The Astronomy and Astrophysics Review

, Volume 13, Issue 4, pp 229–315 | Cite as

The electron–cyclotron maser for astrophysical application

  • Rudolf A. TreumannEmail author


The electron–cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron–cyclotron maser was considered as an alternative to turbulent though coherent wave–wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron–cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron–cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron–cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron–cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron–cyclotron maser is that in the electron–cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron–cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron–cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron–cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron–cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects.


Electron–cyclotron maser Non-thermal radiation Coherent radiation Radio emissions from magnetized planets Auroral kilometric radiation Jupiter radio bursts Solar radio bursts/spikes Coherent radiation from stars Coherent radiation from Blazar jets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander JK and Kaiser ML (1976). J Geophys Res 81:5948ADSCrossRefGoogle Scholar
  2. Alfvén H (1958). Tellus 10:104CrossRefGoogle Scholar
  3. Aschwanden MJ (1990a). Astron Astrophys 237:512ADSGoogle Scholar
  4. Aschwanden MJ (1990b). Astron Astrophys Suppl Ser 85:1141ADSGoogle Scholar
  5. Aschwanden MJ and Benz AO (1988a). Astrophys J 332:447ADSCrossRefGoogle Scholar
  6. Aschwanden MJ and Benz AO (1988b). Astrophys J 332:466ADSCrossRefGoogle Scholar
  7. Bahnsen AB, Jespersen M, Ungstrup E, Iversen IB (1987). Geophys Res Lett 14:471ADSCrossRefGoogle Scholar
  8. Bastian TS, Benz AO, Gary DE (1998). Ann Rev Astron Astrophys 36:131ADSCrossRefGoogle Scholar
  9. Bastian TS, Dulk GA, Leblanc Y (2000). Astrophys J 545:1058ADSCrossRefGoogle Scholar
  10. Baumback MM, Calvert W (1987). Geophys Res Lett 14:119ADSCrossRefGoogle Scholar
  11. Baumjohann W, Treumann RA (1996). Basic space plasma physics. Imperial College Press, London, p 225Google Scholar
  12. Begelman MC, Rees MJ, Sikora M (1994). Astrophys J 429:L57ADSCrossRefGoogle Scholar
  13. Begelman MC, Ergun RE, Rees MJ (2005). Astrophys J 625:51ADSCrossRefGoogle Scholar
  14. Bekefi G (1966). Radiation processes in plasmas. Wiley, New York, pp 202Google Scholar
  15. Bekefi G, Hirshfield JL, Brown SC (1961). Phys Rev 122:1037ADSCrossRefGoogle Scholar
  16. Benediktov EA, Getmantsev GG, Sazonov YA, Tarasov AF (1965). Sov Phys Cosmic Res 3:492 (Kosm. Issled. 3:614).Google Scholar
  17. Benson RF (1982). Geophys Res Lett 9:1120ADSCrossRefGoogle Scholar
  18. Benson RF (1985). J Geophys Res 90:2753ADSCrossRefGoogle Scholar
  19. Benson RF, Calvert W (1979). Geophys Res Lett 6:479ADSCrossRefGoogle Scholar
  20. Benz AO (1986). Sol Phys 104:99ADSCrossRefGoogle Scholar
  21. Benz AO, Conway J, Güdel M (1998). Astron Astrophys 331:596ADSGoogle Scholar
  22. Bingham R, Cairns RA (2000). Phys Plasmas 7:3089ADSCrossRefGoogle Scholar
  23. Bingham R, Cairns RA, Kellett BJ (2001). Astron Astrophys 370:1000ADSCrossRefGoogle Scholar
  24. Bingham R et al (2003). Astrophys J 595:279ADSCrossRefGoogle Scholar
  25. Block LP (1972). Cosmic Electrodyn 3:349Google Scholar
  26. Block LP (1977). Astrophys Space Sci 55:59ADSCrossRefGoogle Scholar
  27. Boström R et al (1998). Phys Rev Lett 61:82ADSCrossRefGoogle Scholar
  28. Brown LW (1973). Astrophys J 180:359ADSCrossRefGoogle Scholar
  29. Budden KG (1988). Propagation of radio waves: the theory of radiowaves of low power in the ionosphere and magnetosphere. Cambridge University Press, CambridgeGoogle Scholar
  30. Calvert W (1981a). Geophys Res Lett 8:919ADSCrossRefGoogle Scholar
  31. Calvert W (1981b). J Geophys Res 86:76ADSCrossRefGoogle Scholar
  32. Calvert W (1982). J Geophys Res 87:8199ADSCrossRefGoogle Scholar
  33. Calvert W (1987). J Geophys Res 92:8792ADSCrossRefGoogle Scholar
  34. Calvert W (1995). J Geophys Res 100:14887ADSCrossRefGoogle Scholar
  35. Carlson CW et al (1998). Geophys Res Lett 25:2017ADSCrossRefGoogle Scholar
  36. Cattell C et al (2005). J Geophys Res 110:A01211 DOI 10.1029/2004JA 010519CrossRefGoogle Scholar
  37. Chiu YT and Schulz M (1978). J Geophys Res 83:629ADSCrossRefGoogle Scholar
  38. Chu KR (2004). Rev Mod Phys 76:489ADSCrossRefGoogle Scholar
  39. Chu KR and Hirshfield JL (1978). Phys Fluids 21:461ADSCrossRefGoogle Scholar
  40. Delory GT et al. (1998). Geophys Res Lett 25:2069ADSCrossRefGoogle Scholar
  41. Dory RA, Guest GE, Harris EG (1965). Phys Rev Lett 14:131ADSCrossRefGoogle Scholar
  42. Dulk GA (1985). Ann Rev Astron Astrophys 23:169ADSCrossRefGoogle Scholar
  43. Dunckel N, Ficklin B, Rorden L, Helliwell RA (1970). J Geophys Res 75:1854ADSCrossRefGoogle Scholar
  44. Elphic RL et al (1998). Geophys Res Lett 25:2033ADSCrossRefGoogle Scholar
  45. Ergun RE et al (1993). J Geophys Res 98:3777ADSCrossRefGoogle Scholar
  46. Ergun RE et al (1998a). Geophys Res Lett 25:2061ADSCrossRefGoogle Scholar
  47. Ergun RE et al (1998b). Geophys Res Lett 25:2025ADSCrossRefGoogle Scholar
  48. Ergun RE et al (1998c). Astrophys J 503:435ADSCrossRefGoogle Scholar
  49. Ergun RE et al (2000). Astrophys J 538:456ADSCrossRefGoogle Scholar
  50. Ergun RE et al (2001a). Phys Rev Lett 87:045003ADSCrossRefGoogle Scholar
  51. Ergun RE et al (2001b). Geophys Res Lett 28:3805ADSCrossRefGoogle Scholar
  52. Escoubet P, Schmidt R, Goldstein ML (1997). Space Sci Rev 79:11 DOI 10.1023/A:1004923124586ADSCrossRefGoogle Scholar
  53. Farrell WM, Desch MD, Zarka P (1999). J Geophys Res 104:14025ADSCrossRefGoogle Scholar
  54. Farrell WM et al (2004). Planet Space Sci 52:1469ADSCrossRefGoogle Scholar
  55. de Feraudy H and Schreiber R (1995). Geophys Res Lett 22:2973ADSCrossRefGoogle Scholar
  56. Fleishman GD (2006). Generation of emissions by fast particles in stochastic media, In: LaBelle JW and Treumann RA (eds). Geospace electromagnetic waves and radiation. vol 687. Springer, Berlin Heidelberg New York, p 85Google Scholar
  57. Fleishman GD, Gary DE, Nita GM (2003). Astrophys J 593:571ADSCrossRefGoogle Scholar
  58. Föppl et al (1968). J Geophys Res 73:21ADSCrossRefGoogle Scholar
  59. Freund HP, Wong HK, Wu CS, Xu MJ (1983). Phys Fluids 26:2263ADSzbMATHCrossRefGoogle Scholar
  60. Gaponov AV (1959a). Izv VUZ Radiofizika 2:450Google Scholar
  61. Gaponov AV (1959b). Izv VUZ Radiofizika 2:836Google Scholar
  62. Goldman MV, Oppenheim MM, Newman DL (1999). Geophys Res Lett 26:1821ADSCrossRefGoogle Scholar
  63. Goldman MV, Newman DL, Ergun RE (2003). Nonlinear Process Geophys 10:37ADSGoogle Scholar
  64. Green JL, Gurnett DA, Shawhan SD (1977). J Geophys Res 82:1825ADSCrossRefGoogle Scholar
  65. Gurnett DA (1974). J Geophys Res 79:4227ADSCrossRefGoogle Scholar
  66. Gurnett DA (1975). J Geophys Res 80:2751ADSCrossRefGoogle Scholar
  67. Gurnett DA and Anderson RR (1981). The kilometric radio emission spectrum: relationship to auroral acceleration processes. In: Akasofu SI and Kan JR (eds). The physics of auroral arc formation. American Geophysical Union, Washington, p 341Google Scholar
  68. Gurnett DA and Green JL (1978). J Geophys Res 83:689ADSCrossRefGoogle Scholar
  69. Haerendel G et al (1976). First observation of electrostatic acceleration of barium ions into the magnetosphere, In: ESA European progammes on sounding-rocket and balloon research in the auroral zone, ESA, Paris, p 203Google Scholar
  70. Harris EG (1959). J Nucl Energy C2:138ADSGoogle Scholar
  71. Hewitt RG, Melrose DB, Rönnmark KG (1982). Aust J Phys 35:447ADSGoogle Scholar
  72. Hilgers A (1992). Geophys Res Lett 19:237ADSCrossRefGoogle Scholar
  73. Hirshfield JL and Bekefi G (1963). Nature 198:20ADSCrossRefGoogle Scholar
  74. Hirshfield JL and Wachtel JM (1964). Phys Rev Lett 12:533ADSCrossRefGoogle Scholar
  75. Hoensbroech A and Xilouris KM (1997). Astron Astrophys 324:981ADSGoogle Scholar
  76. Hull AJ et al (2003). J Geophys Res 108: 1007 DOI 10.1029/2001JA007540CrossRefGoogle Scholar
  77. Hultqvist B (1990). J Geophys Res 95:5749ADSCrossRefGoogle Scholar
  78. Jackson JD (1962). Classical electrodynamics. Academic, New YorkGoogle Scholar
  79. Jaroschek CH, Treumann RA, Lesch H, Scholer M (2004a). Phys Plasmas 11: 1151 DOI 10.1063/1.1644814ADSCrossRefGoogle Scholar
  80. Jaroschek CH, Lesch H, Treumann RA (2004b). Astrophys J 605:L9ADSCrossRefGoogle Scholar
  81. Jaroschek CH, Lesch H, Treumann RA (2004c). Astrophys J 616:1065ADSCrossRefGoogle Scholar
  82. Jaroschek CH, Lesch H, Treumann RA (2005). Astrophys J 618:822ADSCrossRefGoogle Scholar
  83. Jones D (1976). Nature 260:686ADSCrossRefGoogle Scholar
  84. Kazbegi AZ, Machabeli GZ, Melikidze GI (1991). Monthly Not Royal Astron Soc 253:377ADSGoogle Scholar
  85. Kennel CF and Petschek HE (1966). J Geophys Res 61:1ADSGoogle Scholar
  86. Kho TH and Lin AT (1988). Phys Rev A 38:2883ADSCrossRefGoogle Scholar
  87. Knight S (1973). Planet Space Sci (1973). 21:741Google Scholar
  88. Kuijpers J (1985). In: Radio Stars, Hjellming RM and Gibson DM (eds.)., Reidel, Dordrecht, p 3Google Scholar
  89. Kurth WS, Baumback MM, Gurnett DA (1975). J Geophys Res 80:2764ADSCrossRefGoogle Scholar
  90. Kurth WS et al (2005a). Nature 433:722ADSCrossRefGoogle Scholar
  91. Kurth WS et al (2005b). Geophys Res Lett 32:L20S07 DOI: 10.1029/2005GL022648Google Scholar
  92. LaBelle J and Treumann RA (2002). Space Sci Rev 101:295ADSCrossRefGoogle Scholar
  93. Lang KR (1994). Astrophys J Suppl 90:753ADSCrossRefGoogle Scholar
  94. Lang KR, Bookbinder J, Golub L, Davis MM (1983). Astrophys J 272:L15ADSCrossRefGoogle Scholar
  95. Lau YY and Chu KR (1983). Phys Rev Lett 50:243ADSCrossRefGoogle Scholar
  96. Le Quéau D (1988). Comput Phys Commun 49:85ADSCrossRefGoogle Scholar
  97. Le Quéau D, Pellat R, Roux A (1984b). J Geophys Res 89:2831ADSCrossRefGoogle Scholar
  98. Le Quéau D, Pellat R, Roux A (1984a). Phys Fluids 27:247ADSzbMATHCrossRefGoogle Scholar
  99. Leung P, Wong AY, Quon BH (1980). Phys Fluids 23:992ADSCrossRefGoogle Scholar
  100. Louarn P (2006). Generation of auroral kilometric radiation in bounded source regions. In: LaBelle JW and Treumann RA (eds). Geospace electromagnetic waves and radiation, LNP 687. Springer, Berlin Heidelberg New York, p 53Google Scholar
  101. Louarn P et al (1990). J Geophys Res 95:5983ADSCrossRefGoogle Scholar
  102. Louarn P and Le Quéau D (1996a). Planet Space Sci 44:199ADSCrossRefGoogle Scholar
  103. Louarn P and Le Quéau D (1996b). Planet Space Sci 44:211ADSCrossRefGoogle Scholar
  104. Louarn P, Le Quéau D, Roux A (1986). Astron Astrophys 165:211ADSGoogle Scholar
  105. Lyons RL (1980). J Geophys Res 85:17ADSCrossRefGoogle Scholar
  106. Ma CY, Mao CY, Wang DY, Wu XJ (1998). Astrophys Space Sci 257:201ADSCrossRefGoogle Scholar
  107. Machabeli GZ and Usov VV (1979a). Astron Lett 5:238Google Scholar
  108. Machabeli GZ and Usov VV (1979b). Astron Lett 15:393Google Scholar
  109. Manchester RN and Taylor JH (1977). Pulsars. Freeman, San FranciscoGoogle Scholar
  110. McLean DJ and Labrum NR (eds). (1985). Solar Radiophysics. Cambridge University Press, Cambridge, pp 211Google Scholar
  111. Mellott MM et al (1984). Geophys Res Lett 11:1188ADSCrossRefGoogle Scholar
  112. Mellott MM, Huff RL, Gurnett DA (1985). Geophys Res Lett 12:479ADSCrossRefGoogle Scholar
  113. Melrose DB (1973). Aust J Phys 26:229ADSGoogle Scholar
  114. Melrose DB (1976). Astrophys J 207:651ADSCrossRefGoogle Scholar
  115. Melrose DB (1980). Plasma astrophysics: nonthermal processes in diffuse magnetized plasmas, vol 1. Gordon and Breach, New YorkGoogle Scholar
  116. Melrose DB (1999). Astrophys Space Sci 264:391ADSCrossRefGoogle Scholar
  117. Melrose DB (2002). Publ Astron Soc Aust 19:34ADSCrossRefGoogle Scholar
  118. Melrose DB, Rönnmark KG, Hewitt RG (1982). J Geophys Res 87:5140ADSCrossRefGoogle Scholar
  119. Melrose DB, Dulk GA, Hewitt RG (1984). J Geophys Res 89:897ADSCrossRefGoogle Scholar
  120. Melrose DB and Dulk GA (1982). Astrophys J 259:844ADSCrossRefGoogle Scholar
  121. Migenes V and Reid MJ (eds). (2002). Cosmic masers: from protostars to blackholes, IAU Symposium no. 206, IAU, Sheridan Books ChelseaGoogle Scholar
  122. Mitchell DG et al (2005). Geophys Res Lett 32: L20S01. DOI 10.1029/2005GL022647Google Scholar
  123. Montgomery DC and Tidman DA (1964). Plasma kinetic theory. McGraw-Hill, New YorkGoogle Scholar
  124. Muschietti L, Ergun RE, Roth I, Carlson CW (1999). Geophys Res Lett 26:1093ADSCrossRefGoogle Scholar
  125. Muschietti L, Roth I, Carlson CW, Ergun RE (2000). Phys Rev Lett 85:94ADSCrossRefGoogle Scholar
  126. Muschietti L, Roth I, Carlson CW, Berthomier M (2002). Nonlinear Process Geophys 9:101ADSGoogle Scholar
  127. Mutel RL et al (2006). J Geophys Res 111 (in press).Google Scholar
  128. Newman DL,Goldman MV, Ergun RE, Mangeney A (2001). Phys Rev Lett 87:255001ADSCrossRefGoogle Scholar
  129. Newman DL et al (2004). Comput Phys Commun 164:122ADSCrossRefGoogle Scholar
  130. Omidi N and Gurnett DA (1982a). J Geophys Res 87:2241ADSCrossRefGoogle Scholar
  131. Omidi N and Gurnett DA (1982b). J Geophys Res 87:2377ADSCrossRefGoogle Scholar
  132. Omidi N and Gurnett DA (1984). J Geophys Res 89:10801ADSCrossRefGoogle Scholar
  133. Oppenheim M, Newman DL, Goldman MV (1999). Phys Rev Lett 83:2344ADSCrossRefGoogle Scholar
  134. Oppenheim M et al (2001). Geophys Res Lett 28:1891ADSCrossRefGoogle Scholar
  135. Pfaff R et al (2001). Space Sci Rev 98:1ADSCrossRefGoogle Scholar
  136. Pottelette R and Treumann RA (2005). Geophys Res Lett 32:L12104. DOI10.1029/2005GL022547Google Scholar
  137. Pottelette R and Treumann RA (2006). Auroral acceleration and radiation. In: LaBelle JW and Treumann RA (eds). Geospace electromagnetic waves and radiation LNP 687. Springer, Berlin Heidelberg New York, p 103Google Scholar
  138. Pottelette R, Treumann RA, Dubouloz N (1992). J Geophys Res 97:12029ADSCrossRefGoogle Scholar
  139. Pottelette R et al (1999). Geophys Res Lett 26:2629ADSCrossRefGoogle Scholar
  140. Pottelette R, Treumann RA, Berthomier M (2001). J Geophys Res 106:8465ADSCrossRefGoogle Scholar
  141. Pottelette R, Treumann RA, Berthomier, M, Jasperse J (2003). Nonlinear Process Geophys 10:87ADSGoogle Scholar
  142. Pottlette R, Treumann RA, Georgescu E (2004). Nonlinear Process Geophys 11:197ADSGoogle Scholar
  143. Pritchett PL (1984a). Geophys Res Lett 11:143ADSCrossRefGoogle Scholar
  144. Pritchett PL (1984b). J Geophys Res 89:8957ADSCrossRefGoogle Scholar
  145. Pritchett PL (1986a). Phys Fluids 29:2919ADSCrossRefGoogle Scholar
  146. Pritchett PL (1986b). J Geophys Res 91:13569ADSCrossRefGoogle Scholar
  147. Pritchett PL and Strangeway RJ (1985). J Geophys Res 90:9650ADSCrossRefGoogle Scholar
  148. Pritchett PL et al (1999). J Geophys Res 104:10317ADSCrossRefGoogle Scholar
  149. Pritchett PL, Strangeway RJ, Ergun RE, Carlson CW (2002). J Geophys Res 107:1437 DOI 10.1029/2002JA009403CrossRefGoogle Scholar
  150. Rybicky GB and Lightman AP (1979). Radiative processes in astrophysics. Wiley, New York, p 167Google Scholar
  151. Saeki K, Michelsen P, Pécseli H, Rasmussen JJ (1979). Phys Rev Lett 42:501ADSCrossRefGoogle Scholar
  152. Sagdeev RZ and Shafranov VC (1960). Sov Phys JETP 12:130Google Scholar
  153. Schamel H (1979). Phys Scr 20:336ADSCrossRefGoogle Scholar
  154. Schamel H (1986). Phys Rep 140:161ADSCrossRefGoogle Scholar
  155. Schneider J (1959). Phys Rev Lett 7:959Google Scholar
  156. Singh N et al (2006). Nonlinear Process Geophys 12: (in press).Google Scholar
  157. Smith K et al (2003). Astron Astrophys 406:957ADSCrossRefGoogle Scholar
  158. Stepanov AV et al (2001). Astron Astrophys 374:1072ADSCrossRefGoogle Scholar
  159. Temerin M, Cerny K, Lotko W, Mozer FS (1982). Phys Rev Lett 48:1175ADSCrossRefGoogle Scholar
  160. Treumann RA and Baumjohann W (1997). Advanced space plasma physics. Imperial College Press, London, p 120zbMATHGoogle Scholar
  161. Twiss RO (1958). Aust J Phys 11:564ADSGoogle Scholar
  162. Vedin J and Rönnmark K (2005). J Geophys Res 110:A08207. DOI 10.1029/2005JA011083Google Scholar
  163. Weimer DR et al (1985). J Geophys Res 90:7479ADSCrossRefGoogle Scholar
  164. White SM, Melrose DB, and Dulk GA (1983). Proc Astron Soc Aust 5:188ADSGoogle Scholar
  165. Willson RF (1985). Sol Phys 96:199ADSCrossRefGoogle Scholar
  166. Winglee RM (1983). Plasma Phys 25:217ADSCrossRefGoogle Scholar
  167. Winglee RM and Dulk GA (1986). Astrophys J 310:432ADSCrossRefGoogle Scholar
  168. Winglee RW and Pritchett PL (1986). J Geophys Res 91:13531ADSCrossRefGoogle Scholar
  169. Winterhalter D et al (2005). Search for radio emissions from extrasolar planets at 150 MHz, American Geophysical Union, Fall Meeting 2005, abstract no. SA53B-1181Google Scholar
  170. Wu CS (1985). Space Sci Rev 41:215ADSCrossRefGoogle Scholar
  171. Wu CS and Lee LC (1979). Astrophys J 230:621ADSCrossRefGoogle Scholar
  172. Zarka P (1992a). Adv Space Res 12:99ADSCrossRefGoogle Scholar
  173. Zarka P (1992b). Remote probing of auroral plasmas, In: Rucker HO et al (eds)., Planetary radio Emissions III. Australian Academy of Science Vienna, p 351Google Scholar
  174. Zarka P (1998). J Geophys Res 103:20159ADSCrossRefGoogle Scholar
  175. Zarka P (2004). Adv Space Res 33:2045. DOI 10.1016/j.asr.2003.07.055Google Scholar
  176. Zarka P, Le Quéau D, Genova F (1986). J Geophys Res 91:13542ADSCrossRefGoogle Scholar
  177. Zarka P, Queinnec J, Crary FJ (2001a). Planet Space Sci 49:1137ADSCrossRefGoogle Scholar
  178. Zarka P, Treumann RA, Ryabov BP, Ryabov VB (2001b). Astrophys Space Sci 277:293ADSCrossRefGoogle Scholar
  179. Zarka P, Cecconi B, Kurth WS (2004). J Geophys Res 109:A09S15. DOI 10.1029/2003JA010260Google Scholar
  180. Zarka P, Hess S, Mottez F (2005). Io–Jupiter interaction, millisecond bursts and field aligned potentials, American Geophysical Union, Fall Meeting 2005, abstract no. SM51A-1275Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Geophysics SectionLudwig-Maximilians-University MunichMunichGermany
  2. 2.The International Space Science Institute BernBernSwitzerland
  3. 3.Department of Physics and AstronomyDartmouth CollegeHanoverUSA

Personalised recommendations