Advertisement

The Astronomy and Astrophysics Review

, Volume 16, Issue 3–4, pp 155–208 | Cite as

Hard X-ray emission from the solar corona

  • S. Krucker
  • M. Battaglia
  • P. J. Cargill
  • L. Fletcher
  • H. S. Hudson
  • A. L. MacKinnon
  • S. Masuda
  • L. Sui
  • M. Tomczak
  • A. L. Veronig
  • L. Vlahos
  • S. M. White
Review Article

Abstract

This review surveys hard X-ray emissions of non-thermal electrons in the solar corona. These electrons originate in flares and flare-related processes. Hard X-ray emission is the most direct diagnostic of electron presence in the corona, and such observations provide quantitative determinations of the total energy in the non-thermal electrons. The most intense flare emissions are generally observed from the chromosphere at footpoints of magnetic loops. Over the years, however, many observations of hard X-ray and even γ-ray emission directly from the corona have also been reported. These coronal sources are of particular interest as they occur closest to where the electron acceleration is thought to occur. Prior to the actual direct imaging observations, disk occultation was usually required to study coronal sources, resulting in limited physical information. Now RHESSI has given us a systematic view of coronal sources that combines high spatial and spectral resolution with broad energy coverage and high sensitivity. Despite the low density and hence low bremsstrahlung efficiency of the corona, we now detect coronal hard X-ray emissions from sources in all phases of solar flares. Because the physical conditions in such sources may differ substantially from those of the usual “footpoint” emission regions, we take the opportunity to revisit the physics of hard X-radiation and relevant theories of particle acceleration.

Keywords

Sun Corona Hard X-rays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander D, Katsev S (1996) Geometrical considerations in imaging the solar corona. Solar Phys 167: 153–166ADSCrossRefGoogle Scholar
  2. Alexander D, Metcalf TR (1997) A spectral analysis of the masuda flare using Yohkoh Hard X-ray telescope pixon reconstruction. ApJ 489: 442. doi: 10.1086/304762 ADSCrossRefGoogle Scholar
  3. Alfvén H, Carlqvist P (1967) Currents in the solar atmosphere and a theory of solar flares. Solar Phys 1: 220–228. doi: 10.1007/BF00150857 ADSCrossRefGoogle Scholar
  4. Allred JC, Hawley SL, Abbett WP, Carlsson M (2005) Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. ApJ 630:573–586, doi: 10.1086/431751, arXiv:astro-ph/0507335Google Scholar
  5. Antiochos SK, Sturrock PA (1978) Evaporative cooling of flare plasma. ApJ 220: 1137–1143. doi: 10.1086/155999 ADSCrossRefGoogle Scholar
  6. Asai A, Nakajima H, Shimojo M, White SM, Hudson HS, Lin RP (2006) Preflare nonthermal emission observed in microwaves and Hard X-rays. PASJ 58: L1–L5ADSGoogle Scholar
  7. Aschwanden MJ (2002) Particle acceleration and kinematics in solar flares. A synthesis of recent observations and theoretical concepts (Invited Review). Space Sci Rev 101: 1–227. doi: 10.1023/A:1019712124366 ADSGoogle Scholar
  8. Aschwanden MJ, Alexander D (2001) Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000). Solar Phys 204: 91–120. doi: 10.1023/A:1014257826116 ADSCrossRefGoogle Scholar
  9. Aschwanden MJ, Wills MJ, Hudson HS, Kosugi T, Schwartz RA (1996) Electron time-of-flight distances and flare loop geometries compared from CGRO and Yohkoh observations. ApJ 468: 398. doi: 10.1086/177700 ADSCrossRefGoogle Scholar
  10. Aschwanden MJ, Fletcher L, Sakao T, Kosugi T, Hudson H (1999) Deconvolution of directly precipitating and trap-precipitating electrons in solar flare Hard X-rays. III. Yohkoh Hard X-ray telescope data analysis. ApJ 517: 977–989ADSCrossRefGoogle Scholar
  11. Bai T (1982) Transport of energetic electrons in a fully ionized hydrogen plasma. ApJ 259: 341–349. doi: 10.1086/160170 ADSCrossRefGoogle Scholar
  12. Bai T, Ramaty R (1979) Hard X-ray time profiles and acceleration processes in large solar flares. ApJ 227: 1072–1081ADSCrossRefGoogle Scholar
  13. Bale SD, Reiner MJ, Bougeret JL, Kaiser ML, Krucker S, Larson DE, Lin RP (1999) The source region of an interplanetary type II radio burst. GRL 26: 1573–1576. doi: 10.1029/1999GL900293 ADSCrossRefGoogle Scholar
  14. Bastian TS, Benz AO, Gary DE (1998) Radio emission from solar flares. ARAA 36: 131–188. doi: 10.1146/annurev.astro.36.1.131 ADSCrossRefGoogle Scholar
  15. Battaglia M, Benz AO (2006) Relations between concurrent hard X-ray sources in solar flares. A&A 456:751–760 doi: 10.1051/0004-6361:20065233, arXiv:astro-ph/0606353Google Scholar
  16. Battaglia M, Benz AO (2007) Exploring the connection between coronal and footpoint sources in a thin-thick target solar flare model. A&A 466:713–716, doi: 10.1051/0004-6361:20077144, arXiv:astro-ph/0702309Google Scholar
  17. Benz AO (1977) Spectral features in solar hard X-ray and radio events and particle acceleration. ApJ 211: 270–280ADSCrossRefGoogle Scholar
  18. Bespalov PA, Zaitsev VV, Stepanov AV (1987) On the origin of time delays in hard X-ray and gamma-ray emission of solar flares. Solar Phys 114: 127–140ADSGoogle Scholar
  19. Blackman EG, Field GB (1994) Nonthermal acceleration from reconnection shocks. Phys Rev Lett. 73: 3097–3100, arXiv:astro-ph/9410036ADSCrossRefGoogle Scholar
  20. Blumenthal GR, Gould RJ (1970) Bremsstrahlung, synchrotron radiation and Compton scattering of high-energy electrons traversing dilute gases. Rev Mod Phys 42: 237–270ADSCrossRefGoogle Scholar
  21. Bogachev SA, Somov BV (2007) Formation of power-law electron spectra in collapsing magnetic traps. Astron Lett 33: 54–62. doi: 10.1134/S1063773707010070 ADSCrossRefGoogle Scholar
  22. Bohlin JD, Frost KJ, Burr PT, Guha AK, Withbroe GL (1980) Solar maximum mission. Solar Phys 65: 5–14. doi: 10.1007/BF00151380 ADSCrossRefGoogle Scholar
  23. Bone L, Brown JC, Fletcher L, Veronig A, White S (2007) Birth and evolution of a dense coronal loop in a complex flare region. A&A 446: 339–346. doi: 10.1051/0004-6361:20020947 ADSCrossRefGoogle Scholar
  24. Brown JC (1971) The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of Hard X-Ray bursts. Solar Phys 18: 489ADSCrossRefGoogle Scholar
  25. Brown JC (1973) The temperature structure of chromospheric flares heated by non-thermal electrons. Solar Phys 31: 143ADSCrossRefGoogle Scholar
  26. Brown JC (1976) The interpretation of hard and soft X-rays from solar flares. R Soc Lond Philos Trans Ser A 281Google Scholar
  27. Brown JC, Hoyng P (1975) Betatron acceleration in a large solar hard X-ray burst. ApJ 200: 734–746ADSCrossRefGoogle Scholar
  28. Brown JC, Loran JM (1985) Possible evidence for stochastic acceleration of electrons in solar hard X-ray bursts observed by SMM. MNRAS 212: 245–255ADSGoogle Scholar
  29. Brown JC, Mallik PCV (2008) Non-thermal recombination—a neglected source of flare hard X-rays and fast electron diagnostic. A&A 481: 507–518ADSCrossRefGoogle Scholar
  30. Brown JC, Melrose DB (1977) Collective plasma effects and the electron number problem in solar hard X-ray bursts. Solar Phys 52: 117–131ADSCrossRefGoogle Scholar
  31. Brown JC, Carlaw VA, Cromwell D, Kane SR (1983) A comparison of the thick-target model with stereo data on the height structure of solar hard X-ray bursts. Solar Phys 88: 281–295ADSCrossRefGoogle Scholar
  32. Brown JC, Aschwanden MJ, Kontar EP (2002) Chromospheric height and density measurements in a solar flare observed with RHESSI I. Theory. Solar Phys 210: 373–381. doi: 10.1023/A:1022469402781 ADSCrossRefGoogle Scholar
  33. Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, Moses JD, Socker DG, Dere KP, Lamy PL, Llebaria A, Bout MV, Schwenn R, Simnett GM, Bedford DK, Eyles CJ (1995) The large angle spectroscopic coronagraph (LASCO). Solar Phys 162: 357–402. doi: 10.1007/BF00733434 ADSCrossRefGoogle Scholar
  34. Cargill PJ (2001) Theories of heating and particle acceleration in the solar corona. Adv Space Res 26: 1759–1768ADSCrossRefGoogle Scholar
  35. Cargill PJ, Priest ER (1983) The heating of postflare loops. ApJ 266: 383–389. doi: 10.1086/160786 ADSCrossRefGoogle Scholar
  36. Caspi A, Lin RP (2008) RHESSI X-ray continuum and Fe-to-Fe/Ni line ratio measurements of thermal flare plasma (in preparation)Google Scholar
  37. Cliver EW, Dennis BR, Kiplinger AL, Kane SR, Neidig DF, Sheeley NR, Koomen MJ (1986) Solar gradual hard X-ray bursts and associated phenomena. ApJ 305: 920–935ADSCrossRefGoogle Scholar
  38. Conway AJ, MacKinnon AL (1998) The electron cyclotron maser in hot thermal plasmas. A&A 339: 298–308ADSGoogle Scholar
  39. Culhane JL, Acton LW (1970) A simplified thermal continuum functionfor the X-ray emission from coronal plasmas. MNRAS 151: 141ADSGoogle Scholar
  40. Dalla S, Browning PK (2005) Particle acceleration at a three-dimensional reconnection site in the solar corona. A&A 436: 1103–1111. doi: 10.1051/0004-6361:20042589 ADSCrossRefGoogle Scholar
  41. Dauphin C, Vilmer N (2007) Time delay between γ-ray lines and hard X-ray emissions during the 23 July 2002 solar flare interpreted by a trap plus precipitation model. A&A 468: 289–298. doi: 10.1051/0004-6361:20066247 ADSCrossRefGoogle Scholar
  42. Dennis BR, Zarro DM (1993) The Neupert effect—What can it tell us about the impulsive and gradual phases of solar flares?. Solar Phys 146: 177–190ADSCrossRefGoogle Scholar
  43. Dmitruk P, Matthaeus WH, Seenu N (2004) Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. ApJ 617: 667–679ADSCrossRefGoogle Scholar
  44. Domingo V, Fleck B, Poland AI (1995) The SOHO mission: an overview. Solar Phys 162: 1–2. doi: 10.1007/BF00733425 ADSCrossRefGoogle Scholar
  45. Drake JF, Shay MA, Thongthai W, Swisdak M (2005) Production of energetic electrons during magnetic reconnection. Phys Rev Lett 94(9): 095,001CrossRefGoogle Scholar
  46. Drake JF, Swisdak M, Che H, Shay MA (2006) Electron acceleration from contracting magnetic islands during reconnection. Nature 443: 553–556. doi: 10.1038/nature05116 ADSCrossRefGoogle Scholar
  47. Dreicer H (1959) Electron and ion runaway in a fully ionized gas I. Phys Rev 115: 238–249. doi: 10.1103/PhysRev.115.238 zbMATHADSMathSciNetCrossRefGoogle Scholar
  48. Duijveman A, Hoyng P, Machado ME (1982) X-ray imaging of three flares during the impulsive phase. Solar Phys 81: 137–157ADSCrossRefGoogle Scholar
  49. Ellison DC, Baring MG, Jones FC (1996) Nonlinear particle acceleration in oblique shocks. ApJ 473:1029–+, doi: 10.1086/178213, arXiv:astro-ph/9609182Google Scholar
  50. Emslie AG (1978) The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. ApJ 224: 241–246ADSCrossRefGoogle Scholar
  51. Emslie AG, Kontar EP, Krucker S, Lin RP (2003) RHESSI Hard X-Ray imaging spectroscopy of the large gamma-ray flare of 2002 July 23. ApJL 595: L107–L110. doi: 10.1086/378931 ADSCrossRefGoogle Scholar
  52. Emslie AG, Dennis BR, Holman GD, Hudson HS (2005) Refinements to flare energy estimates: a followup to “Energy partition in two solar flare/CME events”. J Geophys Res (Space Physics) 110:11,103–+, doi: 10.1029/2005JA011305
  53. Énomé S, Tanaka H (1971) Magnetic fields in the lower corona associated with the expanding limb burst on March 30th 1969 inferred from the microwave high-resolution observations. In: Howard R (ed) Solar magnetic fields, IAU Symposium, vol 43, pp 413–+Google Scholar
  54. Feldman U, Hiei E, Phillips KJH, Brown CM, Lang J (1994) Very impulsive solar flares observed with the Yohkoh spacecraft. ApJ 421: 843–850. doi: 10.1086/173696 ADSCrossRefGoogle Scholar
  55. Feldman U, Laming JM, Doschek GA, Warren HP, Golub L (1999) On the ability of an extreme-ultraviolet multilayer normal-incidence telescope to provide temperature information for solar plasmas. ApJL 511: L61–L64. doi: 10.1086/311835 ADSCrossRefGoogle Scholar
  56. Fletcher L (1995) On the generation of loop-top impulsive hard X-ray sources. A&A 303: L9+ADSGoogle Scholar
  57. Fletcher L, Hudson HS (2008) Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. ApJ 675:1645–1655, doi: 10.1086/527044, arXiv:0712.3452Google Scholar
  58. Fletcher L, Martens PCH (1998) A model for Hard X-Ray emission from the top of flaring loops. ApJ 505: 418–431. doi: 10.1086/306137 ADSCrossRefGoogle Scholar
  59. Fletcher L, Hannah IG, Hudson HS, Metcalf TR (2007) A TRACE white light and RHESSI Hard X-Ray study of flare energetics. ApJ 656: 1187–1196. doi: 10.1086/510446 ADSCrossRefGoogle Scholar
  60. Forbes TG, Acton LW (1996) Reconnection and field line shrinkage in solar flares. ApJ 459: 330. doi: 10.1086/176896 ADSCrossRefGoogle Scholar
  61. Frost KJ, Dennis BR (1971) Evidence from Hard X-Rays for two-stage particle acceleration in a solar flare. ApJ 165: 655ADSCrossRefGoogle Scholar
  62. Gallagher PT, Dennis BR, Krucker S, Schwartz RA, Tolbert AK (2002) RHESSI and TRACE observations of the 21 April 2002 x1.5 Flare. Solar Phys 210: 341–356. doi: 10.1023/A:1022422019779 ADSCrossRefGoogle Scholar
  63. Gan WQ (1998) An invariable point in the energy spectra of non-thermal electrons of solar flares. APSS 260: 515–519ADSGoogle Scholar
  64. Garcia HA (1994) Temperature and emission measure from GOES soft X-ray measurements. Solar Phys 154: 275–308ADSCrossRefGoogle Scholar
  65. Ginzburg VL, Syrovatskii SI (1969) Developments in the theory of synchrotron radiation and its reabsorption. ARAA 7: 375–420ADSCrossRefGoogle Scholar
  66. Giuliani P, Neukirch T, Wood P (2005) Particle motion in collapsing magnetic traps in solar flares. I. Kinematic theory of collapsing magnetic traps. ApJ 635: 636–646ADSCrossRefGoogle Scholar
  67. Gkioulidou M, Zimbardo G, Pommois P, Veltri P, Vlahos L (2007) High energy particle transport in stochastic magnetic fields in the solar corona. A&A 462: 1113–1120ADSCrossRefGoogle Scholar
  68. Goff CP, van Driel-Gesztelyi L, Harra LK, Matthews SA, Mandrini CH (2005) A slow coronal mass ejection with rising X-ray source. A&A 434: 761–771. doi: 10.1051/0004-6361:20042321 ADSCrossRefGoogle Scholar
  69. Gold T (1962) Magnetic storms. Space Sci Rev 1: 100–114. doi: 10.1007/BF00174637 ADSCrossRefGoogle Scholar
  70. Goldreich P, Sridhar S (1997) Magnetohydrodynamic turbulence revisited. ApJ 485:680–+, doi: 10.1086/304442, arXiv:astro-ph/9612243Google Scholar
  71. Grigis PC, Benz AO (2004) The spectral evolution of impulsive solar X-ray flares. A&A 426:1093–1101, doi: 10.1051/0004-6361:20041367, astro-ph/0407431Google Scholar
  72. Grigis PC, Benz AO (2006) Electron acceleration in solar flares: theory of spectral evolution. A&A 458:641–651, arXiv:astro-ph/0606339Google Scholar
  73. Hamilton RJ, Petrosian V (1992) Stochastic acceleration of electrons. I. Effects of collisions in solar flares. ApJ 398: 350–358. doi: 10.1086/171860 ADSCrossRefGoogle Scholar
  74. Handy BN, Acton LW, Kankelborg CC, Wolfson CJ, Akin DJ, Bruner ME, Caravalho R, Catura RC, Chevalier R, Duncan DW, Edwards CG, Feinstein CN, Freeland SL, Friedlaender FM, Hoffmann CH, Hurlburt NE, Jurcevich BK, Katz NL, Kelly GA, Lemen JR, Levay M, Lindgren RW, Mathur DP, Meyer SB, Morrison SJ, Morrison MD, Nightingale RW, Pope TP, Rehse RA, Schrijver CJ, Shine RA, Shing L, Strong KT, Tarbell TD, Title AM, Torgerson DD, Golub L, Bookbinder JA, Caldwell D, Cheimets PN, Davis WN, Deluca EE, McMullen RA, Warren HP, Amato D, Fisher R, Maldonado H, Parkinson C (1999) The transition region and coronal explorer. Solar Phys 187: 229–260ADSCrossRefGoogle Scholar
  75. Haug E (1975) Bremsstrahlung and pair production in the field of free electrons. Z Naturforsch Teil A 30: 1099–1113ADSGoogle Scholar
  76. Heyvaerts J, Priest ER, Rust DM (1977) An emerging flux model for the solar flare phenomenon. ApJ 216: 123–137ADSCrossRefGoogle Scholar
  77. Hirayama T (1974) Theoretical model of flares and prominences. I. Evaporating flare model. Solar Phys 34: 323–338. doi: 10.1007/BF00153671 ADSCrossRefGoogle Scholar
  78. Holman GD, Pesses ME (1983) Solar type II radio emission and the shock drift acceleration of electrons. ApJ 267: 837–843. doi: 10.1086/160918 ADSCrossRefGoogle Scholar
  79. Holman GD, Sui L, Schwartz RA, Emslie AG (2003) Electron bremsstrahlung Hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. ApJL 595: L97–L101. doi: 10.1086/378488 ADSCrossRefGoogle Scholar
  80. Hori K, Yokoyama T, Kosugi T, Shibata K (1998) Single and multiple solar flare loops: hydrodynamics and Ca XIX resonance line emission. ApJ 500: 492. doi: 10.1086/305725 ADSCrossRefGoogle Scholar
  81. Hoyng P, van Beek HF, Brown JC (1976) High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite. Solar Phys 48: 197–254ADSCrossRefGoogle Scholar
  82. Hoyng P, Duijveman A, Machado ME, Rust DM, Svestka Z, Boelee A, de Jager C, Frost KT, Lafleur H, Simnett GM, van Beek HF, Woodgate BE (1981) Origin and location of the Hard X-ray emission in a two-ribbon flare. ApJL 246: L155+. doi: 10.1086/183574 ADSCrossRefGoogle Scholar
  83. Hudson HS (1972) Thick-target processes and white-light flares. Solar Phys 24: 414ADSMathSciNetCrossRefGoogle Scholar
  84. Hudson HS (1978) A purely coronal hard X-ray event. ApJ 224: 235–240. doi: 10.1086/156370 ADSCrossRefGoogle Scholar
  85. Hudson HS (2000) Implosions in coronal transients. ApJL 531: L75–L77. doi: 10.1086/312516 ADSCrossRefGoogle Scholar
  86. Hudson HS, Fárník F (2002) Spectral variations of flare hard X-rays. In: Wilson A (ed) ESA SP-506: solar variability: from core to outer frontiers, pp 261–264Google Scholar
  87. Hudson HS, Ohki K (1972) Soft X-ray and microwave observations of hot regions in solar flares. Solar Phys 23: 155ADSCrossRefGoogle Scholar
  88. Hudson H, Ryan J (1995) High-energy particles in solar flares. ARAA 33: 239–282. doi: 10.1146/annurev.aa.33.090195.001323 ADSCrossRefGoogle Scholar
  89. Hudson HS, Lin RP, Stewart RT (1982) Second-stage acceleration in a limb-occulted flare. Solar Phys 75: 245–261ADSCrossRefGoogle Scholar
  90. Hudson HS, Kosugi T, Nitta NV, Shimojo M (2001) Hard X-radiation from a fast coronal ejection. ApJL 561: L211–L214. doi: 10.1086/324760 ADSCrossRefGoogle Scholar
  91. Hurford GJ, Read RB, Zirin H (1984) A frequency angle interferometer for solar microwave spectroscopy. Solar Phys 94: 413–426. doi: 10.1007/BF00151327 ADSCrossRefGoogle Scholar
  92. Hurford GJ, Schmahl EJ, Schwartz RA, Conway AJ, Aschwanden MJ, Csillaghy A, Dennis BR, Johns-Krull C, Krucker S, Lin RP, McTiernan J, Metcalf TR, Sato J, Smith DM (2002) The RHESSI imaging concept. Solar Phys 210: 61–86. doi: 10.1023/A:1022436213688 ADSCrossRefGoogle Scholar
  93. Jiang YW, Liu S, Liu W, Petrosian V (2006) Evolution of the loop-top source of solar flares: heating and cooling processes. ApJ 638:1140–1153, doi: 10.1086/498863, astro-ph/0508532Google Scholar
  94. Kahler SW (1992) Solar flares and coronal mass ejections. ARAA 30: 113–141. doi: 10.1146/annurev.aa.30.090192.000553 ADSCrossRefGoogle Scholar
  95. Kahler SW, Ragot BR (2008) Remote sensing of gamma-ray emission from solar energetic proton interactions with the solar wind. ApJ 675: 846–852. doi: 10.1086/526416 ADSCrossRefGoogle Scholar
  96. Kane SR (1983) Spatial structure of high energy photon sources in solar flares. Solar Phys 86: 355–365ADSCrossRefGoogle Scholar
  97. Kane SR, Anderson KA, Evans WD, Klebesadel RW, Laros J (1979) Observation of an impulsive solar X-ray burst from a coronal source. ApJL 233: L151–L155. doi: 10.1086/183095 ADSCrossRefGoogle Scholar
  98. Kane SR, McTiernan J, Loran J, Fenimore EE, Klebesadel RW, Laros JG (1992) Stereoscopic observations of a solar flare Hard X-ray source in the high corona. ApJ 390: 687–702. doi: 10.1086/171320 ADSCrossRefGoogle Scholar
  99. Karlicky M, Bárta M (2006) X-Ray loop-top source generated by processes in a flare collapsing trap. ApJ 647: 1472–1479. doi: 10.1086/505460 ADSCrossRefGoogle Scholar
  100. Karlicky M, Kosugi T (2004) Acceleration and heating processes in a collapsing magnetic trap. A&A 419: 1159–1168ADSCrossRefGoogle Scholar
  101. Kašparová J, Kontar EP, Brown JC (2007) Hard X-ray spectra and positions of solar flares observed by RHESSI: photospheric albedo, directivity and electron spectra. A&A 466:705–712, doi: 10.1051/0004-6361:20066689, arXiv:astro-ph/0701871
  102. Kennel CF (1969) Consequences of a magnetospheric plasma. Rev Geophys Space Phys 7: 379–419ADSCrossRefGoogle Scholar
  103. Kennel CF, Petschek HE (1966) Limit on stably trapped particle fluxes. JGR 71: 1–28ADSGoogle Scholar
  104. Kiplinger AL (1995) Comparative studies of Hard X-ray spectral evolution in solar flares with high-energy proton events observed at earth. ApJ 453: 973. doi: 10.1086/176457 ADSCrossRefGoogle Scholar
  105. Klimchuk JA (2000) Cross-sectional properties of coronal loops. Solar Phys 193: 53–75ADSCrossRefGoogle Scholar
  106. Koch HW, Motz JW (1959) Bremsstrahlung cross-section formulas and related data. Rev Mod Phys 31: 920–956ADSCrossRefGoogle Scholar
  107. Kontar EP, Brown JC (2006) Stereoscopic electron spectroscopy of solar Hard X-ray flares with a single spacecraft. ApJL 653:L149–L152, doi: 10.1086/510586, arXiv:astro-ph/0611170
  108. Kontar EP, Emslie AG, Massone AM, Piana M, Brown JC, Prato M (2007) Electron–Electron Bremsstrahlung emission and the inference of electron flux spectra in solar flares. ApJ 670:857–861, doi: 10.1086/521977, arXiv:0707.4225Google Scholar
  109. Kopp RA, Pneuman GW (1976) Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys 50: 85–98ADSCrossRefGoogle Scholar
  110. Korchak AA (1967) Possible mechanisms for generating hard X-rays in solar flares. Sov Astr AJ 11: 258–263ADSGoogle Scholar
  111. Korchak AA (1971) On the origin of solar flare X-rays. Solar Phys 18: 284–304ADSCrossRefGoogle Scholar
  112. Kosugi T, Masuda S, Makishima K, Inda M, Murakami T, Dotani T, Ogawara Y, Sakao T, Kai K, Nakajima H (1991) The hard X-ray telescope (HXT) for the Solar-A mission. Solar Phys 136: 17–36ADSCrossRefGoogle Scholar
  113. Kosugi T, Sakao T, Masuda S, Makishima K, Inda M, Murakami T, Ogawara Y, Yaji K, Matsushita K (1992) The Hard X-ray Telescope (HXT) onboard Yohkoh—its performance and some initial results. PASJ 44: L45–L49ADSGoogle Scholar
  114. Kosugi T, Sakao T, Masuda S, Hara H, Shimizu T, Hudson HS (1994) Hard and Soft X-ray observations of a super-hot thermal flare of 6 February 1992. In: Proceedings of Kofu symposium, pp 127–129Google Scholar
  115. Krucker S, Lin RP (2008) Hard X-ray emissions from partially occulted solar flares. ApJ 673: 1181–1187. doi: 10.1086/524010 ADSCrossRefGoogle Scholar
  116. Krucker S, Hannah IG, Lin RP (2007) RHESSI and Hinode X-ray observations of a partially occulted solar flare. ApJL 671: L193–L196. doi: 10.1086/525019 ADSCrossRefGoogle Scholar
  117. Krucker S, White SM, Lin RP (2007) Solar flare hard X-ray emission from the high corona. ApJL 669: L49–L52. doi: 10.1086/523759 ADSCrossRefGoogle Scholar
  118. Krucker S, Hurford GJ, MacKinnon AL, Shih AY, Lin RP (2008) Coronal γ-ray Bremsstrahlung from solar flare-accelerated electrons. ApJL 678: L63–L66. doi: 10.1086/588381 ADSCrossRefGoogle Scholar
  119. Kundu MR (1965) Solar radio astronomy. Interscience Publication, New YorkGoogle Scholar
  120. Larosa TN, Moore RL (1993) A mechanism for bulk energization in the impulsive phase of solar flares: MHD turbulent cascade. ApJ 418: 912. doi: 10.1086/173448 ADSCrossRefGoogle Scholar
  121. Larosa TN, Moore RL, Miller JA, Shore SN (1996) New promise for electron bulk energization in solar flares: preferential fermi acceleration of electrons over protons in reconnection-driven magnetohydrodynamic turbulence. ApJ 467: 454. doi: 10.1086/177619 ADSCrossRefGoogle Scholar
  122. Leach J, Petrosian V (1981) Impulsive phase of solar flares I. Characteristics of high energy electrons. ApJ 251: 781–791. doi: 10.1086/159521 Google Scholar
  123. Leach J, Petrosian V (1983) The impulsive phase of solar flares. II. Characteristics of the hard X-rays. ApJ 269: 715–727. doi: 10.1086/161081 ADSCrossRefGoogle Scholar
  124. Lee J, Gary DE (2000) Solar microwave bursts and injection pitch-angle distribution of flare electrons. ApJ 543: 457–471ADSCrossRefGoogle Scholar
  125. Lee MA, Ryan JM (1986) Time-dependent coronal shock acceleration of energetic solar flare particles. ApJ 303: 829–842. doi: 10.1086/164131 ADSCrossRefGoogle Scholar
  126. Lenters GT, Miller JA (1998) Electron acceleration in solar flares by fast-mode waves: coulomb collisions. ApJ 493:451–+, doi: 10.1086/305127 Google Scholar
  127. Lin RP (1970) The emission and propagation of 40 keV solar flare electrons. II. The electron emission structure of large active regions. Solar Phys 15: 453ADSCrossRefGoogle Scholar
  128. Lin RP, Schwartz RA, Pelling RM, Hurley KC (1981) A new component of hard X-rays in solar flares. ApJL 251: L109–L114. doi: 10.1086/183704 ADSCrossRefGoogle Scholar
  129. Lin RP, Dennis BR, Hurford GJ, Smith DM, Zehnder A, Harvey PR, Curtis DW, Pankow D, Turin P, Bester M, Csillaghy A, Lewis M, Madden N, van Beek HF, Appleby M, Raudorf T, McTiernan J, Ramaty R, Schmahl E, Schwartz R, Krucker S, Abiad R, Quinn T, Berg P, Hashii M, Sterling R, Jackson R, Pratt R, Campbell RD, Malone D, Landis D, Barrington-Leigh CP, Slassi-Sennou S, Cork C, Clark D, Amato D, Orwig L, Boyle R, Banks IS, Shirey K, Tolbert AK, Zarro D, Snow F, Thomsen K, Henneck R, Mchedlishvili A, Ming P, Fivian M, Jordan J, Wanner R, Crubb J, Preble J, Matranga M, Benz A, Hudson H, Canfield RC, Holman GD, Crannell C, Kosugi T, Emslie AG, Vilmer N, Brown JC, Johns-Krull C, Aschwanden M, Metcalf T, Conway A (2002) The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Solar Phys 210: 3–32. doi: 10.1023/A:1022428818870 ADSCrossRefGoogle Scholar
  130. Lin RP, Krucker S, Hurford GJ, Smith DM, Hudson HS, Holman GD, Schwartz RA, Dennis BR, Share GH, Murphy RJ, Emslie AG, Johns-Krull C, Vilmer N (2003) RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. ApJL 595: L69–L76. doi: 10.1086/378932 ADSCrossRefGoogle Scholar
  131. Litvinenko YE (2006) Three-dimensional fan magnetic reconnection and particle acceleration in the solar corona. A&A 452: 1069–1074. doi: 10.1051/0004-6361:20054324 ADSCrossRefGoogle Scholar
  132. Litvinenko YE, Somov BV (1993) Particle acceleration in reconnecting current sheets. Solar Phys 146: 127–133ADSCrossRefGoogle Scholar
  133. Liu W, Petrosian V, Dennis BR, Jiang YW (2008) Double coronal Hard and Soft X-ray source observed by RHESSI: evidence for magnetic reconnection and particle acceleration in solar flares. ApJ 676:704–716, doi: 10.1086/527538, arXiv:0709.1963Google Scholar
  134. MacKinnon AL (1988) Coulomb collisional precipitation of fast electrons in solar flares. A&A 194: 279–287ADSGoogle Scholar
  135. MacKinnon AL (1991) Collisional scattering of fast electrons in a coronal magnetic bottle. A&A 242: 256–270ADSGoogle Scholar
  136. Mann G, Classen HT, Motschmann U (2001) Generation of highly energetic electrons by shock waves in the solar corona. JGR 106:25,323–25,332, doi: 10.1029/2000JA004010
  137. Mann G, Aurass H, Warmuth A (2006) Electron acceleration by the reconnection outflow shock during solar flares. A&A 454: 969–974. doi: 10.1051/0004-6361:20064990 ADSCrossRefGoogle Scholar
  138. Martens PCH, Young A (1990) Neutral beams in two-ribbon flares and in the geomagnetic tail. ApJS 73: 333–342. doi: 10.1086/191469 ADSCrossRefGoogle Scholar
  139. Masuda S (1994) Hard X-ray sources and the primary energy release site in solar flares. PhD thesis, Dissertation, Yohkoh/HXT group, NAO, Mitaka (1994)Google Scholar
  140. Masuda S, Kosugi T, Hara H, Tsuneta S, Ogawara Y (1994) A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371: 495. doi: 10.1038/371495a0 ADSCrossRefGoogle Scholar
  141. McClements KG (1990) A Fokker–Planck description of the trapping and precipitation of fast electrons in solar flares. A&A 234: 487–495ADSGoogle Scholar
  142. McComas DJ, Phillips JL, Hundhausen AJ, Burkepile JT (1992) Disconnection of open coronal magnetic structures. In: Marsch E, Schwenn R (eds) Solar wind seven colloquium, pp 225–228Google Scholar
  143. McKenzie DL (1975) Hard X-ray bursts from flare behind the solar limb. Solar Phys 40: 183–191ADSMathSciNetCrossRefGoogle Scholar
  144. McKenzie DE, Hudson HS (1999) X-ray observations of motions and structure above a solar flare arcade. ApJL 519: L93–L96. doi: 10.1086/312110 ADSCrossRefGoogle Scholar
  145. Melrose DB, Brown JC (1976) Precipitation in trap models for solar hard X-ray bursts. MNRAS 176: 15–30ADSGoogle Scholar
  146. Mewaldt RA, Cohen CMS, Labrador AW, Leske RA, Mason GM, Desai MI, Looper MD, Mazur JE, Selesnick RS, Haggerty DK (2005) Proton, helium, and electron spectra during the large solar particle events of October–November 2003. J Geophys Res (Space Physics) 110:9–+, doi: 10.1029/2005JA011038 Google Scholar
  147. Miller JA (1997) Electron acceleration in solar flares by fast mode waves: quasi-linear theory and pitch-angle scattering. ApJ 491: 939. doi: 10.1086/305004 ADSCrossRefGoogle Scholar
  148. Miller JA, Ramaty R (1987) Ion and relativistic electron acceleration by Alfven and whistler turbulence in solar flares. Solar Phys 113: 195–200ADSCrossRefGoogle Scholar
  149. Miller JA, Roberts DA (1995) Stochastic proton acceleration by cascading alfven waves in impulsive solar flares. ApJ 452: 912. doi: 10.1086/176359 ADSCrossRefGoogle Scholar
  150. Miller JA, Larosa TN, Moore RL (1996) Stochastic electron acceleration by cascading fast mode waves in impulsive solar flares. ApJ 461: 445. doi: 10.1086/177072 ADSCrossRefGoogle Scholar
  151. Miller JA, Cargill PJ, Emslie AG, Holman GD, Dennis BR, LaRosa TN, Winglee RM, Benka SG, Tsuneta S (1997) Critical issues for understanding particle acceleration in impulsive solar flares. JGR 102: 14631–14660. doi: 10.1029/97JA00976 ADSCrossRefGoogle Scholar
  152. Moses D, Dröge W, Meyer P, Evenson P (1989) Characteristics of energetic solar flare electron spectra. ApJ 346: 523–530ADSCrossRefGoogle Scholar
  153. Murphy RJ, Dermer CD, Ramaty R (1987) High-energy processes in solar flares. ApJS 63: 721–748ADSCrossRefGoogle Scholar
  154. Neupert WM (1968) Comparison of solar X-ray line emission with microwave emission during flares. ApJ 153: L59ADSCrossRefGoogle Scholar
  155. Nitta N, Dennis BR, Kiplinger AL (1990) X-ray observations of two short but intense solar flares. ApJ 353: 313–322. doi: 10.1086/168618 ADSCrossRefGoogle Scholar
  156. Nitta NV, Sato J, Hudson HS (2001) The physical nature of the loop-top X-ray sources in the gradual phase of solar flares. ApJ 552: 821–832. doi: 10.1086/320547 ADSCrossRefGoogle Scholar
  157. Onofri M, Isliker H, Vlahos L (2006) Stochastic acceleration in turbulent electric fields generated by 3D reconnection. Phys Rev Lett 96(15):151,102, doi: 10.1103/PhysRevLett.96.151102, astro-ph/0604192
  158. Palmer ID, Smerd SF (1972) Evidence for a two-component injection of cosmic rays from the solar flare of 1969, March 30. Solar Phys 26: 460ADSCrossRefGoogle Scholar
  159. Parker EN (1983) Magnetic neutral sheets in evolving fields. Part Two: Formation of the solar corona. ApJ 264: 642. doi: 10.1086/160637 Google Scholar
  160. Parks GK, Winckler JR (1969) Sixteen-second periodic pulsations observed in the correlated microwave and energetic X-ray emission from a solar flare. ApJ 155: L117ADSCrossRefGoogle Scholar
  161. Petrosian V, Donaghy TQ (1999) On the spatial distribution of Hard X-rays from solar flare loops. ApJ. 527: 945–957, arXiv:astro-ph/9907181ADSCrossRefGoogle Scholar
  162. Petrosian V, Liu S (2004) Stochastic acceleration of electrons and protons. I. Acceleration by parallel-propagating waves. ApJ 610:550–571, doi: 10.1086/421486, arXiv:astro-ph/0401585Google Scholar
  163. Petrosian V, Donaghy TQ, McTiernan JM (2002) Loop top hard X-ray emission in solar flares: images and statistics. ApJ 569:459–473, doi: 10.1086/339240, astro-ph/0112363Google Scholar
  164. Phillips KJH (2004) The solar flare 3.8–10 keV X-ray spectrum. ApJ 605: 921–930. doi: 10.1086/382523 ADSCrossRefGoogle Scholar
  165. Pick M, Forbes TG, Mann G, Cane HV, Chen J, Ciaravella A, Cremades H, Howard RA, Hudson HS, Klassen A, Klein KL, Lee MA, Linker JA, Maia D, Mikic Z, Raymond JC, Reiner MJ, Simnett GM, Srivastava N, Tripathi D, Vainio R, Vourlidas A, Zhang J, Zurbuchen TH, Sheeley NR, Marqué C (2006) Multi-wavelength observations of CMEs and associated phenomena. Space Sci Rev 123: 341–382. doi: 10.1007/s11214-006-9021-1 ADSCrossRefGoogle Scholar
  166. Pryadko JM, Petrosian V (1997) Stochastic acceleration of low-energy electrons in cold plasmas. ApJ 482:774–+, doi: 10.1086/304168, arXiv:astro-ph/9610148Google Scholar
  167. Ramaty R (1979) Energetic particles in solar flares. In: Arons J, McKee C, Max C (eds) Particle acceleration mechanisms in astrophysics, American Institute of Physics Conference Series, vol 56, pp 135–154Google Scholar
  168. Reames DV (1999) Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. doi: 10.1023/A:1005105831781 ADSCrossRefGoogle Scholar
  169. Rieger E, Reppin C, Kanbach G, Forrest DJ, Chupp EL, Share GH (1983) Solar flares with photon emission above 10 MeV—measurements with the gamma ray experiment on board the SMM-satellite. In: International cosmic ray conference, vol 10, pp 338–341Google Scholar
  170. Roy JR, Datlowe DW (1975) X-ray bursts from solar flares behind the limb. Solar Phys 40: 165–182ADSCrossRefGoogle Scholar
  171. Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics. Wiley, New YorkGoogle Scholar
  172. Sakao T (1994) Characteristics of solar flare hard X-ray sources as revealed with the Hard X-ray Telescope aboard the Yohkoh satellite. PhD thesis, University of TokyoGoogle Scholar
  173. Saldanha R, Krucker S, Lin RP (2008) Hard X-ray spectral evolution and production of solar energetic particle events during the January 2005 X-class flares. ApJ 673: 1169–1173. doi: 10.1086/524929 ADSCrossRefGoogle Scholar
  174. Sato J, Matsumoto Y, Yoshimura K, Kubo S, Kotoku J, Masuda S, Sawa M, Suga K, Yoshimori M, Kosugi T, Watanabe T (2006) Yohkoh/WBS Recalibration and a comprehensive catalogue of solar flares observed by Yohkoh SXT, HXT and WBS instruments. Solar Phys 236: 351–368. doi: 10.1007/s11207-006-1831-5 ADSCrossRefGoogle Scholar
  175. Sheeley NR Jr, Warren HP, Wang YM (2004) The origin of postflare loops. ApJ 616: 1224–1231. doi: 10.1086/425126 ADSCrossRefGoogle Scholar
  176. Shibata K (1996) New observational facts about solar flares from studies—Yohkoh evidence of magnetic reconnection and a unified model of flares. Adv Space Res 17:9Google Scholar
  177. Shibata K, Masuda S, Shimojo M, Hara H, Yokoyama T, Tsuneta S, Kosugi T, Ogawara Y (1995) Hot-plasma ejections associated with compact-loop solar flares. ApJL 451: L83+. doi: 10.1086/309688 ADSCrossRefGoogle Scholar
  178. Simnett GM (2003) Energetic particles and coronal mass ejections: a case study from ace and ulysses. Solar Phys 213: 387–412ADSCrossRefGoogle Scholar
  179. Smith DM, Lin RP, Turin P, Curtis DW, Primbsch JH, Campbell RD, Abiad R, Schroeder P, Cork CP, Hull EL, Landis DA, Madden NW, Malone D, Pehl RH, Raudorf T, Sangsingkeow P, Boyle R, Banks IS, Shirey K, Schwartz R (2002) The RHESSI spectrometer. Solar Phys 210: 33–60. doi: 10.1023/A:1022400716414 ADSCrossRefGoogle Scholar
  180. Somov BV, Bogachev SA (2003) The betatron effect in collapsing magnetic traps. Astron Lett 29: 621–628. doi: 10.1134/1.1607500 ADSCrossRefGoogle Scholar
  181. Somov BV, Kosugi T (1997) Collisionless reconnection and high-energy particle acceleration in solar flares. ApJ 485: 859ADSCrossRefGoogle Scholar
  182. Speiser TW, Lyons LR (1984) Comparison of an analytical approximation for particle motion in a current sheet with precise numerical calculations. JGR 89: 147–158ADSCrossRefGoogle Scholar
  183. Sprangle P, Vlahos L (1983) Electron cyclotron wave acceleration outside a flaring loop. ApJL 273: L95–L99. doi: 10.1086/184137 ADSCrossRefGoogle Scholar
  184. Stepanov AV, Tsap Y (2002) Electron–whistler interaction in coronal loops and radiation signatures. Solar Phys 211: 135–154ADSCrossRefGoogle Scholar
  185. Stepanov AV, Yokoyama T, Shibasaki K, Melnikov VF (2007) Turbulent propagation of high-energy electrons in a solar coronal loop. A&A 465: 613–619. doi: 10.1051/0004-6361:20066573 ADSCrossRefGoogle Scholar
  186. Strong KT, Benz AO, Dennis BR, Poland AI, Leibacher JW, Mewe R, Schrijver J, Simnett G, Smith JB Jr, Sylwester J (1984) A multiwavelength study of a double impulsive flare. Solar Phys 91: 325–344ADSCrossRefGoogle Scholar
  187. Sturrock PA (1966) Model of the high-energy phase of solar flares. Nature 211: 695ADSCrossRefGoogle Scholar
  188. Sui L, Holman GD (2003) Evidence for the formation of a large-scale current sheet in a solar flare. ApJL 596: L251–L254. doi: 10.1086/379343 ADSCrossRefGoogle Scholar
  189. Sui L, Holman GD, Dennis BR (2004) Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. ApJ 612: 546–556. doi: 10.1086/422515 ADSCrossRefGoogle Scholar
  190. Sui L, Holman GD, Dennis BR (2006) Motion of 3–6 keV nonthermal sources along the legs of a flare loop. ApJL 645: L157–L160. doi: 10.1086/506325 ADSCrossRefGoogle Scholar
  191. Svestka ZF, Fontenla JM, Machado ME, Martin SF, Neidig DF (1987) Multi-thermal observations of newly formed loops in a dynamic flare. Solar Phys 108: 237–250ADSCrossRefGoogle Scholar
  192. Švestka Z, Fárník F, Hudson HS, Hick P (1998) Large-scale active coronal phenomena in Yohkoh/SXT images IV. Solar wind streams from flaring active regions. Solar Phys 182: 179–193. doi: 10.1023/A:1005033717284 Google Scholar
  193. Takakura T, Inda M, Makishima K, Kosugi T, Sakao T, Masuda S, Sakurai T, Ogawara Y (1993) Time variation of the hard X-ray image during the early phase of solar impulsive bursts. PASJ 45: 737–753ADSGoogle Scholar
  194. Tanaka K (1986) Solar flare X-ray spectra of Fe XXVI and Fe XXV from the HINOTORI satellite. PASJ 38: 225–249ADSGoogle Scholar
  195. Tomczak M (2001) The analysis of hard X-ray radiation of flares with occulted footpoints. A&A 366: 294–305. doi: 10.1051/0004-6361:20000204 ADSCrossRefGoogle Scholar
  196. Trakhtengerts VY (1984) Relaxation of a plasma with anisotropic velocity distribution. In: Galeev AA, Sudan RN (eds) Basic plasma physics: selected chapters, Handbook of Plasma Physics, vol 1, p 519Google Scholar
  197. Trottet G, Vilmer N (1984) Electron spectra deduced from solar hard X-ray bursts. Adv Space Res 4: 153–156. doi: 10.1016/0273-1177(84)90305-3 ADSCrossRefGoogle Scholar
  198. Tsuneta S, Naito T (1998) Fermi acceleration at the fast shock in a solar flare and the impulsive loop-top Hard X-ray source. ApJL 495:L67+,doi: 10.1086/311207, arXiv:astro-ph/9801109
  199. Tsuneta S, Masuda S, Kosugi T, Sato J (1997) Hot and superhot plasmas above an impulsive flare loop. ApJ 478: 787. doi: 10.1086/303812 ADSCrossRefGoogle Scholar
  200. Tucker RJ (1975) Radiation processes in astrophysics. MIT Press, CambridgeGoogle Scholar
  201. Turkmani R, Vlahos L, Galsgaard K, Cargill PJ, Isliker H (2005) Particle acceleration in stressed coronal magnetic fields. ApJL 620: L59–L62. doi: 10.1086/428395 ADSCrossRefGoogle Scholar
  202. Turkmani R, Cargill PJ, Galsgaard K, Vlahos L, Isliker H (2006) Particle acceleration in stochastic current sheets in stressed coronal active regions. A&A 449: 749–757. doi: 10.1051/0004-6361:20053548 ADSCrossRefGoogle Scholar
  203. van Ballegooijen AA (1986) Cascade of magnetic energy as a mechanism of coronal heating. ApJ 311: 1001–1014. doi: 10.1086/164837 ADSCrossRefGoogle Scholar
  204. van Beek HF, Hoyng P, Lafleur B, Simnett GM (1980) The Hard X-ray imaging spectrometer/HXIS/. Solar Phys 65: 39–52ADSCrossRefGoogle Scholar
  205. van den Oord GHJ (1990) The electrodynamics of beam/return current systems in the solar corona. A&A 234: 496–518zbMATHADSGoogle Scholar
  206. Veronig AM, Brown JC (2004) A coronal thick-target interpretation of two Hard X-ray loop events. ApJL 603: L117–L120. doi: 10.1086/383199 ADSCrossRefGoogle Scholar
  207. Veronig AM, Brown JC, Bone L (2005) Evidence for a solar coronal thick-target hard X-ray source observed by RHESSI. Adv Space Res 35: 1683–1689. doi: 10.1016/j.asr.2005.01.065 ADSCrossRefGoogle Scholar
  208. Veronig AM, Brown JC, Dennis BR, Schwartz RA, Sui L, Tolbert AK (2005) Physics of the Neupert effect: estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. ApJ 621: 482–497. doi: 10.1086/427274 ADSCrossRefGoogle Scholar
  209. Karlicky M, Vršnak B, Temmer M, Magdalenić J, Dennis BR, Otruba W, Pötzi W (2006) X-ray sources and magnetic reconnection in the X3.9 flare of 2003 November 3. A&A 446: 675–690. doi: 10.1051/0004-6361:20053112 ADSCrossRefGoogle Scholar
  210. Vilmer N, Kane SR, Trottet G (1982) Impulsive and gradual hard X-ray sources in a solar flare. A&A 108: 306–313ADSGoogle Scholar
  211. Vilmer N, MacKinnon AL, Trottet G, Barat C (2003) High energy particles during the large solar flare of 1990 May 24: X/gamma ray observations. A&A 412: 865–874ADSCrossRefGoogle Scholar
  212. Wang T, Sui L, Qiu J (2007) Direct observation of high-speed plasma outflows produced by magnetic reconnection in solar impulsive events. ApJL 661: L207–L210. doi: 10.1086/519004 ADSCrossRefGoogle Scholar
  213. Warren HP (2006) Multithread hydrodynamic modeling of a solar flare. ApJ 637:522–530, doi: 10.1086/497904, arXiv:astro-ph/0507328Google Scholar
  214. Warren HP, Bookbinder JA, Forbes TG, Golub L, Hudson HS, Reeves K, Warshall A (1999) TRACE and Yohkoh observations of high-temperature plasma in a two-ribbon limb flare. ApJL 527: L121–L124. doi: 10.1086/312410 ADSCrossRefGoogle Scholar
  215. Watko JA, Klimchuk JA (2000) Width variations along coronal loops observed by TRACE. Solar Phys 193: 77–92ADSCrossRefGoogle Scholar
  216. Wheatland MS, Melrose DB (1995) Interpreting Yohkoh hard and soft X-ray flare observations. Solar Phys 158: 283–299ADSGoogle Scholar
  217. White SM, Krucker S, Shibasaki K, Yokoyama T, Shimojo M, Kundu MR (2003) Radio and Hard X-ray images of high-energy electrons in an X-class solar flare. ApJL 595: L111–L114. doi: 10.1086/379274 ADSCrossRefGoogle Scholar
  218. Wild JP, Smerd SF, Weiss AA (1963) Solar bursts. ARAA 1: 291. doi: 10.1146/annurev.aa.01.090163.001451 ADSCrossRefGoogle Scholar
  219. Wilhelm K, Curdt W, Marsch E, Schühle U, Lemaire P, Gabriel A, Vial JC, Grewing M, Huber MCE, Jordan SD, Poland AI, Thomas RJ, Kühne M, Timothy JG, Hassler DM, Siegmund OHW (1995) SUMER—Solar ultraviolet measurements of emitted radiation. Solar Phys 162: 189–231. doi: 10.1007/BF00733430 ADSCrossRefGoogle Scholar
  220. Zirin H, Ingham W, Hudson H, McKenzie D (1969) De-occultation X-ray events of 2 December, 1967. Solar Phys 9: 269–277. doi: 10.1007/BF02391648 ADSCrossRefGoogle Scholar
  221. Zharkova VV, Gordovskyy M (2005) Energy spectra of particles accelerated in a reconnecting current sheet with the guiding magnetic field. MNRAS 356:1107–1116. doi: 10.1111/j.1365-2966.2004.08532.x, http://adsabs.harvard.edu/abs/2005MNRAS.356.1107Z

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Krucker
    • 1
  • M. Battaglia
    • 2
  • P. J. Cargill
    • 3
  • L. Fletcher
    • 4
  • H. S. Hudson
    • 1
  • A. L. MacKinnon
    • 5
  • S. Masuda
    • 6
  • L. Sui
    • 7
  • M. Tomczak
    • 8
  • A. L. Veronig
    • 9
  • L. Vlahos
    • 10
  • S. M. White
    • 11
  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Institute of AstronomyETH ZurichZurichSwitzerland
  3. 3.Space and Atmospheric PhysicsBlackett Laboratory, Imperial CollegeLondonUK
  4. 4.Department of Physics and AstronomyUniversity of GlasgowGlasgowUK
  5. 5.DACE/Department of Physics and AstronomyUniversity of GlasgowGlasgowUK
  6. 6.Solar-Terrestrial Environment LaboratoryNagoya UniversityNagoyaJapan
  7. 7.NASA Goddard Space Flight CenterSolar Physics LaboratoryGreenbeltUSA
  8. 8.Astronomical InstituteUniversity of WroclawWroclawPoland
  9. 9.Institute of Physics/IGAMUniversity of GrazGrazAustria
  10. 10.Department of PhysicsUniversity of ThessalonikiThessalonikiGreece
  11. 11.Astronomy DepartmentUniversity of MarylandCollege ParkUSA

Personalised recommendations