UR (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250: 561ADSGoogle Scholar
  137. Pendleton Y, Allamandola L (2002) The organic refractory material in the diffuse interstellar medium: Mid-infrared spectroscopic constraints. ApJ Suppl 138: 75ADSGoogle Scholar
  138. Pham LBS, Karatekin Ö, Dehant V (2009) Effects of meteorite impacts on the atmospheric evolution of Mars. Astrobiology 9: 45ADSGoogle Scholar
  139. Podolak M, Podolak JI, Marley MS (2000) Further investigations of random models of Uranus and Neptune. Planet Space Sci 48: 143ADSGoogle Scholar
  140. Prasad SS, Tarafdar SP (1983) UV radiation field inside dense clouds—its possible existence and chemical implications. ApJ 267: 603ADSGoogle Scholar
  141. Prigogine I, Nicolis G, Babloyants A (1972) Thermodynamics of evolution. Phys Today 25: 25Google Scholar
  142. Rappaport N, Bertotti B, Giampieri G, Anderson JD (1997) Doppler measurements of the quadrupole moments of Titan. Icarus 126: 313ADSGoogle Scholar
  143. Rappaport NJ, Iess L, Tortora P, Anabtawi AI, Asmar SW, Somenzi L, Zingoni F (2007) Mass and interior of Enceladus from Cassini data analysis. Icarus 190: 175ADSGoogle Scholar
  144. Rasool SI, deBergh C (1970) The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature 226: 1037ADSGoogle Scholar
  145. Rauer H, Erikson A (2008) The transit method. In: Dvorak D (eds) Extrasolar planets. Wiley-VCH, Weinheim, pp 207–240Google Scholar
  146. Raup DM, Sepkoski JJ Jr (1982) Mass extinctions in the marine fossil record. Science 215: 1501ADSGoogle Scholar
  147. Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction: criticality by addition of water?. Science 294: 578ADSGoogle Scholar
  148. Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres: I. High-energy irradiances (1–1700 Å). ApJ 622: 680ADSGoogle Scholar
  149. Roelof EC, Sibeck DG (1993) Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. J Geophys Res 98: 21421ADSGoogle Scholar
  150. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409: 1092ADSGoogle Scholar
  151. Roush T, Cruikshank D, Observations and Laboratory Data of Planetary Organics. In: Ehrenfreund P, Irvine WM, Owen T, Becker L, Blank J, Brucato JR, Colangeli L, Derenne S, Dutrey A, Despois D, Lazcano A, Robert F (eds) Astrobiology: future perspectives, astrophysics and space science library, vol 305. Kluwer, Dordrecht, pp 149–165Google Scholar
  152. Ruiz-Mirazo K, Peretó J, Morene A (2004) A universal definition of life: autonomy and open-ended evolution. Orig Life Evol Biosphere 34: 323ADSGoogle Scholar
  153. Russel CT (1993) Magnetic fields of the terrestrial planets. J Geophys Res 98: 18681ADSGoogle Scholar
  154. Russell CT, Luhmann JG, Strangeway RJ (2006) The solar wind interaction with Venus through the eyes of the Pioneer Venus. Planet Space Sci 54: 1482. doi:10.1016/j.pss.2006.04.025 ADSGoogle Scholar
  155. Scalo J, Kaltenegger L, Segura AG, Fridlund M, Ribas I, Kulikov Yu N, Grenfell JL, Rauer H, Odert P, Leitzinger M, Selsis F, Khodachenko ML, Eiroa C, Kasting J, Lammer H (2007) M stars as targets for terrestrial exoplanet searchers and biosignature detection. Astrobiology 7: 85. doi:19.1089/ast.2006.0000 ADSGoogle Scholar
  156. Schopf JW (2004) Biologic History and the Cardinal Rule. American Geophysical Union, Fall Meeting 2004, abstract #U44A-01Google Scholar
  157. Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237: 70ADSGoogle Scholar
  158. Schubert G, Spohn T (1990) Thermal history of Mars and the sulfur content of its core. J Geophys Res 95: 14095ADSGoogle Scholar
  159. Schubert G, Moore WB, Anderson JD, Jacobson RA, Lau EL (2000) Io’s gravity field and interior structure. AAS 32: 1046Google Scholar
  160. Schubert G, Anderson JD, Travis BJ, Palguta J (2007) Enceladus: present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188: 345ADSGoogle Scholar
  161. Segura A, Kaltenegger L (2008) Search for habitable planets. In: Basiuk VA, Navarro-González R (eds) Astrobiology: from simple molecules to primitive life.. American Scientific Publishers, New York (in press)Google Scholar
  162. Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3: 689ADSGoogle Scholar
  163. Segura A, Kasting JF, Meadows V, Cohen M, Scalo J, Crisp D, Butler RAH, Tinetti G (2005) Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5: 706ADSGoogle Scholar
  164. Selsis F, Chazelas B, Bordéc P, Ollivier M, Brachet F, Decaudin M, Bouchy F, Ehrenreich D, Grießmeier J-M, Lammer H, Sotin C, Grasset O, Moutou C, Barge P, Deleuil M, Mawet D, Despois D, Kasting JF, Léger A (2007) Could we identify hot ocean-planets with CoRoT, Kepler and Doppler velocimetry. Icarus 191: 453ADSGoogle Scholar
  165. Shue J-H, Chao JK, Fu HC, Russell CT, Song P, Khurana KK, Singer HJ (1997) A new functional form to study the solar wind control of the magnetopause size and missing authors and title has to be added. J Geophys Res 102: 9497ADSGoogle Scholar
  166. Shue J-H, Song P, Russell CT, Steinberg JT, Chao JK, Zastenker G, Vaisberg OL, Kokubun S, Singer HJ, Detman TR, Kawano H (1998) Magnetopause location under extreme solar wind conditions. J Geophys Res 103: 17691ADSGoogle Scholar
  167. Skumanich A (1972) Time scales for CA II emission decay, rotational braking, and lithium depletion. ApJ 171: 565ADSGoogle Scholar
  168. Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342: 139ADSGoogle Scholar
  169. Smith JDT, Draine BT, Dale DA, Moustakas J, Kennicutt RC Jr, Helou G, Armus L, Roussel H, Sheth K, Bendo GJ, Buckalew BA, Calzetti D, Engelbracht CW, Gordon KD, Hollenbach DJ, Li A, Malhotra S, Murphy EJ, Walter F (2007) The mid-infrared spectrum of star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission. ApJ 656: 770ADSGoogle Scholar
  170. Snow T, McCall BJ (2006) Diffuse atomic and molecular clouds. Annu Rev Astron Astrophys 44: 367ADSGoogle Scholar
  171. Soderblom DR (1982) Rotational studies of late-type stars. I—rotational velocities of solar-type stars. ApJ 263: 239ADSGoogle Scholar
  172. Sohl F, Hussmann H, Schwentker B, Spohn T, Lorenz RD (2003) Interior structure models and Love numbers of Titan. J Geophys Res 108. doi:10.1029/2003JE002044.5130
  173. Solomatov VS (2004) Initiation of subduction by small-scale convection. J Geophys Res 109. doi:10.1029/2003JB002628
  174. Spaans M (2004) The Synthesis of the Elements and the Formation of Stars. In: Ehrenfreund P, Irvine WM, Owen T, Becker L, Blank J, Brucato JR, Colangeli L, Derenne S, Dutrey A, Despois D, Lazcano A, Robert F (eds) Astrobiology: future perspectives, astrophysics and space science library, vol 305. Kluwer, Dordrecht, pp 1–16Google Scholar
  175. Spohn T, Sohl F, Breuer D (1998) Mars. Astron Astrophys Rev 8: 181ADSGoogle Scholar
  176. Stevenson DJ (1983) Planetary magnetic fields. Rep Prog Phys 46: 555ADSGoogle Scholar
  177. Stevenson DJ (2001) Mars’ core and magnetism. Nature 412: 214ADSGoogle Scholar
  178. Stevenson DJ (2003) Planetary magnetic fields. Earth Planet Sci Lett 208: 1ADSGoogle Scholar
  179. Stevenson DJ, Spohn T, Schubert G (1983) Magnetism and thermal evolution of the terrestrial planets. Icarus 54: 466ADSGoogle Scholar
  180. Stoker CR, Boston PJ, Mancinelli RL, Segal W, Khare BN, Sagan C (1990) Microbial metabolism of tholin. Icarus 85: 241ADSGoogle Scholar
  181. Sundquist ET (1993) The global carbon dioxide budget. Science 259: 934ADSGoogle Scholar
  182. Terada N, Kulikov Yu N, Lammer H, Lichtenegger HIM, Tanaka T, Shinagawa H, Zhang T (2009) Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9: 55. doi:10.1089/ast.2008.0250 ADSGoogle Scholar
  183. Tian F, Kasting JF, Liu H, Roble RG (2008) Hydrodynamic planetary thermosphere model. I: the response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J Geophys Res 113. doi:10.1029/2007JE002946
  184. Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005) Titan’s internal structure inferred from a coupled thermal-orbital model. Icarus 175: 496ADSGoogle Scholar
  185. Tomasko MG, Archinal B, Becker T, Bézard B, Bushroe M, Combes M, Cook D, Coustenis A, deBergh C, Dafoe LE, Doose L, Douté S, Eibl A, Engel S, Gliem F, Greiger B, Holso K, Howington-Krause A, Karkoschka E, Keller U, Keuppers M, Kirk R, Kramm R, Lellouch E, Lemmon M, Lunine J, Markiewicz W, McFarlane L, Moores R, Prout M, Rizk B, Rosiek M, Rueffer P, Schroeder S, Schmitt B, Smith P, Soderblom L, Thomas N, West R (2005) Results from the descent imager/spectral radiometer (DISR) instrument on the Huygens probe of Titan. Nature 438: 765ADSGoogle Scholar
  186. Trilling DE, Benz W, Guillot T, Lunine JI, Hubbard WB, Burrows A (1998) Orbital evolution and migration of giant planets. ApJ 500: 428ADSGoogle Scholar
  187. Trinks H, Schröder W, Biebricher CK (2005) Ice and the origin of life. Orig Life Evol Biosph 35: 429–445ADSGoogle Scholar
  188. Valencia D, O’Connell RJ, Sasselov DD (2007) Inevitability of plate tectonics on Super-Earths. ApJ 670: L45ADSGoogle Scholar
  189. van den Oord GHJ, Doyle JG (1997) Constraints on mass loss from dMe stars: theory and observations. Astron Astrophys 319: 578ADSGoogle Scholar
  190. Vidal-Madjar A (1978) The Earth hydrogen exobase near a solar minimum. Geophys Res Lett 5: 29ADSGoogle Scholar
  191. von Paris P, Rauer H, Grenfell JL, Patzer B, Hedelt P, Stracke B, Trautmann T, Schreier F (2008) Warming the early Earth—CO2 reconsidered. Planet Space Sci 56: 1244ADSGoogle Scholar
  192. Vorder Bruegge RW, Head JW (1990) Tectonic evolution of Eastern Ishtar Terra, Venus. Earth Moon Planets 50: 251–304. doi:10.1007/BF00142396 ADSGoogle Scholar
  193. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci 87: 200–204Google Scholar
  194. Wächtershäuser G (2000) Origin of life: life as we don’t know it. Science 289(5483): 1307–1308Google Scholar
  195. Waite JH, Young DT, Cravens TE, Coates AJ, Crary FJ, Magee B, Westlake J (2007) The process of tholin formation in Titan’s upper atmosphere. Science 316: 870ADSGoogle Scholar
  196. Walker JCG (1986) Impact erosion of planetary atmospheres. Icarus 68: 87ADSGoogle Scholar
  197. Walker JCG, Turekian KK, Hunten DM (1970) An estimate of the present-day deep-mantle degassing rate from data on the atmosphere of Venus. J Geophys Res 75: 3558ADSGoogle Scholar
  198. Ward WR (1997) Protoplanet migration by nebula tides. Icarus 126: 261ADSGoogle Scholar
  199. Ward PD, Brownlee D (2000) Rare Earth: why complex life is uncommon in the Universe. Copernicus, BerlinGoogle Scholar
  200. Wargelin BJ, Drake JJ (2002) Stringent X-ray constraints on mass loss from Proxima Centauri. ApJ 578: 503ADSGoogle Scholar
  201. Weber AL, Miller SL (1981) Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol 17: 273–284Google Scholar
  202. Westall F (2005) Life on the early Earth: a sedimentary view. Science 308: 366. doi:10.1126/science.1107227 Google Scholar
  203. Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell CS, Lammer H (2006) Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Phil Trans R Soc 361: 1857. doi:10.1098/rstb.2006.1896 Google Scholar
  204. Williams DM, Pollard D (2002) Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int J Astrobiol 1: 61Google Scholar
  205. Wilson OC (1966) Stellar convection zones, chromospheres, and rotation. ApJ 144: 695ADSGoogle Scholar
  206. Wolstencroft RD, Raven JA (2002) Photosynthesis: likelihood of occurrence and possibility of detection on Earth-like planets. Icarus 157: 535ADSGoogle Scholar
  207. Wood BE, Müller H-R, Zank GP, Linsky JL (2002) Measured mass-loss rates of solar-like stars as a function of age and activity. ApJ 574: 412ADSGoogle Scholar
  208. Wood BE, Müller H-R, Zank GP, Izmodenov VV, Linsky JL (2004) The heliospheric hydrogen wall and astrospheres. Adv Space Res 34: 66ADSGoogle Scholar
  209. Wood BE, Müller H-R, Zank GP, Linsky JL, Redfield S (2005) New mass loss measurements from astrospheric Ly-alpha absorption. Astrophys J 628: L143ADSGoogle Scholar
  210. Wooden D, Charnley S, Ehrenfreund P (2004) Composition and evolution of interstellar clouds. In: Festou M et al (eds) Comets II. University of Arizona Press, Tucson, pp 33–66Google Scholar
  211. Worms J-C, Lammer H, Barucci A, Beebe R, Bibring J-P, Blamont J, Blanc M, Bonnet R, Brucato JR, Chassefière E, Coradini A, Crawford I, Ehrenfreund P, Falcke H, Gerzer R, Grady M, Grande M, Haerendel G, Horneck G, Koch B, Lobanov J, Lopez-Moreno JJ, Marco R, Norsk P, Rothery D, Swings J-P, Tropea C, Ulamec S, Westall F, Zarnecki J (2009) Science-driven scenario for space exploration: report from the European Space Sciences Committee (ESSC). Astrobiology 9: 23. doi:10.1089/ast.2007.1226 ADSGoogle Scholar
  212. Wuchterl G, Guillot T, Lissauer JJ (2000) Giant planet formation. In: Mannings V, Boss AP, Russell SS (eds) Protostars and Planets, vol IV. University of Arizona Press, Tucson, pp 1081–1109Google Scholar
  213. Yamauchi M, Lundin R (2001) Comparison of various cusp models with high- and low resolution observations. Space Sci Rev 95: 457ADSGoogle Scholar
  214. Yamauchi M, Wahlund J-E (2007) Role of the ionosphere for the atmospheric evolution of planets. Astrobiology 7: 783ADSGoogle Scholar
  215. Yamauchi M, Futaana Y, Fedorov A, Dubinin E, Lundin R, Sauvaud J-A, Winningham D, Frahm R, Barabash S, Holmstrom M, Woch J, Fraenz M, Budnik E, Borg H, Sharber, Coates AJ, Soobiah Y, Koskinen H, Kallio E, Asamura K, Hayakawa H, Curtis C, Hsieh KC, Sandel BR, Grande M, Grigoriev A, Wurz P, Orsini S, Brandt P, McKenna-Lawler S, Kozyra J, Luhmann J (2006) IMF direction derived from cycloid-like ion distribution observed by Mars Express. Space Sci Rev. doi:10.1007/s11214-006-9090-1
  216. Zhang MHG, Luhmann JG, Kliore AJ, Russell CT (1990) A post-Pioneer Venus reassessment of the martian dayside ionosphere as observed by radio occultation methods. J Geophys Res 95: 14829ADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • H. Lammer
    • 1
  • J. H. Bredehöft
    • 2
  • A. Coustenis
    • 3
  • M. L. Khodachenko
    • 1
  • L. Kaltenegger
    • 4
  • O. Grasset
    • 5
  • D. Prieur
    • 6
  • F. Raulin
    • 7
  • P. Ehrenfreund
    • 8
  • M. Yamauchi
    • 9
  • J.-E. Wahlund
    • 10
  • J.-M. Grießmeier
    • 11
  • G. Stangl
    • 1
  • C. S. Cockell
    • 12
  • Yu. N. Kulikov
    • 13
  • J. L. Grenfell
    • 14
    • 15
  • H. Rauer
    • 15
  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria
  2. 2.Institut für Angewandte und Physikalische ChemieUniversität BremenBremenGermany
  3. 3.Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de MeudonMeudonFrance
  4. 4.Harvard-Smithonian Center for AstrophysicsCambridgeUSA
  5. 5.UMR, Laboratoire de Planétologie et GéodynamiqueNantesFrance
  6. 6.Laboratoire de Microbiologie des Environnements ExtrêmesUniversité de Bretagne OccidentaleBrestFrance
  7. 7.Laboratoire Interuniversitaire des Systèmes Atmopshériques, CNRS & Universités Paris 12 et Paris 7CréteilFrance
  8. 8.Astrobiology Group Leiden Institute of ChemistryUniversity of LeidenLeidenThe Netherlands
  9. 9.Swedish Institute for Space PhysicsKirunaSweden
  10. 10.Swedish Institute for Space PhysicsUppsalaSweden
  11. 11.ASTRONDwingelooThe Netherlands
  12. 12.CEPSAR, Open UniversityMilton KeynesUK
  13. 13.Polar Geophysical InstituteRussian Academy of SciencesMurmanskRussian Federation
  14. 14.Zentrum für Astronomie und AstrophysikTechnische Universität BerlinBerlinGermany
  15. 15.Deutsches Zentrum für Luft- und RaumfahrtInstitut für PlanetenforschungBerlinGermany

Personalised recommendations