The Astronomy and Astrophysics Review

, Volume 17, Issue 2, pp 105–147 | Cite as

A review of Titan’s atmospheric phenomena

  • Mathieu Hirtzig
  • Tetsuya Tokano
  • Sébastien Rodriguez
  • Stéphane le Mouélic
  • Christophe Sotin
Review Article


Saturn’s satellite Titan is a particularly interesting body in our solar system. It is the only satellite with a dense atmosphere, which is primarily made of nitrogen and methane. It harbours an intricate photochemistry, that populates the atmosphere with aerosols, but that should deplete irreversibly the methane. The observation that methane is not depleted led to the study of Titan’s methane cycle, starting with its atmospheric part. The features that inhabit Titan’s atmosphere can last for timescales varying from year to day. For instance, the reversal of the north–south asymmetry is linked to the 16-year seasonal cycle. Diurnal phenomena have also been observed, like a stratospheric haze enhancement or a possible tropospheric drizzle. Furthermore, clouds have been reported on Titan since 1993. From these first detections and up to now, with the recent inputs from the Cassini–Huygens mission, clouds have displayed a large range of shapes, altitudes, and natures, from the flocky tropospheric clouds at the south pole to the stratiform ones in the northern stratosphere. It is still difficult to compose a clear picture of the physical processes governing these phenomena, even though of lot of different means of observation (spectroscopy, imaging) are available now. We propose here an overview of the phenomena reported between 1993 and 2008 in the low atmosphere of Titan, with indications on the location, altitude, and their characteristics in order to give a perspective of our up-to-date understanding of Titan’s meteorological manifestations. We shall focus mainly on direct imaging observations, from both space- and ground-based facilities. All of these observations, published in more than 30 different refereed papers to date, allow us to build a precise chronology of Titan’s atmospheric changes (including the north–south asymmetry, diurnal and seasonal effects, etc). Since the interpretation is at an early stage, we only briefly mention some of the current theories regarding the features’ nature.


Titan, satellites Near-infrared Clouds Imagery, spectroscopy, spectro-imagery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams MC et al (1996a) ATMOS/ATLAS-3 observations of long-lived tracers and descent in the Antarctic vortex in November 1994. Geophys Res Lett 23: 2341–2344 doi: 10.1029/96GL00705 ADSGoogle Scholar
  2. Abrams MC et al (1996b) Trace gas transport in the Arctic vortex inferred from ATMOS ATLAS-2 observations during April 1993. Geophys Res Lett 23: 2345–2348. doi: 10.1029/96GL00704 ADSGoogle Scholar
  3. Ádámkovics M, de Pater I, Hartung M, Eisenhauer F, Genezl R, Griffith CA (2005) The 3-dimensionnal distribution of Titan haze from near-infrared integral field spectroscopy. J Geophys ResGoogle Scholar
  4. Ádámkovics M, Wong MH, Laver C, de Pater I (2007) Widespread morning drizzle on Titan. Science 318: 962–965. doi: 10.1126/science.1146244 ADSGoogle Scholar
  5. Albert S, Bauerecker S, Boudon V, Brown L, Champion J-P, Lote M, Nikitin A, Quack M (2008) Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm-1. Chem Phys (in Press). Corrected proof. doi: 10.1016/j.chemphys.2008.10.019
  6. Anderson CM, Chanover NJ, McKay CP, Rannou P, Glenar DA, Hillman JJ (2004) Titan’s haze structure in 1999 from spatially-resolved narrowband imaging surrounding the 0.94 μm methane window. Geophys Res Lett 31: 17Google Scholar
  7. Anderson CM, Young EF, Chanover NJ, McKay CP (2008) HST spectral imaging of Titan’s haze and methane profile between 0.6 and 1 μm during the 2000 opposition. Icarus 194: 721–745. doi: 10.1016/j.icarus.2007.11.008.ADSGoogle Scholar
  8. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. In: Andrews DG, Holton JR, Leovy CB (eds) Middle atmosphere dynamics. Academic Press, New York, pp 489, Price US $34.95Google Scholar
  9. Babcock HW (1953) The possibility of compensating astronomical seeing. Publ Astron Soc Pac 65: 229–236ADSGoogle Scholar
  10. Baines KH et al (2005) The atmospheres of Saturn and Titan in the near-infrared first results of Cassini/vims. Earth Moon Planets 96: 119–147. doi: 10.1007/s11038-005-9058-2 ADSGoogle Scholar
  11. Bar-Nun A, Dimitrov V, Tomasko M (2008) Titan’s aerosols: comparison between our model and DISR findings. Planet Space Sci 56: 708–714. doi: 10.1016/j.pss.2007.11.014 ADSGoogle Scholar
  12. Barth EL, Rafkin SCR (2007) TRAMS: a new dynamic cloud model for Titan’s methane clouds. Geophys Res Lett 34: 3203. doi: 10.1029/2006GL028652 Google Scholar
  13. Barth EL, Toon OB (2003) Microphysical modeling of ethane ice clouds in titan’s atmosphere. Icarus 162: 94–113ADSGoogle Scholar
  14. Barth EL, Toon OB (2004) Properties of methane clouds on Titan: results from microphysical modeling. Geophys Res Lett 31: 17Google Scholar
  15. Barth EL, Toon OB (2006) Methane, ethane, and mixed clouds in Titan’s atmosphere: properties derived from microphysical modeling. Icarus 182: 230–250. doi: 10.1016/j.icarus.2005.12.017 ADSGoogle Scholar
  16. Bauerecker S, Dartois E (2009) Ethane aerosol phase evolution in Titan’s atmosphere. Icarus 199: 564–567. doi: 10.1016/j.icarus.2008.09.014 ADSGoogle Scholar
  17. Bernard J-M et al (2006) Reflectance spectra and chemical structure of Titan’s tholins: application to the analysis of Cassini Huygens observations. Icarus 185: 301–307. doi: 10.1016/j.icarus.2006.06.004 ADSGoogle Scholar
  18. Bouchez AH (2003) Seasonal trends in Titan’s atmosphere: haze, wind, and clouds, Ph.D. ThesisGoogle Scholar
  19. Bouchez AH, Brown ME (2005) Statistics of Titan’s south polar tropospheric clouds. Astrophys J 618: L53–L56ADSGoogle Scholar
  20. Boudon V, Rey M, Loete M (2006) The vibrational levels of methane obtained from analyses of high-resolution spectra. J Quant Spectrosc Radiat Transf 98: 394–404ADSGoogle Scholar
  21. Bratsolis E, Sigelle M (2001) A spatial regularization method preserving local photometry for Richardson-Lucy restoration. Astron Astrophys 375: 1120–1128ADSGoogle Scholar
  22. Brown ME (2005) The seasonal hydrological cycle on Titan. In: Proceedings of the conference “Titan after the Huygens and First Cassini Encounters”, Crete, Greece, 30 May–3 June 2005.
  23. Brown ME (2000) The solar system up close: AO spectroscopy from Palomar. Bull Am Astron Soc 32: 1508ADSGoogle Scholar
  24. Brown ME, Bouchez AH, Griffith CA (2002) Direct detection of variable tropospheric clouds near Titan’s south pole. Nature 420: 795–797ADSGoogle Scholar
  25. Brown ME, Schaller EL, Roe HG, Chen C, Roberts J, Brown RH, Baines KH, Clark RN (2009) Discovery of lake-effect clouds on Titan. Geophys Res Lett 36: 1103. doi: 10.1029/2008GL035964 Google Scholar
  26. Brown RH et al (2006) Observations in the Saturn system during approach and orbital insertion, with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS). Astron Astrophys 446: 707–716. doi: 10.1051/0004-6361:20053054 ADSGoogle Scholar
  27. Cabane M, Chassefiere E, Israel G (1992) Formation and growth of photochemical aerosols in Titan’s atmosphere. Icarus 96: 176–189ADSGoogle Scholar
  28. Caldwell J et al (1992) Titan: evidence for seasonal change—a comparison of hubble Space telescope and voyager images. Icarus 97: 1–9ADSGoogle Scholar
  29. Chanover NJ, Anderson CM, McKay CP, Rannou P, Glenar DA, Hillman JJ, Blass WE (2003) Probing Titan’s lower atmosphere with acousto-optic tuning. Icarus 163: 150–163ADSGoogle Scholar
  30. Coll P, Jolly A, Bernard J-M, Ramirez SI, da Silva A, Navarro-Gonzalez R, Lafait J, Rannou P, Raulin F (2003) Optical properties of Titan’s aerosol analogues (in the 200 nm–2.5 μm range). In: EGS–AGU–EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6–11 April 2003, abstract #12426, pp 12,426Google Scholar
  31. Combes M, Vapillon L, Gendron E, Coustenis A, Lai O, Wittemberg R, Sirdey R (1997) Spatially resolved images of Titan by means of adaptive optics. Icarus 129: 482–497ADSGoogle Scholar
  32. Conan JM, Fusco T, Mugnier L, Kesralé E, Michau V (1998) Deconvolution of adaptive optics images with imprecise knowledge of the point spread function: results on astronomical objects. In: Astronomy with adaptive optics: present results and future programs, ESO/OSA Workshop, September 1998, Sonthofen, GermanyGoogle Scholar
  33. Courtin R (1982) The spectrum of Titan in the far-infrared and microwave regions. Icarus 51: 466–475ADSGoogle Scholar
  34. Courtin R, Gautier D, McKay CP (1995) Titan’s thermal emission spectrum: reanalysis of the Voyager infrared measurements. Icarus 114: 144–162ADSGoogle Scholar
  35. Coustenis A, Bezard B (1995) Titan’s atmosphere from Voyager infrared observations. 4: latitudinal variations of temperature and composition. Icarus 115: 126–140ADSGoogle Scholar
  36. Coustenis A, Lellouch E, Maillard JP, McKay CP (1995) Titan’s surface: composition and variability from the near-infrared albedo. Icarus 118: 87–104ADSGoogle Scholar
  37. Coustenis A, Hirtzig M, Gendron E, Drossart P, Lai O, Combes M, Negrão A (2005) Maps of Titan’s surface from 1 to 2.5 μm. Icarus 177: 89–105. doi: 10.1016/j.icarus.2005.03.012 ADSGoogle Scholar
  38. Coustenis A et al (2001) Images of Titan at 1.3 and 1.6 μm with Adaptive optics at the CFHT. Icarus 154: 501–515ADSGoogle Scholar
  39. Coustenis A et al (2007) The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189: 35–62. doi: 10.1016/j.icarus.2006.12.022 ADSGoogle Scholar
  40. Crespin A, Lebonnois S, Vinatier S, Bézard B, Coustenis A, Teanby NA, Achterberg RK, Rannou P, Hourdin F (2008) Diagnostics of Titan’s stratospheric dynamics using Cassini/CIRS data and the 2-dimensional IPSL circulation model. Icarus 197: 556–571. doi: 10.1016/j.icarus.2008.05.010 ADSGoogle Scholar
  41. de Kok R, Irwin PGJ, Teanby NA (2008) Condensation in Titan’s stratosphere during polar winter. Icarus 197: 572–578. doi: 10.1016/j.icarus.2008.05.024 ADSGoogle Scholar
  42. de Pater I et al (2005) Keck observations of Titan during probe entry and during the days following touch-down. In: EUROPLANET N3 activity Kick-off meeting, Graz, 8 March.
  43. de Pater I, Ádámkovics M, Bouchez AH, Brown ME, Gibbard SG, Marchis F, Roe HG, Schaller EL, Young E (2006) Titan imagery with Keck adaptive optics during and after probe entry. J Geophys Res (Planets) 111: 7. doi: 10.1029/2005JE002620 Google Scholar
  44. Evans KF (1998) The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J Atmos Sci 55: 429–446. doi: 10.1175/1520-0469(1998)055 ADSGoogle Scholar
  45. Fink U, Larson HP (1979) The infrared spectra of Uranus, Neptune, and Titan from 0.8 to 2.5 microns. Astrophys J 233: 1021–1040ADSGoogle Scholar
  46. Flasar FM (1983) Oceans on Titan? Science 221: 55–57ADSGoogle Scholar
  47. Flasar FM (1998a) The dynamic meteorology of Titan. Planet Space Sci 46: 1125–1147ADSGoogle Scholar
  48. Flasar FM (1998b) The composition of Titan atmosphere: a meteorological perspective. Planet Space Sci 46: 1109–1124ADSGoogle Scholar
  49. Flasar FM, Achterberg RK (2008) The structure and dynamics of Titan’s middle atmosphere. Philos Trans R Soc A Math Phys Eng Sci 367(1889): 649–664. doi: 10.1098/rsta.2008.0242 ADSGoogle Scholar
  50. Flasar FM, Conrath BJ (1990) Titan’s stratospheric temperatures–a case for dynamical inertia? Icarus 85: 346–354ADSGoogle Scholar
  51. Flasar FM, Samuelson RE, Conrath BJ (1981) Titan’s atmosphere–temperature and dynamics. Nature 292: 693–698ADSGoogle Scholar
  52. Folkner WM et al (2006) Winds on Titan from ground-based tracking of the Huygens probe. J Geophys Res (Planets) 111: 7. doi: 10.1029/2005JE002649 Google Scholar
  53. Gendron E et al (2004) VLT/NACO adaptive optics imaging of Titan. Astron Astrophys 417: L21–L24ADSGoogle Scholar
  54. Gibbard SG, Macintosh B, Gavel D, Max CE, de Pater I, Ghez AM, Young EF, McKay CP (1999) Titan: high-resolution speckle images from the keck telescope. Icarus 139: 189–201ADSGoogle Scholar
  55. Gibbard SG, de Pater I, Macintosh BA, Grossman A, Adamkovics M (2003) Spatially-resolved 2 micron spectroscopy of Titan from the W.M. Keck telescope. In: AAS/Division for Planetary Sciences Meeting Abstracts 35Google Scholar
  56. Gibbard SG, de Pater I, Macintosh BA, Roe HG, Max CE, Young EF, McKay CP (2004a) Titan’s 2 μm surface albedo and haze optical depth in 1996–2004. Geophys Res Lett 31: 17Google Scholar
  57. Gibbard SG, Macintosh B, Gavel D, Max CE, de Pater I, Roe HG, Ghez AM, Young EF, McKay CP (2004b) Speckle imaging of Titan at 2 microns: surface albedo, haze optical depth, and tropospheric clouds 1996–1998. Icarus 169: 429–439ADSGoogle Scholar
  58. Goody R, West R, Chen L, Crisp D (1989) The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J Quant Spectrosc Radiat Transf 42: 539–550. doi: 10.1016/0022-4073(89)90044-7 ADSGoogle Scholar
  59. Griffith CA, Owen T, Wagener R (1991) Titan’s surface and troposphere, investigated with ground-based, near-infrared observations. Icarus 93: 362–378ADSGoogle Scholar
  60. Griffith CA, Owen T, Miller GA, Geballe T (1998) Transient clouds in Titan’s lower atmosphere. Nature 395: 575–578ADSGoogle Scholar
  61. Griffith CA, Hall JL, Geballe TR (2000) Detection of daily clouds on Titan. Science 290: 509–513ADSGoogle Scholar
  62. Griffith CA, Owen T, Geballe TR, Rayner J, Rannou P (2003) Evidence for the exposure of water ice on Titan’s surface. Science 300: 628–630ADSGoogle Scholar
  63. Griffith CA, McKay CP, Ferri F (2008) Titan’s tropical storms in an evolving atmosphere. Astrophys J Lett 687: L41–L44. doi: 10.1086/593117 ADSGoogle Scholar
  64. Griffith CA et al (2005) The evolution of Titan’s mid-latitude clouds. Science 310: 474–477. doi: 10.1126/science.1117702 ADSGoogle Scholar
  65. Griffith CA et al (2006) Evidence for a polar ethane cloud on Titan. Science 313: 1620–1622. doi: 10.1126/science.1128245 ADSGoogle Scholar
  66. Hinson DP (1983) Radio scintillations observed during atmospheric occultations of Voyager: internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn, Ph.D. ThesisGoogle Scholar
  67. Hirtzig M (2005) Etude de Titan dans l’Infrarouge Proche par Spectro-Imagerie couplée à l’Optique Adaptative, Ph.D. ThesisGoogle Scholar
  68. Hirtzig M, Coustenis A, Lai O, Emsellem E, Pecontal-Rousset A, Rannou P, Negrão A, Schmitt B (2005) Near-infrared study of Titan’s resolved disk in spectro-imaging with CFHT/OASIS. Planet Space Sci 53: 535–556. doi: 10.1016/j.pss.2004.08.006 ADSGoogle Scholar
  69. Hirtzig M, Coustenis A, Gendron E, Drossart P, Hartung M, Negrão A, Rannou P, Combes M (2007) Titan: Atmospheric and surface features as observed with nasmyth adaptive optics system near-infrared imager and spectrograph at the time of the Huygens mission. J Geophys Res (Planets) 112: 2. doi: 10.1029/2005JE002650 Google Scholar
  70. Hirtzig M et al (2006) Monitoring atmospheric phenomena on Titan. Astron Astrophys 456: 761–774. doi: 10.1051/0004-6361:20053381 ADSGoogle Scholar
  71. Hourdin F, Talagrand O, Sadourny R, Courtin R, Gautier D, McKay CP (1995) Numerical simulation of the general circulation of the atmosphere of Titan. Icarus 117: 358–374ADSGoogle Scholar
  72. Hourdin F, Lebonnois S, Luz D, Rannou P (2004) Titan’s stratospheric composition driven by condensation and dynamics. J Geophys Res (Planets) 109(E18): 12,005Google Scholar
  73. Hubbard WB, Hunten DM, Reitsema HJ, Brosch N, Nevo Y, Carreira E, Rossi F, Wasserman LH (1990) Results for Titan’s atmosphere from its occultation of 28 Sagittarii. Nature 343: 353–355ADSGoogle Scholar
  74. Hubbard WB et al (1993) The occultation of 28 SGR by Titan. Astron Astrophys 269: 541–563ADSGoogle Scholar
  75. Hueso R, Sánchez-Lavega A (2006) Methane storms on Saturn’s moon Titan. Nature 442: 428–431. doi: 10.1038/nature04933 ADSGoogle Scholar
  76. Hunten DM, Tomasko MG, Flasar FM, Samuelson RE, Strobel DF, Stevenson DJ (1984) Titan, pp 671–759, SaturnGoogle Scholar
  77. Hutzell WT, McKay CP, Toon OB (1993) Effects of time-varying haze production on Titan’s geometric albedo. Icarus 105: 162–174ADSGoogle Scholar
  78. Hutzell WT, McKay CP, Toon OB, Hourdin F (1996) Simulations of Titan’s brightness by a two-dimensional haze model. Icarus 119: 112–129ADSGoogle Scholar
  79. Irwin PGJ, Sromovsky LA, Strong EK, Sihra K, Teanby NA, Bowles N, Calcutt SB, Remedios JJ (2006) Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm1 and implications for interpretation of outer planet spectra. Icarus 181: 309–319. doi: 10.1016/j.icarus.2005.11.003 ADSGoogle Scholar
  80. Jacquinet-Husson N et al (2005) The 2003 edition of the GEISA/IASI spectroscopic database. J Quant Spectrosc Radiat Transf 95: 429–467ADSGoogle Scholar
  81. Karkoschka E (1998) Methane, ammonia, and temperature measurements of the jovian planets and Titan from CCD-spectrophotometry. Icarus 133: 134–146ADSGoogle Scholar
  82. Karkoschka E, Tomasko MG (2009) Rain and dewdrops on titan based on in situ imaging. Icarus 199: 442–448. doi: 10.1016/j.icarus.2008.09.020 ADSGoogle Scholar
  83. Karkoschka E, Tomasko MG, Doose LR, See C, McFarlane EA, Schröder SE, Rizk B (2007) DISR imaging and the geometry of the descent of the Huygens probe within Titan’s atmosphere. Planet Space Sci 55: 1896–1935. doi: 10.1016/j.pss.2007.04.019 ADSGoogle Scholar
  84. Khare BN et al (1984) The organic aerosols of Titan. Advances in Space Research 4: 59–68ADSGoogle Scholar
  85. Kim SJ, Trafton LM, Geballe TR (2008) No evidence of morning or large-scale drizzle on Titan. Astrophys J Lett 679: L53–L56. doi: 10.1086/588839 ADSGoogle Scholar
  86. Kondo K, Ichioka Y, Suzuki T (1977) Image restoration by Wiener filtering in the presence of signal-dependant noise. Appl Opt 16: 2554–2558ADSGoogle Scholar
  87. Kostiuk T, Fast KE, Livengood TA, Hewagama T, Goldstein JJ, Espenak F, Buhl D (2001) Direct measurement of winds of Titan. Geophys Res Lett 28: 2361–2364ADSGoogle Scholar
  88. Kostiuk T et al (2005) Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion. Geophys Res Lett 32: 22,205. doi: 10.1029/2005GL023897 Google Scholar
  89. Kostiuk T et al (2006) Stratospheric global winds on Titan at the time of Huygens descent. J Geophys Res (Planets) 111: 7. doi: 10.1029/2005JE002630 Google Scholar
  90. Kuiper GP (1944) Titan: a satellite with an atmosphere. Astrophys J 100: 378ADSGoogle Scholar
  91. Labeyrie A (1970) Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in Star Images. Astron Astrophys 6: 85ADSGoogle Scholar
  92. Lebonnois S, Toublanc D, Hourdin F, Rannou P (2001) Seasonal variations of Titan’s atmospheric composition. Icarus 152: 384–406ADSGoogle Scholar
  93. Lebonnois S, Hourdin F, Rannou P, Luz D, Toublanc D (2003) Impact of the seasonal variations of composition on the temperature field of Titan’s stratosphere. Icarus 163: 164–174ADSGoogle Scholar
  94. Lellouch E, Coustenis A, Gautier D, Raulin F, Dubouloz N, Frere C (1989) Titan’s atmosphere and hypothesized ocean—a reanalysis of the Voyager 1 radio-occultation and IRIS 7.7-micron data. Icarus 79: 328–349ADSGoogle Scholar
  95. Lemmon MT, Karkoschka E, Tomasko M (1993) Titan’s rotation—surface feature observed. Icarus 103: 329–332ADSGoogle Scholar
  96. Lemmon MT, Karkoschka E, Tomasko M (1995) Titan’s rotational light-curve. Icarus 113: 27–38ADSGoogle Scholar
  97. Lindal GF, Wood GE, Hotz HB, Sweetnam DN, Eshleman VR, Tyler GL (1983) The atmosphere of Titan—an analysis of the Voyager 1 radio occultation measurements. Icarus 53: 348–363ADSGoogle Scholar
  98. Lockwood GW, Lutz BL, Thompson DT (1979) Spectrophotometry of temporal and spatial variations of the atmospheres of the outer planets and Titan. Bull Am Astron Soc 11: 554ADSGoogle Scholar
  99. Lorenz RD (1993) The life, death and afterlife of a raindrop on Titan. Planet Space Sci 41: 647–655ADSGoogle Scholar
  100. Lorenz RD (2002) Thermodynamics of geysers: application to Titan. Icarus 156: 176–183ADSGoogle Scholar
  101. Lorenz RD, Smith PH, Lemmon MT, Karkoschka E, Lockwood GW, Caldwell J (1997) Titan’s north–south asymmetry from HST and Voyager imaging: comparison with models and ground-based photometry. Icarus 127: 173–189ADSGoogle Scholar
  102. Lorenz RD, Lemmon MT, Simth Ph (1999a) Evidence for clouds on Titan from HST WFPC-2. AAS/Division for Planetary Sciences Meeting 31Google Scholar
  103. Lorenz RD, Lemmon MT, Smith PH, Lockwood GW (1999b) Seasonal change on Titan observed with the hubble space telescope WFPC-2. Icarus 142: 391–401ADSGoogle Scholar
  104. Lorenz RD, Lemmon MT, Smith PH (2000) Variable and constant features on Titan from HST. In: Highlights of planetary exploration from space and from Earth, 24th meeting of the IAU, Joint Discussion 12, August 2000, Manchester, England, 12Google Scholar
  105. Lorenz RD, Young EF, Lemmon MT (2001) Titan’s smile and collar: HST observations of seasonal change 1994–2000. Geophys Res Lett 28: 4453–ADSGoogle Scholar
  106. Lorenz RD, Smith PH, Lemmon MT (2004) Seasonal change in Titan’s haze 1992-2002 from hubble space telescope observations. Geophys Res Lett 31: 10702–ADSGoogle Scholar
  107. Lorenz RD, Griffith CA, Lunine JI, McKay CP, Rennò NO (2005) Convective plumes and the scarcity of Titan’s clouds. Geophys Res Lett 32: 1201–Google Scholar
  108. Lorenz RD, Lemmon MT, Smith PH (2006) Seasonal evolution of Titan’s dark polar hood: midsummer disappearance observed by the Hubble Space Telescope. Mon Notices R Astron Soc 369(4): 1683–1687ADSGoogle Scholar
  109. Lorenz RD, Zarnecki JC, Towner MC, Leese MR, Ball AJ, Hathi B, Hagermann A, Ghafoor NAL (2007) Descent motions of the Huygens probe as measured by the Surface Science Package (SSP): turbulent evidence for a cloud layer. Planet Space Sci 55: 1936–1948. doi: 10.1016/j.pss.2007.04.007 ADSGoogle Scholar
  110. Lorenz RD, Stiles BW, Kirk RL, Allison MD, Persidel Marmo P, Iess L, Lunine JI, Ostro SJ, Hensley S (2008) Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319: 1649. doi: 10.1126/science.1151639 ADSGoogle Scholar
  111. Lorenz RD, West RD, Johnson WTK (2008) Cassini RADAR constraint on Titan’s winter polar precipitation. Icarus 195: 812–816. doi: 10.1016/j.icarus.2007.12.025 ADSGoogle Scholar
  112. Lunine JI, Atreya SK (2008) The methane cycle on Titan. Nature Geoscience 1(3): 159–163. doi: 10.1038/ngeo125 Google Scholar
  113. Luz D, Hourdin F (2003) Latitudinal transport by barotropic waves in Titan’s stratosphere. I. General properties from a horizontal shallow-water model. Icarus 166: 328–342ADSGoogle Scholar
  114. Luz D, Hourdin F, Rannou P, Lebonnois S (2003) Latitudinal transport by barotropic waves in Titan’s stratosphere. II. Results from a coupled dynamics-microphysics-photochemistry GCM. Icarus 166:343–358. doi: 10.1016/S0019-1035(03)00263-X. Provided by the SAO/NASA Astrophysics Data SystemGoogle Scholar
  115. Luz D et al (2005) Characterization of zonal winds in the stratosphere of Titan with UVES. Icarus 179: 497–510. doi: 10.1016/j.icarus.2005.07.021 ADSGoogle Scholar
  116. Magain P, Courbin F, Sohy S (1998) Deconvolution with correct sampling. Astrophys J 494: 472. doi: 10.1086/305187 ADSGoogle Scholar
  117. Matthews K, Ghez AM, Weinberger AJ, Neugebauer G (1996) The first diffraction-limited images from the WM Keck Telescope. Publ Astron Soc Pac 108: 615–ADSGoogle Scholar
  118. Mayo LA, Samuelson RE (2005) Condensate clouds in Titan’s north polar stratosphere. Icarus 176: 316–330. doi: 10.1016/j.icarus.2005.01.020 ADSGoogle Scholar
  119. McKay CP, Pollack JB, Courtin R (1989) The thermal structure of Titan’s atmosphere. Icarus 80: 23–53ADSGoogle Scholar
  120. Meier R, Smith BA, Owen TC, Terrile RJ (2000) The surface of Titan from NICMOS observations with the Hubble Space Telescope. Icarus 145: 462–473ADSGoogle Scholar
  121. Mitchell JL, Pierrehumbert RT, Frierson DM, Caballero R (2006) The dynamics behind Titan’s methane clouds. Proc Natl Acad Sci USA 103: 18421–18426ADSGoogle Scholar
  122. Mitri G, Showman AP, Lunine JI, Lorenz RD (2007) Hydrocarbon lakes on Titan. Icarus 186: 385–394. doi: 10.1016/j.icarus.2006.09.004 ADSGoogle Scholar
  123. Moreno R, Marten A, Hidayat T (2005) Interferometric measurements of zonal winds on Titan. Astron Astrophys 437: 319–328. doi: 10.1051/0004-6361:20042117 ADSGoogle Scholar
  124. Negrão A (2007) The characterisation of Titan’s lower atmosphere and surface from near-infrared spectra, Ph.D. ThesisGoogle Scholar
  125. Negrão A, Coustenis A, Lellouch E, Maillard J-P, Rannou P, Schmitt B, McKay CP, Boudon V (2006) Titan’s surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra. Planet Space Sci 54: 1225–1246. doi: 10.1016/j.pss.2006.05.031 ADSGoogle Scholar
  126. Negrão A, Hirtzig M, Coustenis A, Gendron E, Drossart P, Rannou P, Combes M, Boudon V (2007) The 2-μm spectroscopy of Huygens probe landing site on Titan with very large telescope/nasmyth adaptive optics system near-infrared imager and spectrograph. J Geophys Res (Planets) 112: 2. doi: 10.1029/2005JE002651 Google Scholar
  127. Porco CC et al (2005) Imaging of Titan from the Cassini spacecraft. Nature 434: 159–168ADSGoogle Scholar
  128. Pruppacher HR, Klett JD (1978) Microphysics of clouds and precipitation, D. Reidel, Dordrecht, p 714Google Scholar
  129. Rages K, Pollack JB (1983) Vertical distribution of scattering hazes in Titan’s upper atmosphere. Icarus 55: 50–62ADSGoogle Scholar
  130. Rannou P, Hourdin F, McKay CP (2002) A wind origin for Titan’s haze structure. Nature 418: 853–856ADSGoogle Scholar
  131. Rannou P, McKay CP, Lorenz RD (2003) A model of Titan’s haze of fractal aerosols constrained by multiple observations. Planet Space Sci 51: 963–976ADSGoogle Scholar
  132. Rannou P, Hourdin F, McKay CP, Luz D (2004) A coupled dynamics-microphysics model of Titan’s atmosphere. Icarus 170: 443–462ADSGoogle Scholar
  133. Rannou P, Lebonnois S, Hourdin F, Luz D (2005) Titan atmosphere database. Adv Space Res 36: 2194–2198. doi: 10.1016/j.asr.2005.09.041 ADSGoogle Scholar
  134. Rannou P, Montmessin F, Hourdin F, Lebonnois S (2006) The Latitudinal distribution of clouds on Titan. Science 311: 201–205. doi: 10.1126/science.1118424 ADSGoogle Scholar
  135. Richardson MI, Toigo AD, Newman CE (2007) PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J Geophys Res 112: E09,001. doi: 10.1029/2006JE002825 Google Scholar
  136. Rodriguez S et al (2009) Cloud activity on Titan: seasonal changes and tidal effects. NatureGoogle Scholar
  137. Roe HG, de Pater I, Gibbard SG, Macintosh B, Max CE, McKay CP (2000) Near- and mid-infrared resolved imaging of Titan’s atmosphere. Bull Am Astron Soc 32: 1023ADSGoogle Scholar
  138. Roe HG, de Pater I, Macintosh BA, Gibbard SG, Max CE, McKay CP (2002a) NOTE: Titan’s atmosphere in late southern spring observed with adaptive optics on the WM Keck II 10-meter telescope. Icarus 157: 254–258ADSGoogle Scholar
  139. Roe HG, de Pater I, Macintosh BA, McKay CP (2002b) Titan’s clouds from Gemini and Keck adaptive optics imaging. Astrophys J 581: 1399–1406ADSGoogle Scholar
  140. Roe HG, Bouchez AH, Trujillo CA, Schaller EL, Brown ME (2005a) Discovery of temperate latitude clouds on Titan. Astrophys J 618: L49–L52ADSGoogle Scholar
  141. Roe HG, Brown ME, Schaller EL, Bouchez AH, Trujillo CA (2005) Geographic control of Titan’s mid-latitude clouds. Science 310: 477–479. doi: 10.1126/science.1116760 ADSGoogle Scholar
  142. Roos-Serote M (2004) The Changing Face of Titan’s Haze: Is it all Dynamics? Space Sci Rev 116(1):201–210. doi: 10.1007/s11214-005-1956-0. Google Scholar
  143. Rothman LS et al (2005) The HITRAN 2004 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 96: 139–204ADSGoogle Scholar
  144. Roush TL, Dalton JB (2004) Reflectance spectra of hydrated Titan tholins at cryogenic temperatures and implications for compositional interpretation of red objects in the outer solar system. Icarus 168: 158–162. doi: 10.1016/j.icarus.2003.11.001 ADSGoogle Scholar
  145. Sagan C, Thompson WR (1982) Production and condensation of organic gases in the atmosphere of Titan. Bull Am Astron Soc 14: 714–ADSGoogle Scholar
  146. Sagan C, Thompson WR (1984) Production and condensation of organic gases in the atmosphere of Titan. Icarus 59: 133–161ADSGoogle Scholar
  147. Saint-PéO, Combes M, Rigaut F, Tomasko M, Fulchignoni M (1993) Demonstration of adaptive optics for resolved imagery of solar system objects—preliminary results on Pallas and Titan. Icarus 105: 263–ADSGoogle Scholar
  148. Samuelson RE (1983) Radiative equilibrium model of Titan’s atmosphere. Icarus 53: 364–387. doi: 10.1016/0019-1035(83)90156-2 ADSGoogle Scholar
  149. Samuelson RE, Mayo LA (1997) Steady-state model for methane condensation in Titan’s troposphere. Planet Space Sci 45: 949–958ADSGoogle Scholar
  150. Samuelson RE, Mayo LA, Knuckles MA, Khanna RJ (1997a) C 4 N 2 ice in Titan’s north polar stratosphere. Planet Space Sci 45: 941–948ADSGoogle Scholar
  151. Samuelson RE, Nath NR, Borysow A (1997b) Gaseous abundances and methane supersaturation in Titan’s troposphere. Planet Space Sci 45: 959–980ADSGoogle Scholar
  152. Schaller EL, Brown ME, Bouchez AH, Roe HG , Trujillo CA (2004) Continuous monitoring of Titan for large cloud outbursts. In: AAS/Division for Planetary Sciences Meeting Abstracts 36Google Scholar
  153. Schaller EL, Brown ME, Roe HG, Bouchez AH, Trujillo CA (2005) Cloud activity on Titan during the Cassini mission. In: 36th Annual lunar and planetary science conference, p 1989Google Scholar
  154. Schaller EL, Brown ME, Roe HG, Bouchez AH (2006) A large cloud outburst at Titan’s south pole. Icarus 182: 224–229. doi: 10.1016/j.icarus.2005.12.021 ADSGoogle Scholar
  155. Schaller EL, Brown ME, Roe HG, Bouchez AH, Trujillo CA (2006) Dissipation of Titan’s south polar clouds. Icarus 184: 517–523. doi: 10.1016/j.icarus.2006.05.025 ADSGoogle Scholar
  156. Sicardy B et al (1990) Probing Titan’s atmosphere by stellar occultation. Nature 343: 350–353ADSGoogle Scholar
  157. Sicardy B et al (1999) The Structure of Titan’s Stratosphere from the 28 Sgr Occultation. Icarus 142: 357–390ADSGoogle Scholar
  158. Sicardy B et al (2006) The two Titan stellar occultations of 14 November 2003. J Geophys Res (Planets) 111: 11. doi: 10.1029/2005JE002624 Google Scholar
  159. Smith BA et al (1981) Encounter with Saturn—Voyager 1 imaging science results. Science 212: 163–191ADSGoogle Scholar
  160. Smith BA et al (1982) A new look at the Saturn system—the Voyager 2 images. Science 215: 504–537ADSGoogle Scholar
  161. Smith PH, Lemmon MT, Lorenz RD, Sromovsky LA, Caldwell JJ, Allison MD (1996) Titan’s surface, revealed by HST imaging. Icarus 119: 336–349ADSGoogle Scholar
  162. Sromovsky LA, Suomi VE, Pollack JB, Krauss RJ, Limaye SS, Owen T, Revercomb HE, Sagan C (1981) Implications of Titan’s north–south brightness asymmetry. Nature 292: 698–702ADSGoogle Scholar
  163. Stevenson DJ, Potter BE (1986) Titan’s latitudinal temperature distribution and seasonal cycle. Geophys Res Lett 13: 93–96. doi: 10.1029/GL013i002p00093 ADSGoogle Scholar
  164. Stiles BW et al (2008) Determining Titan’s spin state from Cassini radar images. Astron J 135: 1669–1680. doi: 10.1088/0004-6256/135/5/1669 ADSGoogle Scholar
  165. Stofan ER et al (2007) The lakes of Titan. Nature 445: 61–64. doi: 10.1038/nature05438 ADSGoogle Scholar
  166. Strobel DF (2006) Gravitational tidal waves in Titan’s upper atmosphere. Icarus 182: 251–258. doi: 10.1016/j.icarus.2005.12.015 ADSGoogle Scholar
  167. Tokano T (2005) Meteorological assessment of the surface temperatures on Titan: constraints on the surface type. Icarus 173: 222–242ADSGoogle Scholar
  168. Tokano T (2008) Dune-forming winds on Titan and the influence of topography. Icarus 194: 243–262. doi: 10.1016/j.icarus.2007.10.007 ADSGoogle Scholar
  169. Tokano T (2008) The dynamics of Titan’s troposphere. Philos Trans R Soc A Math Phys Eng Sci 367(1889): 633–648. doi: 10.1098/rsta.2008.0163 ADSGoogle Scholar
  170. Tokano T, Neubauer FM, Laube M, McKay CP (1999) Seasonal variation of Titan atmospheric structuresimulated by a general circulation model. Planet Space Sci 47: 493–520ADSGoogle Scholar
  171. Tokano T, Ferri F, Colombatti G, Mäkinen T, Fulchignoni M (2006) Titan’s planetary boundary layer structure at the Huygens landing site. J Geophys Res (Planets) 111: 8007. doi: 10.1029/2006JE002704 Google Scholar
  172. Tokano T, McKay CP, Neubauer FM, Atreya SK, Ferri F, Fulchignoni M, Niemann HB (2006) Methane drizzle on Titan. Nature 442: 432–435. doi: 10.1038/nature04948 ADSGoogle Scholar
  173. Tomasko MG, Bézard B, Doose L, Engel S, Karkoschka E (2008) Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan’s atmosphere. Planet Space Sci 56: 624–647. doi: 10.1016/j.pss.2007.10.009 ADSGoogle Scholar
  174. Tomasko MG, Doose L, Engel S, Dafoe LE, West R, Lemmon M, Karkoschka E, See C (2008) A model of Titan’s aerosols based on measurements made inside the atmosphere. Planet Space Sci 56: 669–707. doi: 10.1016/j.pss.2007.11.019 ADSGoogle Scholar
  175. Tomasko MG et al (2005) Results from the Descent Imager/Spectral Radiometer (DISR) Instrument on the Huygens probe of Titan. Nature 438: 765–778. doi: 10.1038/nature04126 ADSGoogle Scholar
  176. Toon OB, McKay CP, Courtin R, Ackerman TP (1988) Methane rain on Titan. Icarus 75: 255–284ADSGoogle Scholar
  177. Turtle EP, Perry JE, McEwen AS, DelGenio AD, Barbara J, West RA, Dawson DD, Porco CC (2009) Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys Res Lett 36: 2204. doi: 10.1029/2008GL036186 Google Scholar
  178. Walterscheid RL, Schubert G (2006) A tidal explanation for the Titan haze layers. Icarus 183: 471–478. doi: 10.1016/j.icarus.2006.03.001 ADSGoogle Scholar
  179. Young EF, Rannou P, McKay CP, Griffith CA, Noll K (2002) A three-dimensional map of Titan’s tropospheric haze distribution based on Hubble Space Telescope imaging. Astrophys J 123: 3473–3486ADSGoogle Scholar
  180. Yung YL (1987) An update of nitrile photochemistry on Titan. Icarus 72: 468–472ADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mathieu Hirtzig
    • 1
  • Tetsuya Tokano
    • 2
  • Sébastien Rodriguez
    • 3
  • Stéphane le Mouélic
    • 4
  • Christophe Sotin
    • 5
  1. 1.LATMOS, IPSLVerrières-le-BuissonFrance
  2. 2.Institut für Geophysik und MeteorologieUniversität zu KölnCologneGermany
  3. 3.Laboratoire AIM, CEA/DSMCNRS, UniversitéParis Diderot, IRFU/SApGif-sur-YvetteFrance
  4. 4.Laboratoire de Planétologie et GéodynamiqueNantesFrance
  5. 5.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations