The Astronomy and Astrophysics Review

, Volume 14, Issue 3–4, pp 171–216 | Cite as

Non-thermal emission processes in massive binaries

  • Michaël De Becker
Review Article


In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic. These results concern the radio, the visible, the X-ray and the γ-ray domains. Prospects for the very high energy γ-ray emission from massive stars will also be addressed. Two particularly interesting examples—one O-type and one Wolf-Rayet binary—will be considered in details. Finally, strategies for future developments in this field will be discussed.


Radiation mechanisms: non-thermal Stars: early-type Stars: binaries: general Radio continuum: stars X-rays: stars Gamma rays: theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott DC, Lucy LB (1985) Multiline transfer and the dynamics of stellar winds. ApJ 288:679–693. doi: 10.1086/162834 ADSGoogle Scholar
  2. Abbott DC, Bieging JH, Churchwell E (1984) The detection of variable, nonthermal radio emission from two O type stars. ApJ 280:671–678, doi: 10.1086/162040 ADSGoogle Scholar
  3. Abbott DC, Torres AV, Bieging JH, Churchwell E (1986) Radio emission from galactic Wolf-Rayet stars and the structure of Wolf-Rayet winds. ApJ 303:239–261. doi: 10.1086/164070 ADSGoogle Scholar
  4. Aharonian F, Akhperjanian AG, Aye KM, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Berghaus P, Bernlöhr K, Bolz O, Boisson C, Borgmeier C, Breitling F, Brown AM, Bussons Gordo J, Chadwick PM, Chitnis VR, Chounet LM, Cornils R, Costamante L, Degrange B, Djannati-Ataï A, O’C Drury L, Ergin T, Espigat P, Feinstein F, Fleury P, Fontaine G, Funk S, Gallant Y, Giebels B, Gillessen S, Goret P, Guy J, Hadjichristidis C, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hofmann W, Holleran M, Horns D, de Jager OC, Jung I, Khélifi B, Komin N, Konopelko A, Latham IJ, Le Gallou R, Lemoine M, Lemière A, Leroy N, Lohse T, Marcowith A, Masterson C, McComb TJL, de Naurois M, Nolan SJ, Noutsos A, Orford KJ, Osborne JL, Ouchrif M, Panter M, Pelletier G, Pita S, Pohl M, Pühlhofer G, Punch M, Raubenheimer BC, Raue M, Raux J, Rayner SM, Redondo I, Reimer A, Reimer O, Ripken J, Rivoal M, Rob L, Rolland L, Rowell G, Sahakian V, Saugé L, Schlenker S, Schlickeiser R, Schuster C, Schwanke U, Siewert M, Sol H, Steenkamp R, Stegmann C, Tavernet JP, Théoret CG, Tluczykont M, van der Walt DJ, Vasileiadis G, Vincent P, Visser B, Völk HJ, Wagner SJ (2004) Very high energy gamma rays from the direction of Sagittarius A*. A&A 425:L13–L17. doi: 10.1051/0004-6361:200400055 ADSGoogle Scholar
  5. Aharonian F, Akhperjanian A, Beilicke M, Bernlöhr K, Börst HG, Bojahr H, Bolz O, Coarasa T, Contreras J, Cortina J, Denninghoff S, Fonseca V, Girma M, Götting N, Heinzelmann G, Hermann G, Heusler A, Hofmann W, Horns D, Jung I, Kankanyan R, Kestel M, Kohnle A, Konopelko A, Kranich D, Lampeitl H, Lopez M, Lorenz E, Lucarelli F, Mang O, Mazin D, Meyer H, Mirzoyan R, Moralejo A, Oña-Wilhelmi E, Panter M, Plyasheshnikov A, Pühlhofer G, de los Reyes R, Rhode W, Ripken J, Rowell GP, SahakianV, Samorski M, Schilling M, Siems M, Sobzynska D, Stamm W, Tluczykont M, Vitale V, Völk HJ, Wiedner CA, Wittek W (2005) The unidentified TeV source (TeV J2032+4130) and surrounding field: Final HEGRA IACT-System results. A&A 431:197–202, doi: 10.1051/0004-6361:20041552 ADSGoogle Scholar
  6. Albacete Colombo JF, Micela G (2005) X-ray analysis of the close binary system FO 15. In: Massive stars and high-energy emission in OB associations, pp 69–72Google Scholar
  7. Aznar Cuadrado R, Jordan S, Napiwotzki R, Schmid HM, Solanki SK, Mathys G (2004) Discovery of kilogauss magnetic fields in three DA white dwarfs. A&A 423:1081–1094. doi: 10.1051/0004-6361:20040355 ADSGoogle Scholar
  8. Baring MG, Ellison DC, Reynolds SP, Grenier IA, Goret P (1999) Radio to gamma-ray emission from shell-type supernova remnants: predictions from nonlinear shock acceleration models. ApJ 513:311–338. doi: 10.1086/306829 ADSGoogle Scholar
  9. Bell AR (1978a) The acceleration of cosmic rays in shock fronts. I. MNRAS 182:147–156ADSGoogle Scholar
  10. Bell AR (1978b) The acceleration of cosmic rays in shock fronts. II. MNRAS 182:443–455ADSGoogle Scholar
  11. Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS 353:550–558. doi: 10.1111/j.1365-2966.2004.08097.x ADSGoogle Scholar
  12. Benaglia P, Koribalski B (2004) Radio observations of HD 93129A: The earliest O star with the highest mass loss? A&A 416:171–178. doi: 10.1051/0004-6361:20034138 ADSGoogle Scholar
  13. Benaglia P, Romero GE (2003) Gamma-ray emission from Wolf-Rayet binaries. A&A 399:1121–1134. doi: 10.1051/0004-6361:20021854 ADSGoogle Scholar
  14. Benaglia P, Cappa CE, Koribalski BS (2001a) Mass loss rate determination of southern OB stars. A&A 372:952–962. doi: 10.1051/0004-6361:20010617 ADSGoogle Scholar
  15. Benaglia P, Romero GE, Stevens IR, Torres DF (2001b) Can the gamma-ray source 3EG J2033+4118 be produced by the stellar system Cygnus OB2 No 5? A&A 366:605–611. doi: 10.1051/0004-6361:20000261 ADSGoogle Scholar
  16. Benaglia P, Romero GE, Koribalski B, Pollock AMT (2005) Multiwavelength studies of WR 21a and its surroundings. A&A 440:743–750. doi: 10.1051/0004-6361:20042617 ADSGoogle Scholar
  17. Berghoefer TW, Schmitt JHMM, Danner R, Cassinelli JP (1997) X-ray properties of bright OB-type stars detected in the ROSAT all-sky survey. A&A 322:167–174ADSGoogle Scholar
  18. Bieging JH, Abbott DC, Churchwell EB (1989) A survey of radio emission from Galactic OB stars. ApJ 340:518–536. doi: 10.1086/167414 ADSGoogle Scholar
  19. Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. ApJ 221:L29–L32. doi: 10.1086/182658 ADSGoogle Scholar
  20. Blomme R (2005) Observations of non-thermal radio emission in O-type stars. In: Massive stars and high-energy emission in OB associations, JENAM 2005, held in Liège, Belgium, pp 45–48Google Scholar
  21. Blomme R, van Loo S, De Becker M, Rauw G, Runacres MC, Setia Gunawan DYA, Chapman JM (2005) Non-thermal radio emission from O-type stars. I. HD168112. A&A 436:1033–1040. doi: 10.1051/0004-6361:20042383 ADSGoogle Scholar
  22. Blomme R, De Becker M, Runacres MC, van Loo S, Setia Gunawan DYA (2007) Non-thermal radio emission from O-type stars. II. HD 167971. A&A 464:701–708. doi: 10.1051/0004-6361:20054602,  arXiv:astro-ph/0611768 ADSGoogle Scholar
  23. Blumenthal GR, Gould RJ (1970) Bremsstrahlung, Synchrotron Radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev Modern Phy 42:237–271ADSGoogle Scholar
  24. Brown JC, Richardson LL, Antokhin I, Robert C, Moffat AFJ, St-Louis N (1995) Combined spectrometric, photometric and polarimetric diagnostics for ‘blobs’ in WR star winds. A&A 295:725–735ADSGoogle Scholar
  25. Butt YM, Benaglia P, Combi JA, Corcoran M, Dame TM, Drake J, Kaufman Bernadó M, Milne P, Miniati F, Pohl M, Reimer O, Romero GE, Rupen M (2003) Chandra/very large array follow-up of TeV J2032+4131, the Only Unidentified TeV Gamma-Ray Source. ApJ 597:494–512. doi: 10.1086/378121,  astro-ph/0302342 ADSGoogle Scholar
  26. Butt YM, Combi JA, Drake J, Finley JP, Konopelko A, Lister M, Rodriguez J (2007) TeV J2032+4130: a not-so-dark Accelerator? ArXiv Astrophysics e-prints  astro-ph/0611731
  27. Campbell CG (1997) Magnetohydrodynamics in Binary Stars. Kluwer, DordrechtGoogle Scholar
  28. Cappa C, Goss WM, van der Hucht KA (2004) A Very Large Array 3.6 Centimeter Continuum Survey of Galactic Wolf-Rayet Stars. Astron J 127:2885–2897. doi: 10.1086/383286 ADSGoogle Scholar
  29. Castor JI, Abbott DC, Klein RI (1975) Radiation-driven winds in Of stars. ApJ 195:157–174ADSGoogle Scholar
  30. Chapman JM, Leitherer C, Koribalski B, Bouter R, Storey M (1999) Radio continuum measurements of southern early-type stars. III. Nonthermal emission from Wolf-Rayet Stars. ApJ 518:890–900. doi: 10.1086/307314 ADSGoogle Scholar
  31. Charbonneau P, MacGregor KB (2001) Magnetic fields in massive stars. I. Dynamo Models. ApJ 559:1094–1107. doi: 10.1086/322417 ADSGoogle Scholar
  32. Chen W, White RL, Bertsch D (1996) Possible detection of π 0-decay γ-ray emission from CYG OB2 by EGRET. A&As 120:423–426ADSGoogle Scholar
  33. Cheng KS, Romero GE (2004) Cosmic gamma-ray sources. Kluwer, DordrechtGoogle Scholar
  34. Contreras ME, Rodriguez LF, Tapia M, Cardini D, Emanuele A, Badiali M, Persi P (1997) Hipparcos, VLA, and CCD Observations of cygnus OB2 No. 5: solving the mystery of the radio “Companion”. ApJ 488:L153+. doi: 10.1086/310928 ADSGoogle Scholar
  35. Cowling TG (1945) On the Sun’s general magnetic field. MNRAS 105:166–174ADSGoogle Scholar
  36. De Becker M (2001) Recherche de la composante d’émission X non-thermique d’un échantillon d’étoiles massives. Master’s thesis, University of LiègeGoogle Scholar
  37. De Becker M (2005) A multiwavelength observational study of the non-thermal emission from O-type stars. PhD thesis, University of LiègeGoogle Scholar
  38. De Becker M, Rauw G (2005) Evidence for phase-locked X-ray variations from the colliding wind massive binary Cyg OB2 #8A. In: Massive Stars and High-Energy Emission in OB Associations, JENAM 2005, held in Liège, Belgium, pp 73–76Google Scholar
  39. De Becker M, Rauw G (2007) New colliding wind massive binaries. In: Massive stars in interacting binaries, held in Sacacomie, Canada, ASP Conference Series, in pressGoogle Scholar
  40. De Becker M, Rauw G, Blomme R, Waldron WL, Sana H, Pittard JM, Eenens P, Stevens IR, Runacres MC, Van Loo S, Pollock AMT (2004a) Quasi-simultaneous XMM-Newton and VLA observation of the non-thermal radio emitter HD 168112 (O5.5III(f+)). A&A. 420:1061–1077. doi: 10.1051/0004-6361:20041030 ADSGoogle Scholar
  41. De Becker M, Rauw G, Manfroid J (2004b) A Spectroscopic study of the non-thermal radio emitter Cyg OB2 #8A: discovery of a new binary system. A&A 424:L39–L42. doi: 10.1051/0004-6361:200400049 ADSGoogle Scholar
  42. De Becker M, Rauw G, Pittard JM, Antokhin II, Stevens IR, Gosset E, Owocki SP (2004c) An XMM-Newton observation of the massive binary HD 159176. A&A 416:221–233. doi: 10.1051/0004-6361:20031710 ADSGoogle Scholar
  43. De Becker M, Rauw G, Blomme R, Pittard JM, Stevens IR, Runacres MC (2005a) An XMM-Newton observation of the multiple system HD 167971 (O5-8V + O5-8V + (O8I)) and the young open cluster NGC 6604. A&A 437:1029–1046 doi: 10.1051/0004-6361:20052810 ADSGoogle Scholar
  44. De Becker M, Rauw G, Swings J (2005b) On the Multiplicity of the O-Star Cyg OB2 #8a and its contribution to the γ-ray Source 3EG J2033+4118. Astrophys Space Sci 297:291–298. doi: 10.1007/s10509-005-7667-x ADSGoogle Scholar
  45. De Becker M, Rauw G, Manfroid J, Eenens P (2006a) Early-type stars in the young open cluster IC 1805. II. The probably single stars HD 15570 and HD 15629, and the massive binary/triple system HD 15558. A&A 456:1121–1130. doi: 10.1051/0004-6361:20065300,  arXiv:astro-ph/0606379 ADSGoogle Scholar
  46. De Becker M, Rauw G, Sana H, Pollock AMT, Pittard JM, Blomme R, Stevens IR, van Loo S (2006b) XMM-Newton observations of the massive colliding wind binary and non-thermal radio emitter CygOB2#8A [O6If + O5.5III(f)]. MNRAS 371:1280–1294. doi: 10.1111/j.1365-2966.2006.10746.x ADSGoogle Scholar
  47. De Becker M, Rauw G, Pittard J, Blomme R, Romero G, Sana H, Stevens I (2007a) The investigation of particle acceleration in colliding-wind massive binaries with SIMBOL-X. In: SIMBOL-X: the hard X-ray Universe in focus, held in Bologne, Italy, Mem S A It (in press)Google Scholar
  48. De Becker M, Rauw G, Pittard J, Sana H, Stevens I, Romero G (2007b) INTEGRAL-ISGRI observations of the Cyg OB2 region. Searching for hard X-ray point sources in a region containing several non-thermal emitting massive stars., A&A (in press)Google Scholar
  49. Decourchelle A, Ellison DC, Ballet J (2000) Thermal X-Ray emission and cosmic-ray production in young supernova remnants. ApJ 543:L57–L60. doi: 10.1086/318167 ADSGoogle Scholar
  50. Donati JF (2004) ESPaDOnS@CFHT: the new generation stellar spectropolarimeter. In: SF2A-2004: Semaine de l’Astrophysique Francaise, p 217Google Scholar
  51. Donati JF, Wade GA, Babel J, Henrichs Hf, de Jong JA, Harries TJ (2001) The magnetic field and wind confinement of β Cephei: new clues for interpreting the Be phenomenon? MNRAS 326:1265–1278. doi: 10.1046/j.1365-8711.2001.04713.x ADSGoogle Scholar
  52. Donati JF, Babel J, Harries TJ, Howarth ID, Petit P, Semel M (2002) The magnetic field and wind confinement of θ 1 Orionis C. MNRAS 333:55–70. doi: 10.1046/j.1365-8711.2002.05379.x ADSGoogle Scholar
  53. Dougherty SM, Williams PM (2000) Non-thermal emission in Wolf-Rayet stars: are massive companions required? MNRAS 319:1005–1010ADSGoogle Scholar
  54. Dougherty SM, Pittard JM, Kasian L, Coker RF, Williams PM, Lloyd HM (2003) Radio emission models of colliding-wind binary systems. A&A 409:217–233, doi: 10.1051/0004-6361:20031048 ADSGoogle Scholar
  55. Dougherty SM, Beasley AJ, Claussen MJ, Zauderer BA, Bolingbroke NJ (2005a) High-resolution radio observations of the colliding-wind binary WR 140. ApJ 623:447–459, doi: 10.1086/428494 ADSGoogle Scholar
  56. Dougherty SM, Pittard JM, O’Connor EP (2005b) Radio emission from colliding-wind binaries: observations and models. In: Massive stars and high-energy emission in OB associations, pp 49–52Google Scholar
  57. Drake SA (1990) Radio-continuum observations of a small sample of hot stars. Astron. J. 100:572–578. doi: 10.1086/115541 ADSGoogle Scholar
  58. Eichler D, Usov V (1993) Particle acceleration and nonthermal radio emission in binaries of early-type stars. ApJ 402:271–279. doi: 10.1086/172130 ADSGoogle Scholar
  59. Eversberg T, Lepine S, Moffat AFJ (1996) Blobs also in O star winds. In: Wolf-Rayet Stars in the framework of stellar evolution, 33rd Liège International Astrophysical Colloquium, held in Liège, Belgium, pp 225–230Google Scholar
  60. Eversberg T, Lepine S, Moffat AFJ (1998) Outmoving Clumps in the Wind of the Hot O Supergiant zeta Puppis. ApJ 494:799–805. doi: 10.1086/305218 ADSGoogle Scholar
  61. Feldmeier A (1995) Time-dependent structure and energy transfer in hot star winds. A&A 299:523ADSGoogle Scholar
  62. Feldmeier A, Puls J, Pauldrach AWA (1997) A possible origin for X-rays from O stars. A&A 322:878–895ADSGoogle Scholar
  63. Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75:1169–1174. doi: 10.1103/PhysRev.75.1169 MATHADSGoogle Scholar
  64. Ferrario L, Wickramasinghe DT (2005) Magnetic fields and rotation in white dwarfs and neutron stars. MNRAS 356:615–620. doi: 10.1111/j.1365-2966.2004.08474.x ADSGoogle Scholar
  65. Florkowski DR, Gottesman ST (1977) HD 193793, a radio-emitting Wolf-Rayet binary star. MNRAS 179:105–110ADSGoogle Scholar
  66. García B, Mermilliod JC (2001) High-mass binaries in the very young open cluster NGC 6231. Implication for cluster and star formation. A&A 368:122–136. doi: 10.1051/0004-6361:20000528 Google Scholar
  67. Gies DR (1987) The kinematical and binary properties of association and field O stars. ApJs 64:545–563. doi: 10.1086/191208 ADSGoogle Scholar
  68. Gies DR, Mason BD, Hartkopf WI, McAlister HA, Frazin RA, Hahula ME, Penny LR, Thaller ML, Fullerton AW, Shara MM (1993) Binary star orbits from speckle interferometry. 5: A combined speckle/spectroscopic study of the O star binary 15 Monocerotis. Astron. J. 106:2072–2080. doi: 10.1086/116786 ADSGoogle Scholar
  69. Gosset E (2005) private communicationGoogle Scholar
  70. Harvin JA, Gies DR, Bagnuolo WG, Penny LR, Thaller ML (2002) Tomographic Separation of Composite Spectra. VIII. The physical properties of the massive compact binary in the triple star system HD 36486 (δ Orionis A). ApJ 565:1216–1230. doi: 10.1086/324705 ADSGoogle Scholar
  71. Hubrig S, Szeifert T, Schöller M, Mathys G, Kurtz DW (2004) New measurements of magnetic fields of roAp stars with FORS 1 at the VLT. A&A 415:685–689. doi: 10.1051/0004-6361:20031486 ADSGoogle Scholar
  72. Kahn SM, Leutenegger MA, Cottam J, Rauw G, Vreux JM, den Boggende AJF, Mewe R, Güdel M (2001) High resolution X-ray spectroscopy of zeta Puppis with the XMM-Newton reflection grating spectrometer. A&A 365:L312–L317. doi: 10.1051/0004-6361:20000093,  arXiv:astro-ph/0011026 ADSGoogle Scholar
  73. Kitchatinov LL, Jardine M, Donati JF (2000) Magnetic cycle of LQ Hydrae: observational indications and dynamo model. MNRAS 318:1171–1176ADSGoogle Scholar
  74. Konopelko A, Atkins RW, Blaylock G, Buckley JH, Butt Y, Carter-Lewis DA, Celik O, Cogan P, Chow YCK, Cui W, Dowdall C, Ergin T, Falcone AD, Fegan DJ, Fegan SJ, Finley JP, Fortin P, Gillanders GH, Gutierrez KJ, Hall J, Hanna D, Horan D, Hughes SB, Humensky TB, Imran A, Jung I, Kaaret P, Kenny GE, Kertzman M, Kieda DB, Kildea J, Knapp J, Kosack K, Krawczynski H, Krennrich F, Lang MJ, LeBohec S, Moriarty P, Mukherjee R, Nagai T, Ong RA, Perkins JS, Pohl M, Ragan K, Reynolds PT, Rose HJ, Sembroski GH, Schrödter M, Smith AW, Steele D, Syson A, Swordy SP, Toner JA, Valcarcel L, Vassiliev VV, Wagner RG, Wakely SP, Weekes TC, White RJ, Williams DA, Zitzer B (2007) Observations of the unidentified TeV γ-ray source TeV J2032+4130 with the Whipple Observatory 10 m Telescope. ApJ 658:1062–1068, doi: 10.1086/511262,  arXiv:astro-ph/0611730 ADSGoogle Scholar
  75. Kudritzki RP (1996) Spectral analyses with the standard model. Part I: Spectral diagnostics of luminous blue supergiants. In: Wolf-Rayet Stars in the Framework of Stellar Evolution, 33rd Liège International Astrophysical Colloquium, held in Liège, Belgium, pp 467–489Google Scholar
  76. Lanotte A (2006) Etude de la multiplicité des étoiles de type O dans l’amas ouvert Trumpler 16. Graduate thesis, University of LiègeGoogle Scholar
  77. Leitherer C, Forbes D, Gilmore AC, Hearnshaw J, Klare G, Krautter J, Mandel H, Stahl O, Strupat W, Wolf B, Zickgraf FJ, Zirbel E (1987) Photometry and spectroscopy of the O-type variable HD 167971. A&A 185:121–130ADSGoogle Scholar
  78. Leitherer C, Chapman JM, Koribalski B (1995) Radio continuum measurements of southern early-type stars. ApJ 450:289–301. doi: 10.1086/176140 ADSGoogle Scholar
  79. Longair MS (1992) High energy astrophysics 2nd ed. Cambridge University Press, CambridgeGoogle Scholar
  80. Lucy LB, Solomon PM (1970) Mass loss by hot stars. ApJ 159:879–894ADSGoogle Scholar
  81. Lucy LB, White RL (1980) X-ray emission from the winds of hot stars. ApJ 241:300–305. doi: 10.1086/158342 ADSGoogle Scholar
  82. MacDonald J, Mullan DJ (2004) Magnetic fields in massive stars: dynamics and origin. MNRAS 348:702–716. doi: 10.1111/j.1365-2966.2004.07394.x ADSGoogle Scholar
  83. MacGregor KB, Cassinelli JP (2003) Magnetic fields in massive stars. II. The buoyant rise of magnetic flux tubes through the radiative interior. ApJ 586:480–494. doi: 10.1086/346257 ADSGoogle Scholar
  84. Maeder A, Meynet G (2003) Stellar evolution with rotation and magnetic fields. I. The relative importance of rotational and magnetic effects. A&A 411:543–552. doi: 10.1051/0004-6361:20031491 ADSGoogle Scholar
  85. Maeder A, Meynet G (2004) Stellar evolution with rotation and magnetic fields. II. General equations for the transport by Tayler-Spruit dynamo. A&A 422:225–237. doi: 10.1051/0004-6361:20034583 ADSGoogle Scholar
  86. Manchanda RK, Polcaro VF, Norci L, Giovannelli F, Brinkmann W, Radecke HD, Manteiga M, Persi P, Rossi C (1996) X-ray and γ-ray emission in open clusters. A&A 305:457–467ADSGoogle Scholar
  87. Melrose DB (1970) A Razin-Tsytovich effect for Bremsstrahlung. Astrophys Space Sci 18:267–272ADSGoogle Scholar
  88. Michaud G, Charland Y, Megessier C (1981) Diffusion models for magnetic Ap-Bp stars. A&A 103:244–262ADSGoogle Scholar
  89. Moffat AFJ, Lepine S, Henriksen RN, Robert C (1994) First wavelet analysis of emission line variations in Wolf-Rayet stars. Astrophys Space Sci 216:55–65ADSGoogle Scholar
  90. Monnier JD, Greenhill LJ, Tuthill PG, Danchi WC (2002) Radio and Infrared Properties of Dust-Enshrouded Wolf-Rayet Stars. In: ASP Conference Seres 260: Interacting Winds from Massive Stars, p 331Google Scholar
  91. Moss D (2003) The survival of fossil magnetic fields during pre-main sequence evolution. A&A 403:693–697. doi: 10.1051/0004-6361:20030431 ADSGoogle Scholar
  92. Neiner C, Geers VC, Henrichs HF, Floquet M, Frémat Y, Hubert AM, Preuss O, Wiersema K (2003) Discovery of a magnetic field in the Slowly Pulsating B star ζ Cassiopeiae. A&A 406:1019–1031. doi: 10.1051/0004-6361:20030742 ADSGoogle Scholar
  93. Nelan EP, Walborn NR, Wallace DJ, Moffat AFJ, Makidon RB, Gies DR, Panagia N (2004) Resolving OB systems in the Carina Nebula with the Hubble Space Telescope Fine Guidance Sensor. Astron J 128:323–329. doi: 10.1086/420716 ADSGoogle Scholar
  94. O’Connor EP, Dougherty SM, Pittard JM, Williams PM (2005) The colliding winds of WR 146: seeing the works. In: Rauw G, Nazé Y, Blomme R (ed) Massive stars and high-energy emission in OB associations, pp 81–84Google Scholar
  95. Owocki SP, Rybicki GB (1985) Instabilities in line-driven stellar winds. II - Effect of scattering. ApJ 299:265–276. doi: 10.1086/163697 ADSGoogle Scholar
  96. Owocki SP, Castor JI, Rybicki GB (1988) Time-dependent models of radiatively driven stellar winds. I - Nonlinear evolution of instabilities for a pure absorption model. ApJ 335:914–930. doi: 10.1086/166977 ADSGoogle Scholar
  97. Panagia N, Felli M (1975) The spectrum of the free-free radiation from extended envelopes. A&A 39:1–5ADSGoogle Scholar
  98. Parker EN (1955) Hydromagnetic dynamo models. ApJ 122:293–314ADSGoogle Scholar
  99. Pauldrach A, Puls J, Kudritzki RP (1986) Radiation-driven winds of hot luminous stars—improvements of the theory and first results. A&A 164:86–100MATHADSGoogle Scholar
  100. Pauldrach AWA, Kudritzki RP, Puls J, Butler K, Hunsinger J (1994) Radiation-driven winds of hot luminous stars. 12: A first step towards detailed UV-line diagnostics of O-stars. A&A 283:525–560ADSGoogle Scholar
  101. Paumard T, Genzel R, Maillard JP, Ott T, Morris MR, Eisenhauer F, Abuter R (2004) Census of the Galactic Centre early-type stars using spectro-imagery. In: Chalabaev A, Fukui T, Montmerle T, Tran-Thanh-Van J (eds) “Young Local Universe” Proceedings of XXXIXth Rencontres de Moriond, La Thuile, Aosta Valley, Italie, March 21-28, 2004. Editions Frontieres, Paris, pp 377–388Google Scholar
  102. Pittard JM, Dougherty SM (2005) Non-thermal X-ray and gamma-ray emission from the colliding wind binary WR 140. In: Massive stars and high-energy emission in OB associations, pp 57–60Google Scholar
  103. Pittard JM, Dougherty SM (2006) Radio, X-ray, and γ-ray emission models of the colliding-wind binary WR140. MNRAS 372:801–826. doi: 10.1111/j.1365-2966.2006.10888.x,  arXiv:astro-ph/0603787 ADSGoogle Scholar
  104. Pittard JM, Stevens IR (1997) Theoretical X-ray properties of colliding stellar winds in O+O star binaries. MNRAS 292:298–316ADSGoogle Scholar
  105. Pittard JM, Dougherty SM, Coker RF, O’Connor E, Bolingbroke NJ (2006) Radio emission models of colliding-wind binary systems. Inclusion of IC cooling. A&A 446:1001–1019. doi: 10.1051/0004-6361:20053649,  arXiv:astro-ph/0510283 ADSGoogle Scholar
  106. Pollock AMT (1987) New evidence at X-ray and COS-B gamma-ray frequencies for non-thermal phenomena in Wolf-Rayet stars. A&A 171:135–139ADSGoogle Scholar
  107. Quataert E, Loeb A (2005) Nonthermal THz to TeV Emission from Stellar Wind Shocks in the Galactic Center. ApJ 635:L45–L48. doi: 10.1086/499126 ADSGoogle Scholar
  108. Rauw G (2004) Non-thermal emission from early-type binaries. In: ASSL Vol. 304: Cosmic Gamma-Ray Sources, pp 105–125Google Scholar
  109. Rauw G, Vreux JM, Bohannan B (1999) The interacting early-type binary BD +40 deg4220 (V729 Cyg): modeling the colliding winds region. ApJ 517:416–430. doi: 10.1086/307185 ADSGoogle Scholar
  110. Rauw G, Blomme R, Waldron WL, Corcoran MF, Pittard JM, Pollock AMT, Runacres MC, Sana H, Stevens IR, Van Loo S (2002) A multi-wavelength investigation of the non-thermal radio emitting O-star 9 Sgr. A&A 394:993–1008. doi: 10.1051/0004-6361:20020926 ADSGoogle Scholar
  111. Rauw G, Vreux JM, Antokhin I, Stevens I, Gosset E, Sana H, Jamar C, Mason K (2003) Monitoring the wind interaction in HD 93403 with XMM-Newton. In: Jansen F (eds) New visions of the X-ray Universe in the XMM-Newton and Chandra EraGoogle Scholar
  112. Rauw G, De Becker M, Linder N (2005a) XMM-Newton observations of the Cyg OB2 association. In: Massive stars and high energy emission in OB associations, JENAM 2005, held in Liège, Belgium, pp 103–106Google Scholar
  113. Rauw G, Sana H, Gosset E, De Becker M, Arias J, Morrell N, Eenens P, Stickland D (2005b) On the multiplicity of the non-thermal radio emitters 9 Sgr and HD 168112. In: Massive stars and high energy emission in OB associations, JENAM 2005, held in Liège, Belgium, pp 85–88Google Scholar
  114. Reimer A, Pohl M, Reimer O (2006) Nonthermal high-energy emission from colliding winds of massive stars. ApJ 644:1118–1144. doi: 10.1086/503598,  arXiv:astro-ph/0510701 ADSGoogle Scholar
  115. Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics. Wiley, New YorkGoogle Scholar
  116. Sana H et al. (2007), MNRAS, submittedGoogle Scholar
  117. Sana H, Rauw G, Nazé Y, Gosset E, Vreux JM (2006) An XMM-Newton view of the young open cluster NGC 6231 - II. The OB star population. MNRAS 372:661–678. doi: 10.1111/j.1365-2966.2006.10847.x,  arXiv:astro-ph/0607486 ADSGoogle Scholar
  118. Schmidt GD, Harris HC, Liebert J, Eisenstein DJ, Anderson SF, Brinkmann J, Hall PB, Harvanek M, Hawley S, Kleinman SJ, Knapp GR, Krzesinski J, Lamb DQ, Long D, Munn JA, Neilsen EH, Newman PR, Nitta A, Schlegel DJ, Schneider DP, Silvestri NM, Smith JA, Snedden SA, Szkody P, Vanden Berk D (2003) Magnetic white dwarfs from the sloan digital sky survey: the first data release. ApJ 595:1101–1113. doi: 10.1086/377476 ADSGoogle Scholar
  119. Schulz NS, Canizares CR, Huenemoerder D, Lee JC (2000) X-Ray line emission from the Hot Stellar Wind of θ 1 Orionis C. ApJ 545:L135–L139. doi: 10.1086/317891,  arXiv:astro-ph/0010310 ADSGoogle Scholar
  120. Setia Gunawan DYA, de Bruyn AG, van der Hucht KA, Williams PM (2003) A Westerbork Synthesis Radio Telescope 1400 and 350 MHz continuum survey of the cygnus OB2 association, in search of Hot Massive Stars. ApJs 149:123–156. doi: 10.1086/377598 ADSGoogle Scholar
  121. Skinner SL, Zhekov SA, Guedel M, Schmutz W (2007) XMM-Newton X-ray Observations of the Wolf-Rayet Binary System WR 147. MNRAS 378:1191–1198. doi: 10.1111/j.1365-2966.2007.11892.x Google Scholar
  122. Spruit HC (1999) Differential rotation and magnetic fields in stellar interiors. A&A 349:189–202ADSGoogle Scholar
  123. Spruit HC (2002) Dynamo action by differential rotation in a stably stratified stellar interior. A&A 381:923–932. doi: 10.1051/0004-6361:20011465 ADSGoogle Scholar
  124. Stevens IR, Blondin JM, Pollock AMT (1992) Colliding winds from early-type stars in binary systems. ApJ 386:265–287. doi: 10.1086/171013 ADSGoogle Scholar
  125. Tassoul JL (1976) Theory of rotating stars. Princeton University Press, PrincetonGoogle Scholar
  126. Torres DF, Domingo-Santamaría E, Romero GE (2004) High-energy gamma rays from stellar associations. ApJ 601:L75–L78. doi: 10.1086/381803,  astro-ph/0312128 ADSGoogle Scholar
  127. Tout CA, Wickramasinghe DT, Ferrario L (2004) Magnetic fields in white dwarfs and stellar evolution. MNRAS 355:L13–L16. doi: 10.1111/j.1365-2966.2004.08482.x ADSGoogle Scholar
  128. Usov VV, Melrose DB (1992) X-ray emission from single magnetic early-type stars. ApJ 395:575–581. doi: 10.1086/171677 ADSGoogle Scholar
  129. Van Loo S (2005) Non-thermal radio emission from single hot stars. PhD thesis, University of LeuvenGoogle Scholar
  130. Van Loo S, Runacres M, Blomme R (2006) Can single O stars produce non-thermal radio emission? A&A 452:1011–1019. doi: 10.1051/0004-6361:20054266 ADSGoogle Scholar
  131. Vink JS, de Koter A, Lamers HJGLM (2000) New theoretical mass-loss rates of O and B stars. A&A 362:295–309ADSGoogle Scholar
  132. White RL (1985) Synchrotron emission from chaotic stellar winds. ApJ 289:698–708. doi: 10.1086/162933 ADSGoogle Scholar
  133. White RL, Becker RH (1983) The discovery of a hot stellar wind. ApJ 272:L19–L23. doi: 10.1086/184109 ADSGoogle Scholar
  134. White RL, Becker RH (1995) An eight-year study of the radio emission from the wolf-rayet binary HD 193793 = WR 140. ApJ 451:352–358. doi: 10.1086/176224 ADSGoogle Scholar
  135. White RL, Chen W (1995) Theory and observations of non-thermal phenomena in hot massive binaries (Invited). In: IAU Symposium, pp 438–449Google Scholar
  136. Williams PM, van der Hucht KA, Pollock AMT, Florkowski DR, van der Woerd H, Wamsteker WM (1990) Multi-frequency variations of the Wolf-Rayet system HD 193793. I - Infrared, X-ray and radio observations. MNRAS 243:662–684ADSGoogle Scholar
  137. Williams PM, Dougherty SM, Davis RJ, van der Hucht KA, Bode MF, Setia Gunawan DYA (1997) Radio and infrared structure of the colliding-wind Wolf-Rayet system WR147. MNRAS 289:10–20ADSGoogle Scholar
  138. Wright AE, Barlow MJ (1975) The radio and infrared spectrum of early-type stars undergoing mass loss. MNRAS 170:41–51ADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut d’Astrophysique et GéophysiqueUniversité de LiègeSart-TilmanBelgium

Personalised recommendations