The Astronomy and Astrophysics Review

, Volume 15, Issue 4, pp 289–331 | Cite as

The expansion field: the value of H 0

  • G. A. TammannEmail author
  • A. Sandage
  • B. Reindl
Review Article


Any calibration of the present value of the Hubble constant (H 0) requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4–30 Mpc is crucial. A list of 279 such galaxy distances within v < 2,000 km s−1 is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and/or from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins, supported also by external evidence, from v = 250 to at least 2,000 km s−1. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km s−1. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km s−1 but increasing outwards. Due to the linearity of the expansion field the Hubble constant H 0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H 0 = 63.0 ± 1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H 0 = 63.4 ± 1.7 at 15 Mpc. This agrees also with the large-scale value of H 0 = 61.2 ± 0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H 0 = 62.3 ± 1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Other determinations of H 0 are discussed. They either conform with the quoted value (e.g. line width data of spirals or the D n σ method of E galaxies) or are judged to be inconclusive. Typical errors of H 0 come from the use of a universal, yet unjustified P–L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.


Stars: population II Cepheids Supernovae: general Distance scale Cosmological parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson M (1987) A distance scale from the IR magnitude/HI velocity width relation. Observational cosmology. IAU Symp 124: 187–194ADSGoogle Scholar
  2. Aloisi A, Clementini G, Tosi M, Annibali F, Contreras R, Fiorentino G, Mack J, Marconi M, Musella I, Saha A, Sirianni M, van der Marel RP (2007) I Zw 18 Revisited with HST ACS and Cepheids: New Distance and Age. ApJ 667: L151–L154ADSCrossRefGoogle Scholar
  3. Aloisi A, van der Marel RP, Mack J, Leitherer C, Sirianni M, Tosi M (2005) Do Young Galaxies Exist in the Local Universe? Red Giant Branch Detection in the Metal-poor Dwarf Galaxy SBS 1415+437. ApJ 631: L45–L48ADSCrossRefGoogle Scholar
  4. Alonso-García J, Mateo M, Aparicio A (2006) DDO 44 and UGC 4998: Distances, Metallicities, and Star Formation Histories. Publ. Astron. Soc. Pacific 118: 580–589ADSCrossRefGoogle Scholar
  5. An D, Terndrup DM, Pinsonneault MH (2007) The distances to open clusters from main-sequence fitting. IV. Galactic Cepheids, the LMC, and the local distance scale. ApJ 671: 1640–1668ADSCrossRefGoogle Scholar
  6. Armandroff TE, Jacoby GH, Davies JE (1999) A survey for low surface brightness galaxies around M31. II. The newly discovered dwarf Andromeda VI. Astron. J. 118: 1220–1229ADSCrossRefGoogle Scholar
  7. Auger MW, Fassnacht CD, Wong KC, Thompson D, Matthews K, Soifer BT (2008) Lens galaxy properties of SBS1520+530: insights from keck spectroscopy and AO imaging. ApJ 673: 778–786ADSCrossRefGoogle Scholar
  8. Baade W (1926) Über eine Möglichkeit, die Pulsationstheorie der δ Cephei-Veränderlichen zu prüfen. AN 228: 359–362ADSGoogle Scholar
  9. Baade W (1944a) The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula. ApJ 100: 137–146ADSCrossRefGoogle Scholar
  10. Baade W (1944b) NGC 147 and NGC 185, two new members of the Local Group of galaxies. ApJ 100: 147–150ADSCrossRefGoogle Scholar
  11. Baade W (1954) In: Trans. IAU VIII (Rome 1952 meeting). Report of Commission 28. Cambridge University Press, Cambridge, p 387Google Scholar
  12. Barnes TG, Evans DS (1976) Stellar angular diameters and visual surface brightness—I. Late spectral types. MNRAS 174: 489–502ADSGoogle Scholar
  13. Barnes T, Jeffreys W, Berger J, Mueller P, Orr K, Rodriguez R (2003) A Bayesian analysis of the Cepheid distance scale. ApJ 592: 539–554ADSCrossRefGoogle Scholar
  14. Becker W (1940) Spektralphotometrische Untersuchungen an δ Cephei-Sternen. IX and X. ZA 19: 269–303ADSGoogle Scholar
  15. Bellazzini M, Ferraro FR, Origlia L, Pancino E, Monaco L, Oliva E (2002) The Draco and Ursa minor dwarf spheroidal galaxies: a comparative study. Astron. J. 124: 3222–3240ADSCrossRefGoogle Scholar
  16. Bellazzini M, Ferraro FR, Sollima A, Pancino E, Origlia L (2004) The calibration of the RGB tip as a standard candle. Extension to near infrared colors and higher metallicity. A&A 424: 199–211ADSCrossRefGoogle Scholar
  17. Bellazzini M, Gennari N, Ferraro FR (2005) The red giant branch tip and bump of the Leo II dwarf spheroidal galaxy. MNRAS 360: 185–193ADSCrossRefGoogle Scholar
  18. Benedict GF, McArthur BE, Feast MW, Barnes TG, Harrison TE, Patterson RJ, Menzies JW, Bean JL, Freedman WL (2007) Hubble space telescope fine guidance sensor parallaxes of galactic Cepheid variable stars: period–luminosity relations. Astron. J. 133: 1810–1827ADSCrossRefGoogle Scholar
  19. Bergbusch PA, VandenBerg DA (2001) Models for old, metal-poor stars with enhanced a-element abundances. III. Isochrones and isochrone population functions. ApJ 556: 322–339ADSCrossRefGoogle Scholar
  20. Blinnikov SI, Baklanov PV, Kozyreva AV, Sorokina EI (2005) Light curve models of supernovae and X-ray spectra of supernova remnants. In: Turatto M, Benetti S, Zampieri L, Shea W (eds) Supernovae as cosmological lighthouses. ASP Conf. Ser. 342, pp 382–388Google Scholar
  21. Bonamente M, Joy MK, LaRoque SJ, Carlstrom JE, Reese ED, Dawson KS (2006) Determination of the cosmic distance scale from Sunyaev–Zel’dovich effect and Chandra X-Ray measurements of high-redshift galaxy clusters. ApJ 647: 25–54ADSCrossRefGoogle Scholar
  22. Bonanos AZ, Stanek KZ, Kudritzki RP, Macri LM, Sasselov DD, Kaluzny J, Stetson PB, Bersier D, Bresolin F, Matheson T, Mochejska BJ, Przybilla N, Szentgyorgyi AH, Tonry J, Torres G (2006) The first direct distance determination to a detached eclipsing binary in M33. ApJ 652: 313–322ADSCrossRefGoogle Scholar
  23. Bottinelli L, Gouguenheim L, Paturel G, Teerikorpi P (1991) A systematic effect in the use of planetary nebulae as standard candles. A&A 252: 550–556ADSGoogle Scholar
  24. Branch D (1998) Type Ia Supernovae and the Hubble Constant. ARA&A 36: 17–56ADSCrossRefGoogle Scholar
  25. Caldwell N (2006) Color-magnitude diagrams of resolved stars in Virgo cluster dwarf galaxies. ApJ 651: 822–834ADSCrossRefGoogle Scholar
  26. Carretta E, Gratton RG, Clementini G, Fusi Peci F (2000) Distances, ages, and epoch of formation of globular clusters. ApJ 533: 215–235ADSCrossRefGoogle Scholar
  27. Carroll SM, Press WH, Turner EL (1992) The cosmological constant. ARA&A 30: 499–542ADSCrossRefGoogle Scholar
  28. Da Costa GS, Armandroff TE (1990) Standard globular cluster giant branches in the (M I, (VI)0) plane. Astron. J. 100: 162–181ADSCrossRefGoogle Scholar
  29. Dale DA, Giovanelli R (2000) The convergence depth of the local peculiar velocity field. In: Courteau S, Willick J (eds) Cosmic flows workshop. ASP Conf. Ser. 201, p 25Google Scholar
  30. Davis M, Efstathiou G, Frenk CS, White SDM (1985) The evolution of large-scale structure in a universe dominated by cold dark matter. ApJ 292: 371–394ADSCrossRefGoogle Scholar
  31. Davis M, Peebles PJE (1983a) Evidence for local anisotropy of the Hubble flow. ARA&A 21: 109–130ADSCrossRefGoogle Scholar
  32. Davis M, Peebles PJE (1983b) A survey of galaxy redshifts. V—The two-point position and velocity correlations. ApJ 267: 465–482ADSCrossRefGoogle Scholar
  33. Ciardullo R, Feldmeier JJ, Jacoby GH, Kuziode Naray R, Laychak MB, Durrell PR (2002) Planetary Nebulae as standard candles. XII. Connecting the population I and population II distance scales. ApJ 577: 31–50ADSCrossRefGoogle Scholar
  34. de Freitas Pacheco JA (1986) The relative motion of the Local Group of galaxies towards the Virgo cluster. Rev. Mex. Astron. Astrof 12: 74ADSGoogle Scholar
  35. Dekel A (1994) Dynamics of cosmic flows. ARA&A 32: 371–418ADSCrossRefGoogle Scholar
  36. de Vaucouleurs G (1958) Further evidence for a local super-cluster of galaxies: rotation and expansion. Astron. J. 63: 253–266ADSCrossRefGoogle Scholar
  37. de Vaucouleurs G (1976) Supergalactic studies V. The supergalactic anisotropy of the redshift-magnitude relation derived from nearby groups and Sc galaxies. ApJ 205: 13–28ADSCrossRefGoogle Scholar
  38. de Vaucouleurs G (1977) Distances of the Virgo, Fornax and Hydra clusters of galaxies and the local value of the Hubble ratio. Nature 266: 126–129ADSCrossRefGoogle Scholar
  39. de Vaucouleurs G (1982) The extragalactic distance scale and the Hubble constant. Observatory 102: 178–194ADSGoogle Scholar
  40. de Vaucouleurs G Bollinger G (1979) The extragalactic distance scale. VII—the velocity–distance relations in different directions and the Hubble ratio within and without the local supercluster. ApJ 233: 433–452ADSCrossRefGoogle Scholar
  41. de Vaucouleurs G, Peters WL (1985) A preliminary mapping of the extragalactic velocity field near the plane of the local supercluster. ApJ 297: 27–36ADSCrossRefGoogle Scholar
  42. Di Criscienzo M, Caputo F, Marconi M, Musella I (2006) RR Lyrae-based calibration of the globular cluster luminosity function. MNRAS 365: 1357–1366ADSGoogle Scholar
  43. Djorgovski G, Davis M (1987) Fundamental properties of elliptical galaxies. ApJ 313: 59–68ADSCrossRefGoogle Scholar
  44. Dressler A (1984) Internal kinematics of galaxies in clusters. I - Velocity dispersions for elliptical galaxies in Coma and Virgo. ApJ 281: 512–524ADSCrossRefGoogle Scholar
  45. Dressler A (1987) The Dnσ relation for bulges of disk galaxies—a new, independent measure of the Hubble constant. ApJ 317: 1–10ADSCrossRefGoogle Scholar
  46. Dressler A, Lynden-Bell D, Burstein D, Davis RL, Faber SM, Terlevich R, Wegner G (1987) Spectroscopy and photometry of elliptical galaxies. I—a new distance estimator. ApJ 313: 42–58ADSCrossRefGoogle Scholar
  47. Durrell PR, Williams Benjamin F, Ciardullo R, Feldmeier JJ, von Hippel T, Sigurdsso S, Jacoby GH, Ferguson HC, Tanvir NR, Arnaboldi M, Gerhard O, Aguerri JAL, Freeman K, Vinciguerra M (2007) The resolved stellar populations of a dwarf spheroidal galaxy in the Virgo cluster. ApJ 656: 746–755ADSCrossRefGoogle Scholar
  48. Eastman RG, Schmidt BP, Kirshner R (1996) The atmospheres of type II supernovae and the expanding photosphere method. ApJ 466: 911–937ADSCrossRefGoogle Scholar
  49. Ekholm T, Baryshev Y, Teerikorpi P, Hanski MO, Paturel G (2001) On the quiescence of the Hubble flow in the vicinity of the Local Group. A study using galaxies with distances from the Cepheid PL-relation. A&A 368: L17–L20ADSCrossRefGoogle Scholar
  50. Faber SM, Wegner G, Burstein D, Davies RL, Dressler A, Lynden-Bell D, Terlevich RJ (1989) Spectroscopy and photometry of elliptical galaxies. VI—sample selection and data summary. ApJ Suppl 69: 763–808ADSCrossRefGoogle Scholar
  51. Faber SM, Jackson RE (1976) Velocity dispersions and mass-to-light ratios for elliptical galaxies. ApJ 204: 668–683ADSCrossRefGoogle Scholar
  52. Fassnacht CD, Gal RR, Lubin LM, McKean JP, Squires GK, Readhead ACS (2006) Mass along the line of sight to the gravitational lens B1608+656: galaxy groups and implications for H 0. ApJ 642: 30–38ADSCrossRefGoogle Scholar
  53. Feast MW (1999) Cepheids as distance indicators. Publ Astron Soc Pac 111: 775–793ADSCrossRefGoogle Scholar
  54. Federspiel M (1999) Kinematic parameters of galaxies as distance indicators. PhD Thesis, University of BaselGoogle Scholar
  55. Federspiel M, Sandage A, Tammann GA (1994) Bias properties of extragalactic distance indicators. III: analysis of Tully–Fisher distances for the Mathewson–Ford–Buchhorn sample of 1355 galaxies. ApJ 430: 29–52ADSCrossRefGoogle Scholar
  56. Federspiel M, Tammann GA, Sandage A (1998) The Virgo cluster distance from 21 centimeter line widths. ApJ 495: 115–130ADSCrossRefGoogle Scholar
  57. Feldmeier JJ, Jacoby GH, Phillips MM (2007) Calibrating type Ia supernovae using the planetary nebula luminosity function. I. Initial results. ApJ 657: 76–97ADSCrossRefGoogle Scholar
  58. Fernie JD (1990) Color excesses on a uniform scale for 328 Cepheids. ApJ Suppl 72: 153–162ADSCrossRefGoogle Scholar
  59. Fernie JD, Beattie B, Evans NR, Seager S (1995) A database of galactic classical Cepheids. IBVS 4148 (
  60. Ferrarese L, Mould JR, Stetson PB, Tonry JL, Blakeslee JP, Ajhar EA (2007) The discovery of Cepheids and a distance to NGC 5128. ApJ 654: 186–218ADSCrossRefGoogle Scholar
  61. Ford HC, Jenner DC (1978) Planetary Nebulae in the nuclear bulge of M81: a new distance determination. BAAS 10: 665ADSGoogle Scholar
  62. Fouqué P, Arriagada P, Storm J, Barnes TG, Nardetto N, Mérand A, Kervella P, Gieren W, Bersier D, Benedict GF, McArthur BE (2007) A new calibration of galactic Cepheid period-luminosity relations from B to K bands, and a comparison to LMC relations. A&A 476: 73–81ADSCrossRefGoogle Scholar
  63. Fouqué P, Bottinelli L, Gouguenheim L, Paturel G (1990) The extragalactic distance scale. II—the unbiased distance to the Virgo cluster from the B-band Tully–Fisher relation. ApJ 349: 1–21ADSCrossRefGoogle Scholar
  64. Fouqué P, Storm J, Gieren W (2003) Calibration of the distance scale from Cepheids. Lect Notes Phys 635: 21–44ADSGoogle Scholar
  65. Freedman WL, Madore BF (1988) Distances to the galaxies M81 and NGC 2403 from CCD I band photometry of Cepheids. ApJ 332: L63–L66ADSCrossRefGoogle Scholar
  66. Freedman WL, Madore BF, Gibson BK, Ferrarese L, Kelson DD, Sakai S, Mould JR, Kennicutt RC, Ford HC, Graham JA, Huchra JP, Hughes SMG, Illingworth GD, Macri LM, Stetson PB (2001) Final results from the Hubble space telescope key project to measure the Hubble constant. ApJ 553: 47–72ADSCrossRefGoogle Scholar
  67. Gascoigne SCB, Kron GE (1965) Photoelectric observations of Magellanic cloud Cepheids. MNRAS 130: 333–360ADSGoogle Scholar
  68. Gieren W, Storm J, Barnes TG, Fouqué P, Pietrzynski G, Kienzle F (2005) Direct distances to Cepheids in the large Magellanic cloud: evidence for a universal slope of the period–luminosity relation up to solar abundance. ApJ 627: 224–237ADSCrossRefGoogle Scholar
  69. Gieren W, Pietrzynski G, Nalewajko K, Soszynski I, Bresolin F, Kudritzki RP, Minniti D, Romanowsky A (2006) The Araucaria project: an accurate distance to the Local Group galaxy NGC 6822 from near-infrared photometry of Cepheid variables. ApJ 647: 1056–1064ADSCrossRefGoogle Scholar
  70. Gilmozzi R, Della Valle M (1986) Novae as distance indicators. Lect Note Phys 635: 229–241ADSGoogle Scholar
  71. Giraud E (1986) Perturbation of the nearby extragalactic velocity field by the Local Group. A&A 170: 1–9ADSGoogle Scholar
  72. Giraud E (1990) The local anomaly of the extragalactic velocity field. A&A 231: 1–12ADSGoogle Scholar
  73. Gouguenheim L (1969) Neutral hydrogen content of small galaxies. A&A 3: 281–307ADSGoogle Scholar
  74. Governato F, Moore B, Cen R, Stadel J, Lake G, Quinn T (1997) The Local Group as a test of cosmological models. New Astr 2: 91–106ADSCrossRefGoogle Scholar
  75. Hamuy M, Phillips MM, Suntzeff NB, Schommer RA, Maza J, Aviles R (1996) The Hubble diagram of the Calan/Tololo type Ia supernovae and the value of H 0. Astron. J. 112: 2398–2407ADSCrossRefGoogle Scholar
  76. Hamuy M, Pinto PA (2002) Type II supernovae as standardized candles. ApJ 566: L63–L65ADSCrossRefGoogle Scholar
  77. Hanes DA (1982) A re-examination of the Sandage–Tammann extragalactic distance scale. MNRAS 201: 145–170ADSGoogle Scholar
  78. Herrnstein JR, Moran JM, Greenhill LJ, Diamond PJ, Inoue M, Nakai N, Miyoshi M, Henkel C, Riess A (1999) A geometric distance to the galaxy NGC 4258 from orbital motions in a nuclear gas disk. Nature 400: 539–541ADSCrossRefGoogle Scholar
  79. Hubble E (1929a) A spiral nebula as a stellar system, Messier 31. ApJ 69: 103–158ADSCrossRefGoogle Scholar
  80. Hubble E (1929b) A relation between distance and radial velocity among extra-galactic nebulae. Proc Nat Acad Sci 15: 168–173ADSCrossRefzbMATHGoogle Scholar
  81. Hubble E (1951) The penrose lecture. Proc Am Phil Soc 51: 461Google Scholar
  82. Hubble E, Humason ML (1931) The velocity–distance relation among extra-galactic nebulae. ApJ 74: 43–80ADSCrossRefGoogle Scholar
  83. Hubble E, Humason ML (1934) The velocity–distance relation for isolated extragalactic nebulae. Proc Natl Acad Sci USA 20: 264–268ADSCrossRefGoogle Scholar
  84. Huchra J (2007) Estimates of the Hubble constant. (Last updated 30 December 2007)
  85. Hudson MJ, Smith RJ, Lucey JR, Branchini E (2004) Streaming motions of galaxy clusters within 12,000 km s−1. The peculiar velocity field. MNRAS 352: 61–75ADSCrossRefGoogle Scholar
  86. Jerjen H, Tammann GA (1993) The Local Group motion towards Virgo and the microwave background. A&A 276: 1–8ADSGoogle Scholar
  87. Jha S, Riess AG, Kirshner RP (2007) Improved distances to type Ia supernovae with multicolor light-curve shapes: MLCS2k2. ApJ 659: 122–148ADSCrossRefGoogle Scholar
  88. Jones ME, Edge AC, Grainge K, Grainger WF, Kneissl R, Pooley GG, Saunders R, Miyoshi SJ, Tsuruta T, Yamashita K, Tawara Y, Furuzawa A, Harada A, Hatsukade I (2005) H 0 from an orientation-unbiased sample of Sunyaev–Zel’dovich and X-ray clusters. MNRAS 357: 518–526ADSCrossRefGoogle Scholar
  89. Jørgensen I, Franx M, Kjærgaard P (1996) The fundamental plane for cluster E and S0 galaxies. MNRAS 280: 167–185ADSGoogle Scholar
  90. Kanbur SM, Ngeow C, Nanthakumar A, Stevens R (2007) Investigations of the nonlinear LMC Cepheid period–luminosity relation with testimator and Schwarz information criterion methods. Publ. Astron. Soc. Pacific 119: 512–522ADSCrossRefGoogle Scholar
  91. Karachentsev ID, Makarov DA (1996) The galaxy motion relative to nearby galaxies and the local velocity field. Astron. J. 111: 794–803ADSCrossRefGoogle Scholar
  92. Karachentsev ID, Dolphin AE, Geisler D, Grebel EK, Guhathakurta P, Hodge PW, Karachentseva VE, Sarajedini A, Seitzer P, Sharina ME (2002) The M 81 group of galaxies: new distances, kinematics and structure. A&A 383: 125–136ADSCrossRefGoogle Scholar
  93. Karachentsev ID, Karachentseva VE, Huchtmeier WK, Makarov DI (2004) A catalog of neighboring galaxies. Astron. J. 127: 2031–2068ADSCrossRefGoogle Scholar
  94. Karachentsev ID, Kashibadze OG (2006) Masses of the Local Group and of the M81 group estimated from distortions in the local velocity field. Astrophysics 49: 3–18ADSCrossRefGoogle Scholar
  95. Karachentsev ID, Dolphin A, Tully RB, Sharina M, Makarova L, Makarov D, Karachentseva V, Sakai S, Shaya EJ (2006) Advanced camera for surveys imaging of 25 galaxies in nearby groups and in the field. Astron. J. 131: 1361–1376ADSCrossRefGoogle Scholar
  96. Karachentsev ID, Tully RB, Dolphin A, Sharina M, Makarova L, Makarov D, Kashibadze OG, Karachentseva VE, Sakai S, Shaya EJ, Rizzi L (2007) The Hubble flow around the centaurus A/M83 galaxy complex. Astron. J. 133: 504–517ADSCrossRefGoogle Scholar
  97. Karataeva GM, Tikhonov NA, Galazutdinova OA, Hagen-Thorn VA (2006) Stellar population of the central regions of NGC 5128. Astron. Letters 32: 236–243ADSCrossRefGoogle Scholar
  98. Kavelaars JJ, Harris WE, Hanes DA, Hesser JE, Pritchet CJ (2000) The globular cluster systems in the coma ellipticals. I. The luminosity function in NGC 4874 and implications for Hubble’s constant. ApJ 533: 125–136ADSCrossRefGoogle Scholar
  99. Kelson DD, Illingworth GD, Freedman WF, Graham JA, Hill R, Madore BF, Saha A, Stetson PB, Kennicutt RC, Mould JR, Hughes SM, Ferrarese L, Phelps R, Turner A, Cook KH, Ford H, Hoessel JG, Huchra J (1996) The extragalactic distance scale key project. III. The discovery of Cepheids and a new distance to M101 using the Hubble space telescope. ApJ 463: 26–59ADSCrossRefGoogle Scholar
  100. Kennicutt RC, Bresolin F, Garnett DR (2003) The composition gradient in M101 revisited. II. Electron temperatures and implications for the nebular abundance scale. ApJ 591: 801–820ADSCrossRefGoogle Scholar
  101. Kennicutt RC, Stetson PB, Saha A, Kelson D, Rawson DM, Sakai S, Madore BF, Mould JR, Freedman WL, Bresolin F, Ferrarese L, Ford H, Gibson BK, Graham JA, Han M, Harding P, Hoessel JG, Huchra JP, Hughes SMG, Illingworth GD, Macri LM, Phelps RL, Silbermann NA, Turner AM, Wood PR (1998) The Hubble space telescope key project on the extragalactic distance scale. XIII. The metallicity dependence of the Cepheid distance scale. ApJ 498: 181–194ADSCrossRefGoogle Scholar
  102. Kervella P, Nardetto N, Bersier D, Mourard D, Coudédu Foresto V (2004) Cepheid distances from infrared long-baseline interferometry. I. VINCI/VLTI observations of seven galactic Cepheids. A&A 416: 941–953ADSCrossRefGoogle Scholar
  103. Klypin A, Hoffman Y, Kravtsov AV, Gottlöber S (2003) Constrained simulations of the real universe: the local supercluster. ApJ 596: 19–33ADSCrossRefGoogle Scholar
  104. Koen C, Siluyele I (2007) Multivariate comparisons of the period-light-curve shape distributions of Cepheids in five galaxies. MNRAS 377: 1281–1286ADSCrossRefGoogle Scholar
  105. Kraan-Korteweg RC (1986) A catalog of 2810 nearby galaxies—the effect of the virgocentric flow model on their observed velocities. A&A Suppl. 66: 255–279ADSGoogle Scholar
  106. Kraan-Korteweg RC, Cameron LM, Tammann GA (1988) 21 centimeter line width distances of cluster galaxies and the value of H 0. ApJ 331: 620–640ADSCrossRefGoogle Scholar
  107. Kraft RP (1961) Color excesses for supergiants and classical Cepheids. V. The period–color and period–luminosity relations: a revision. ApJ 134: 616–632ADSCrossRefGoogle Scholar
  108. Kraft RP (1963) The absolute magnitudes of classical Cepheids. In: Strand KA (eds) Basic astronomical data: stars and stellar systems. Chicago University Press, Chicago, p 481Google Scholar
  109. Kristian J, Sandage A, Westphal JA (1978) The extension of the Hubble diagram. II - New redshifts and photometry of very distant galaxy clusters - First indication of a deviation of the Hubble diagram from a straight line. ApJ 221: 383–394ADSCrossRefGoogle Scholar
  110. Laney CD, Stobie RS (1986) Infrared photometry of Magellanic cloud Cepheids—intrinsic properties of Cepheids and the spatial structure of clouds. MNRAS 222: 449–472ADSGoogle Scholar
  111. Larsen SS, Brodie JP, Huchra JP, Forbes DA, Grillmair CJ (2001) Properties of globular cluster systems in nearby early-type galaxies. Astron. J. 121: 2974–2998ADSCrossRefGoogle Scholar
  112. Leavitt HS (1908) 1777 variables in the Magellanic clouds. Harvard Ann 60: 87–108ADSGoogle Scholar
  113. Leavitt HS, Pickering EC (1912) Periods of 25 variable stars in the small Magellanic cloud. Harvard Obs Circ 173: 1–3Google Scholar
  114. Lee MG, Freedman WL, Madore BF (1993) The tip of the red giant branch as a distance indicator for resolved galaxies. ApJ 417: 553–559ADSCrossRefGoogle Scholar
  115. Leith BM, Ng SCC, Wiltshire DL (2008) Gravitational energy as dark energy: concordance of cosmological tests. ApJ 672: L91–L94ADSCrossRefGoogle Scholar
  116. Lemaître G (1927) Un univers homogè de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann Soc Sci Bruxelles A47: 49–56Google Scholar
  117. Lemaître G (1931) Expansion of the universe. A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. MNRAS 91:483–490 (reprint of the 1927 paper)Google Scholar
  118. Leong B, Saslaw WC (2004) Gravitational binding, virialization, and the peculiar velocity distribution of the galaxies. ApJ 608: 636–646ADSCrossRefGoogle Scholar
  119. Lynden-Bell D, Faber SM, Burstein D, Davies RL, Dressler A, Terlevich RJ, Wegner G (1988) Spectroscopy and photometry of elliptical galaxies. V—galaxy streaming toward the new supergalactic center. ApJ 326: 19–49ADSCrossRefGoogle Scholar
  120. Macri LM, Stanek KZ, Bersier D, Greenhill LJ, Reid MJ (2006) A new Cepheid distance to the Maser-Host Galaxy NGC 4258 and its implications for the Hubble constant. ApJ 652: 1133–1149ADSCrossRefGoogle Scholar
  121. Madore BF (1976) The distance to NGC 2403. MNRAS 177: 157–166ADSGoogle Scholar
  122. Madore BF, Freedman WL (1991) The Cepheid distance scale. Publ. Astron. Soc. Pacific 103: 933–957ADSCrossRefGoogle Scholar
  123. Malmquist KG (1920) A study of the stars of spectral type A . Lund Medd Ser II 22: 1Google Scholar
  124. Malmquist KG (1922) On some relations in stellar statistics. Lund Medd Ser I 100: 1Google Scholar
  125. Marconi M, Musella I, Fiorentino G (2005) Cepheid pulsation models at varying metallicity and Δ Y/Δ Z. ApJ 632: 590–610ADSCrossRefGoogle Scholar
  126. Masters KL, Springob CM, Haynes MP, Giovanelli R (2006) SFI++ I: a new I-band Tully–Fisher template, the cluster peculiar velocity dispersion, and H 0. ApJ 653: 861–880ADSCrossRefGoogle Scholar
  127. Mathewson DS, Ford VL, Buchhorn M (1992a) A southern sky survey of the peculiar velocities of 1355 spiral galaxies. ApJ Suppl 81: 413–659ADSCrossRefGoogle Scholar
  128. Mathewson DS, Ford VL, Buchhorn M (1992b) No back-side infall into the Great Attractor. ApJ 389: L5–L8ADSCrossRefGoogle Scholar
  129. McConnachie AW, Irwin MJ, Ferguson AMN, Ibata RA, Lewis GF, Tanvir N (2005) Distances and metallicities for 17 Local Group galaxies. MNRAS 356: 979–997ADSCrossRefGoogle Scholar
  130. Mei S, Blakeslee JP, Côté P, Tonry JL, West MJ, Ferrarese L, Jordán A, Peng EW, Anthony A, Merritt D (2007) The ACS Virgo cluster survey. XIII. SBF distance catalog and the three-dimensional structure of the Virgo cluster. ApJ 655: 144–162ADSCrossRefGoogle Scholar
  131. Méndez RH, Kudritzki RP, Ciardullo R, Jacoby GH (1993) The bright end of the planetary nebula luminosity function. A&A 275: 534–548ADSGoogle Scholar
  132. Minkowski R (1962) Internal dispersion of velocities in other galaxies. In: McVittie GC (ed) Problems of extra-galactic research. IAU Symp 15: 112–118ADSGoogle Scholar
  133. Mouhcine M, Ferguson HC, Rich RM, Brown TM, Smith TE (2005) Halos of spiral galaxies. I. The tip of the red giant branch as a distance indicator. ApJ 633: 810–820ADSCrossRefGoogle Scholar
  134. Nadyozhin DK (2003) Explosion energies, nickel masses and distances of type II plateau supernovae. MNRAS 346: 97–104ADSCrossRefGoogle Scholar
  135. Ngeow CC, Kanbur SM, Nokolaev S, Buonacorsi J, Cook KH, Welch DL (2005) Further empirical evidence for the non-linearity of the period–luminosity relations as seen in the large Magellanic cloud Cepheids. MNRAS 363: 831–846ADSCrossRefGoogle Scholar
  136. Nugent P, Sullivan M, Ellis R, Gal-Yam A, Leonard DC, Howell DA, Astier P, Carlberg RG, Conley A, Fabbro S, Fouchez D, Neill JD, Pain R, Perrett K, Pritchet CJ, Regnault N (2006) Toward a cosmological Hubble diagram for type II-P SNe. ApJ 645: 841–850ADSCrossRefGoogle Scholar
  137. Osterbrock DE (2001) Walter Baade, a life in astrophysics. Princeton University Press, PrincetonGoogle Scholar
  138. Ostriker JP (1993) Astronomical tests of the cold dark matter scenario. ARA&A 31: 689–716ADSCrossRefGoogle Scholar
  139. Panagia N (2005) A geometric determination of the distance to SN 1987A and the LMC. In: Marcaide JM, Weiler KW (eds) Cosmic explosions. IAU Coll. 192, p 585Google Scholar
  140. Persson SE, Madore BF, Krzemiński W, Freedman WL, Roth M, Murphy DC (2004) New Cepheid period–luminosity relations for the large Magellanic cloud: 92 near-infrared light curves. Astron. J. 128: 2239–2264ADSCrossRefGoogle Scholar
  141. Pietrzyński G, Gieren W, Soszyński I, Bresolin F, Kudritzki RP, Dall’Ora M, Storm J, Bono G (2006) The Araucaria project: the distance to the Local Group galaxy IC 1613 from near-infrared photometry of Cepheid variables. ApJ 642: 216–224ADSCrossRefGoogle Scholar
  142. Press WH (1997) Understanding data better with Bayesian and global statistical methods. In: Bahcall JN, Ostriker JP (eds) Unsolved problems in astrophysics. Princton University Press, Princeton, pp 49–60Google Scholar
  143. Read JI, Saha P, Macciò AV (2007) Radial density profiles of time-delay lensing galaxies. ApJ 667: 645–654ADSCrossRefGoogle Scholar
  144. Reindl B, Tammann GA, Sandage A, Saha A (2005) Reddening, absorption, and decline rate corrections for a complete sample of type Ia Supernovae leading to a fully corrected Hubble diagram to v<30,000 km s−1. ApJ 624: 532–554ADSCrossRefGoogle Scholar
  145. Rejkuba M, Greggio L, Harris WE, Harris GLH, Peng EW (2005) Deep ACS imaging of the Halo of NGC 5128: reaching the horizontal branch. ApJ 631: 262–279ADSCrossRefGoogle Scholar
  146. Ribas I, Jordi C, Vilardell F, Fitzpatrick EL, Hilditch RW, Guinan EF (2005) First determination of the distance and fundamental properties of an eclipsing binary in the Andromeda Galaxy. ApJ 635: L37–L40ADSCrossRefGoogle Scholar
  147. Ribas I (2007) The new era of eclipsing binary research with large telescopes. In: Hartkopf WI, Guinan EF, Harmanec P (eds) Binary stars as critical tools and tests in contemporary astrophysics. IAU Symp 240, pp 69–78Google Scholar
  148. Riess AG, Li W, Stetson PB, Filippenko AV, Jha S, Kirshner RP, Challis PM, Garnavich PM, Chornock R (2005) Cepheid calibrations from the Hubble space telescope of the luminosity of two recent type Ia Supernovae and a re-determination of the Hubble constant. ApJ 627: 579–607ADSCrossRefGoogle Scholar
  149. Rizzi L, Bresolin F, Kudritzki RP, Gieren W, Pietrzyński G (2006) The Araucaria project: the distance to NGC 300 from the red giant branch tip using HST ACS imaging. ApJ 638: 766–771ADSCrossRefGoogle Scholar
  150. Rizzi L, Held EV, Saviane I, Tully RB, Gullieuszik M (2007a) The distance to the Fornax dwarf spheroidal galaxy. MNRAS 380: 1255–1260ADSCrossRefGoogle Scholar
  151. Rizzi L, Tully RB, Makarov D, Makarova L, Dolphin AE, Sakai S, Shaya EJ (2007b) Tip of the red giant branch distances. II. Zero-point calibration. ApJ 661: 815–829ADSCrossRefGoogle Scholar
  152. Robertson HP (1928) On relativistic cosmology. Phil Mag 5: 835–848Google Scholar
  153. Rowan-Robinson M (1985) The cosmological distance ladder: distances and time in the universe. Freeman, New YorkGoogle Scholar
  154. Rood RT (1972) Metal-poor stars. IV. The evolution of red giants. ApJ 177: 681–691ADSCrossRefGoogle Scholar
  155. Saha A, Thim F, Tammann GA, Reindl B, Sandage A (2006) Cepheid distances to SNe Ia host galaxies based on a revised photometric zero point of the HST-WFPC2 and new P–L relations and metallicity corrections. ApJ Suppl 165: 108–137 (STT 06)ADSCrossRefGoogle Scholar
  156. Sakai S, Madore BF, Freedman WL, Lauer TR, Ajhar EA, Baum WA (1997) Detection of the tip of the red giant branch in NGC 3379 (M105) in the Leo I group using the Hubble space telescope. ApJ 478: 49–57ADSCrossRefGoogle Scholar
  157. Sakai S, Madore BF, Freedman WL (1999) Cepheid and tip of the red giant branch distances to the Dwarf irregular galaxy IC 10. ApJ 511: 671–679ADSCrossRefGoogle Scholar
  158. Sakai S, Ferrarese L, Kennicutt RC, Saha A (2004) The effect of metallicity on Cepheid-based distances. ApJ 608: 42–61ADSCrossRefGoogle Scholar
  159. Salaris M, Cassisi S (1997) The ‘tip’ of the red giant branch as a distance indicator: results from evolutionary models. MNRAS 289: 406–414ADSGoogle Scholar
  160. Salaris M, Cassisi S (1998) A new analysis of the red giant branch ‘tip’ distance scale and the value of the Hubble constant. MNRAS 298: 166–178ADSCrossRefGoogle Scholar
  161. Sambhus N, Gerhard O, Méndez RH (2005) Kinematic evidence for different planetary Nebulae populations in the elliptical galaxy NGC 4697. Astron. J. 131: 837–848ADSCrossRefGoogle Scholar
  162. Sandage A (1971) The distance of the local-group Galaxy IC 1613 obtained from Baade’s work on its Stellar content. ApJ 166: 13–35ADSCrossRefGoogle Scholar
  163. Sandage A (1972) The redshift-distance relation. II. The Hubble diagram and its scatter for first-ranked cluster galaxies: a formal value for q 0. ApJ 178: 1–24ADSCrossRefGoogle Scholar
  164. Sandage A (1975) The redshift-distance relation. VIII—magnitudes and redshifts of southern galaxies in groups: a further mapping of the local velocity field and an estimate of the deceleration parameter. ApJ 202: 563–582ADSCrossRefGoogle Scholar
  165. Sandage A (1986a) The redshift-distance relation. IX—Perturbation of the very nearby velocity field by the mass of the Local Group. ApJ 307: 1–19ADSCrossRefGoogle Scholar
  166. Sandage A (1986b) The population concept, globular clusters, subdwarfs, ages, and the collapse of the galaxy. ARA&A 24: 421–458ADSCrossRefGoogle Scholar
  167. Sandage A (1994a) Bias properties of extragalactic distance indicators I: the hubble constant does not increase outward. ApJ 430: 1–12ADSCrossRefGoogle Scholar
  168. Sandage A (1994b) Bias properties of extragalactic distance indicators II: bias corrections to Tully–Fisher distances for field galaxies. ApJ 430: 13–28ADSCrossRefGoogle Scholar
  169. Sandage A (1995) Observational selection bias. In: Binggeli B, Buser R (eds) The deep universe. Springer, Berlin, pp 210–232Google Scholar
  170. Sandage A (1999a) The first 50 years at palomar: 1949–1999 the early years of stellar evolution, cosmology, and high-energy astrophysics. ARA&A 37: 445–486ADSCrossRefGoogle Scholar
  171. Sandage A (1999b) Bias properties of extragalactic distance indicators. VIII. H 0 from distance-limited luminosity class and morphological type-specific luminosity functions for SB, SBC, and SC galaxies calibrated using Cepheids. ApJ 527: 479–487ADSCrossRefGoogle Scholar
  172. Sandage A (2008) Bias properties of extragalactic distance indicators XII: bias effects of slope differences and intrinsic dispersion on Tully–Fisher distances to galaxy clusters with application to the Virgo cluster. Publ. Astron. Soc. Pacific (submitted) astro-ph/0712.2066Google Scholar
  173. Sandage A, Bedke J (1994) The Carnegie atlas of galaxies. Carnegie Institution, WashingtonGoogle Scholar
  174. Sandage A, Hardy E (1973) The redshift-distance relation. VII. Absolute magnitudes of the first three ranked cluster galaxies as functions of cluster richness and Bautz–Morgan cluster type: the effect of q 0. ApJ 183: 743–758ADSCrossRefGoogle Scholar
  175. Sandage A, Tammann GA (1968) A composite period–luminosity relation for Cepheids at mean and maximum light. ApJ 151: 531–545ADSCrossRefGoogle Scholar
  176. Sandage A, Tammann GA (1969) The double Cepheid CE Cassiopeiae in NGC 7790: tests of the theory of the instability strip and the calibration of the period–luminosity relation. ApJ 157: 683–708ADSCrossRefGoogle Scholar
  177. Sandage A, Tammann GA (1974a) Steps toward the Hubble constant. III. The distance and stellar content of the M101 group of galaxies. ApJ 194: 223–243ADSCrossRefGoogle Scholar
  178. Sandage A, Tammann GA (1974b) Steps toward the Hubble constant. IV. Distances to 39 galaxies in the general field leading to a calibration of the galaxy luminosity classes and a first hint of the value of H 0. ApJ 194: 559–568ADSCrossRefGoogle Scholar
  179. Sandage A, Tammann GA (1975a) Steps toward the Hubble constant. V. The Hubble constant from nearby galaxies and the regularity of the local velocity field. ApJ 196: 313–328ADSCrossRefGoogle Scholar
  180. Sandage A, Tammann GA (1975b) Steps toward the Hubble constant. VI. The Hubble constant determined from redshifts and magnitudes of remote Sc I galaxies: the value of q 0. ApJ 197: 265–280ADSCrossRefGoogle Scholar
  181. Sandage A, Tammann GA (1976) Steps toward the Hubble constant. VII. Distances to NGC 2403, M101, and the Virgo cluster using 21 centimeter line widths compared with optical methods: the global value of H 0. ApJ 210: 7–24ADSCrossRefGoogle Scholar
  182. Sandage A, Tammann GA (1985) In: Setti G, Van Hove L (eds) Large-scale structure of the universe, cosmology and fundamental physics. Garching, ESO, p 127Google Scholar
  183. Sandage A, Tammann GA (1990) Steps toward the Hubble constant. IX. The cosmic value of H 0 freed from all local velocity anomalies. ApJ 365: 1–12ADSCrossRefGoogle Scholar
  184. Sandage A, Tammann GA (1995) Steps toward the Hubble Constant. X—the distance of the Virgo cluster core using globular clusters. ApJ 446: 1–11ADSCrossRefGoogle Scholar
  185. Sandage A, Tammann GA (2006) Absolute magnitude calibrations of population I and II Cepheids and other pulsating variables in the instability strip of the Hertzsprung–Russell diagram. ARA&A 44: 93–140ADSCrossRefGoogle Scholar
  186. Sandage A, Tammann GA, Federspiel M (1995) Bias properties of extragalactic distance indicators. IV. Demonstration of the population incompleteness bias inherent in the Tully–Fisher method applied to clusters. ApJ 452: 1–15ADSCrossRefGoogle Scholar
  187. Sandage A, Tammann GA, Hardy E (1972) Limits on the local deviation of the universe from a homogeneous model. ApJ 172: 253–263ADSCrossRefGoogle Scholar
  188. Sandage A, Tammann GA, Reindl B (2004) New period–luminosity and period–color relations of classical Cepheids. II. Cepheids in LMC. A&A 424: 43–71ADSCrossRefGoogle Scholar
  189. Sandage A, Tammann GA, Saha A, Reindl B, Macchetto FD, Panagia N (2006) The Hubble constant, a summary of the Hubble space telescope program for the luminosity calibration of type Ia Supernovae by means of Cepheids. ApJ 653: 843–860 (STS 06)ADSCrossRefGoogle Scholar
  190. Saviane I, Hibbard JE, Rich RM (2004) The Stellar content of the southern tail of NGC 4038/4039 and a revised distance. Astron. J. 127: 660–678ADSCrossRefGoogle Scholar
  191. Sérsic JL (1959) The H II regions as distance indicators. Observatory 79: 54–56ADSGoogle Scholar
  192. Seth AC, Dalcanton JJ, de Jong RS (2005) A study of edge-on galaxies with the HST advanced camera for surveys. I. Initial results. Astron. J. 129: 1331–1349ADSCrossRefGoogle Scholar
  193. Soszyński I, Gieren W, Pietrzyński G, Bresolin F, Kudritzki RP, Storm J (2006) The Araucaria Project: distance to the Local Group galaxy NGC 3109 from near-infrared photometry of Cepheids. ApJ 648: 375–382ADSCrossRefGoogle Scholar
  194. Spergel DN, Bean R, Doré O, Nolta MR, Bennett CL, Dunkley J, Hinshaw G, Jarosik N, Komatsu E, Page L, Peiris HV, Verde L, Halpern M, Hill RS, Kogut A, Limon M, Meyer SS, Odegard N, Tucker GS, Weiland JL, Wollack E, Wright EL (2007) Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. ApJ Suppl 170: 377–408ADSCrossRefGoogle Scholar
  195. Suntzeff NB, Phillips MM, Covarrubias R, Navarrete M, Pérez JJ, Guerra A, Acevedo MT, Doyle LR, Harrison T, Kane S, Long KS, Maza J, Miller S, Piatti AE, Clariá JJ, Ahumada AV, Pritzl B, Winkler PF (1999) Optical light curve of the type Ia Supernova 1998bu in M96 and the Supernova calibration of the Hubble constant. Astron. J. 117: 1175–1184ADSCrossRefGoogle Scholar
  196. Sweigart AV, Gross PG (1978) Evolutionary sequences for red giant stars. ApJ Suppl 36: 405–437ADSCrossRefGoogle Scholar
  197. Tammann GA (1993) Why are planetary Nebulae poor distance indicators? In: Weinberger R, Acker A (eds) Planetary nebulae. IAU Symposium vol. 155, pp 515–522Google Scholar
  198. Tammann GA (1987) The cosmic distance scale. In: Hewitt A, Burbidge G, Fang L (eds) Observational cosmology. IAU Symposium, vol 124, pp 151–185Google Scholar
  199. Tammann GA (1998) Variations of the cosmic expansion field and the value of the Hubble constant. In: Piran T, Ruffini R (eds) Eighth Marcel Grossmann meeting: recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories. World Scientific, Singapore, p 243Google Scholar
  200. Tammann GA, Reindl B (2006) Karl Schwarzschild Lecture: the ups and downs of the Hubble constant. In: Röser S (eds) Reviews in modern astronomy, vol 19: the many facets of the universe—revelations by new instruments. Weinheim, Viley-VCH, pp 1–29Google Scholar
  201. Tammann GA, Sandage A (1968) The Stellar content and distance of the Galaxy NGC 2403 in the M81 group. ApJ 151: 825–860ADSCrossRefGoogle Scholar
  202. Tammann GA, Sandage A (1985) The infall velocity toward Virgo, the Hubble constant, and a search for motion toward the microwave background. ApJ 294: 81–95ADSCrossRefGoogle Scholar
  203. Tammann GA, Sandage A (1999) The luminosity function of globular clusters as an extragalactic distance indicator. In: Egret D, Heck A (eds) Harmonizing cosmic distance scales in a post-hipparcos era. ASP Conf. Ser. vol 167, pp 204–216Google Scholar
  204. Tammann GA, Sandage A, Reindl B (2003) New period–luminosity and period–color relations of classical Cepheids: I. Cepheids in the galaxy. A&A 404: 423–448ADSCrossRefGoogle Scholar
  205. Tammann GA, Sandage A, Reindl B (2008) Comparison of distances from RR Lyrae stars, the tip of the red-giant branch and classical Cepheids. ApJ 679: 52–71 (TSR 08)ADSCrossRefGoogle Scholar
  206. Teerikorpi P (1987) Cluster population incompleteness bias and distances from the Tully–Fisher relation—theory and numerical examples. A&A 173: 39–42ADSGoogle Scholar
  207. Teerikorpi P (1990) Theoretical aspects in the use of the inverse Tully–Fisher relation for distance determination. A&A 234: 1–4ADSGoogle Scholar
  208. Tegmark M, Eisenstein DJ, Strauss MA, Weinberg DH, Blanton MR, Frieman JA, Fukugita M, Gunn JE, Hamilton AJS, Knapp GR, Nichol RC, Ostriker JP, Padmanabhan N, Percival WJ, Schlegel DJ, Schneider DP, Scoccimarro R, Seljak U, Seo HJ, Swanson M, Szalay AS, Vogeley MS, Yoo J, Zehavi I, Abazajian K, Anderson SF, Annis J, Bahcall NA, Bassett B, Berlind A, Brinkmann J, Budavari T, Castander F, Connolly A, Csabai I, Doi M, Finkbeiner DP, Gillespie B, Glazebrook K, Hennessy GS, Hogg DW, Ivezić Z, Jain B, Johnston D, Kent S, Lamb DQ, Lee BC, Lin H, Loveday J, Lupton RH, Munn JA, Pan K, Park C, Peoples J, Pier JR, Pope A, Richmond M, Rockosi C, Scranton R, Sheth RK, Stebbins A, Stoughton C, Szapudi I, Tucker DL, Berk DEV, Yanny B, York DG (2006) Cosmological constraints from the SDSS luminous red galaxies. Phys Rev D 74, id. 123507Google Scholar
  209. Thim F, Tammann GA, Saha A, Dolphin A, Sandage A, Tolstoy E, Labhardt L (2003) The Cepheid distance to NGC 5236 (M83) with the ESO very large telescope. ApJ 590: 256–270ADSCrossRefGoogle Scholar
  210. Tikhonov NA (2006) Stellar structure of irregular galaxies: edge-on galaxies. Astron Rep 50: 517–525ADSMathSciNetCrossRefGoogle Scholar
  211. Tikhonov NA, Galazutdinova OA (2005) Stellar disks and halos of edge-on spiral galaxies: NGC 891, NGC 4144, and NGC 4244. Ap 48: 221–236ADSGoogle Scholar
  212. Tikhonov NA, Galazutdinova OA, Drozdovsky IO (2006) Stellar halos and thick disks around edge-on spiral galaxies IC2233, IC5052, NGC4631 and NGC5023. A&A, astro-ph/0603457 (submitted)Google Scholar
  213. Tonry JL, Dressler A, Blakeslee JP, Ajhar EA, Fletcher AB, Luppino GA, Metzger MR, Moore CB (2001) The SBF survey of galaxy distances. IV. SBF magnitudes, colors, and distances. ApJ 546: 681–693ADSCrossRefGoogle Scholar
  214. Tonry JL, Schneider D (1988) A new technique for measuring extragalactic distances. Astron. J. 96: 807–815ADSCrossRefGoogle Scholar
  215. Trimble V (1996) H 0: the incredible shrinking constant, 1925–1975. Publ. Astron. Soc. Pacific 108: 1073–1082ADSCrossRefGoogle Scholar
  216. Tripp R, Branch D (1999) Determination of the Hubble constant using a two-parameter luminosity correction for type Ia Supernovae. ApJ 525: 209–214ADSCrossRefGoogle Scholar
  217. Tully RB (1988) Origin of the Hubble constant controversy. Nature 334: 209–212ADSCrossRefGoogle Scholar
  218. Tully RB, Fisher JR (1977) A new method of determining distances to galaxies. A&A 54: 661–673ADSGoogle Scholar
  219. Tully RB, Pierce MJ (2000) Distances to galaxies from the correlation between luminosities and line widths. III. Cluster template and global measurement of H 0. ApJ 533: 744–780ADSCrossRefGoogle Scholar
  220. Tully RB, Rizzi L, Dolphin AE, Karachentsev ID, Karachentseva VE, Makarov DI, Makarova L, Sakai S, Shaya EJ (2006) Associations of Dwarf galaxies. Astron. J. 132: 729–748ADSCrossRefGoogle Scholar
  221. Udalski A, Soszynski I, Szymanski M, Kubiak M, Pietrzynski G, Wozniak P, Zebrun K (1999) The optical gravitational lensing experiment. Cepheids in the Magellanic clouds. IV. Catalog of Cepheids from the large Magellanic cloud. AcA 49: 223–317ADSGoogle Scholar
  222. Udomprasert PS, Mason BS, Readhead ACS, Pearson TJ (2004) An unbiased measurement of H 0 through cosmic background imager observations of the Sunyaev–Zel’dovich effect in nearby galaxy clusters. ApJ 615: 63–81ADSCrossRefGoogle Scholar
  223. van den Bergh S (1960a) A preliminary luminosity clssification of late-type galaxies. ApJ 131: 215–223ADSCrossRefGoogle Scholar
  224. van den Bergh S (1960b) A preliminary luminosity classification for galaxies of type Sb. ApJ 131: 558–573ADSCrossRefGoogle Scholar
  225. van den Bergh S (1960c) A reclassification of the northern Shapley-Ames galaxies. Publ. David Dunlap Obs. 2, pp 159–199Google Scholar
  226. van den Bergh S, Pritchet C, Grillmair C (1985) Globular clusters and the distance to M87. Astron. J. 90: 595–599ADSCrossRefGoogle Scholar
  227. van Leeuwen F, Feast MW, Whitelock PA, Laney CD (2007) Cepheid parallaxes and the Hubble constant. MNRAS 379: 723–737ADSCrossRefGoogle Scholar
  228. Wang X, Wang L, Pain R, Zhou X, Li Z (2006) Determination of the Hubble constant, the intrinsic scatter of luminosities of type Ia Supernovae, and evidence for nonstandard dust in other galaxies. ApJ 645: 488–505ADSCrossRefGoogle Scholar
  229. Wesselink AJ (1946) The observations of brightness, colour and radial velocity of δ Cephei and the pulsation hypothesis. BAN 10: 91–99ADSGoogle Scholar
  230. Wiltshire DL (2007a) Exact solution to the averaging problem in cosmology. Phys. Rev. Lett. 99:251101, 1–5Google Scholar
  231. Wiltshire DL (2007b) Cosmic clocks, cosmic variance, and cosmic averages. New J Phys 9: 397–443CrossRefGoogle Scholar
  232. Wood-Vasey WM, Friedman AS, Bloom JS, Hicken M, Modjaz M, Kirshner RP, Starr DL, Blake CH, Falco EE, Szentgyorgyi AH, Challis P, Blondin S, Rest A (2007) Type Ia Supernovae are good standard candles in the near infrared: evidence from PAIRITEL. ApJ astro-ph/0711.2068 (in press)Google Scholar
  233. Yahil A, Sandage A, Tammann GA (1980) The deceleration of nearby galaxies. In: Balian E, Audouze J, Schramm DN (eds) Physical cosmology. North-Holland, Amsterdam, pp 127–159Google Scholar
  234. Yahil A, Tammann GA, Sandage A (1977) The Local Group—the solar motion relative to its centroid. ApJ 217: 903–915ADSCrossRefGoogle Scholar
  235. Zehavi I, Riess AG, Kirshner RP (1998) A local Hubble bubble from type Ia supernovae?. ApJ 503: 483–491ADSCrossRefGoogle Scholar
  236. Zinn R, West MJ (1984) The globular cluster system of the galaxy. III—measurements of radial velocity and metall icity for 60 clusters and a compilation of metallicities for 121 clusters. ApJ Suppl 55: 45–66ADSCrossRefGoogle Scholar
  237. Zucker DB, Belokurov V, Evans NW, Wilkinson MI, Irwin MJ, Sivarani T, Hodgkin S, Bramich DM, Irwin JM, Gilmore G, Willman B, Vidrih S, Fellhauer M, Hewett PC, Beers TC, Bell EF, Grebel EK, Schneider DP, Newberg HJ, Wyse RFG, Rockosi CM, Yanny B, Lupton R, Smith JA, Barentine JC, Brewington H, Brinkmann J, Harvanek M, Kleinman SJ, Krzesinski J, Long D, Nitta A, Snedden SA (2006) A new milky way dwarf satellite in Canes Venatici. ApJ 643: L103–L106ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Physics and AstronomyBaselSwitzerland
  2. 2.Observatories of the Carnegie Institution of WashingtonPasadenaUSA

Personalised recommendations