Advertisement

Integrated structural-electromagnetic optimization of cable mesh reflectors considering pattern degradation for random structural errors

  • Shuxin ZhangEmail author
  • Baoyan Duan
Research Paper
  • 31 Downloads

Abstract

To alleviate the effects of random structural errors on the radiation performance and directly guide the structural design of cable mesh reflectors, an integrated structural-electromagnetic optimization procedure is proposed considering the radiation pattern degradation for random structural errors. Based on analytical expressions and the structural sensitivity concept, the radiation pattern is directly expressed as two matrix-form functions with respect to the random structural errors. By applying the pattern calculation into the multidisciplinary design and selecting the average boresight directivity as the objective function, an optimum result with better radiation performance compared with the traditional structural design is obtained. To reveal the fundamentals of the optimum result, the concept of sensitivity analysis of the average boresight directivity with respect to the random structural errors is introduced. The effectiveness and benefits of this study are demonstrated via an offset cable mesh reflector.

Keywords

Cable mesh reflectors Random structural errors Integrated structural-electromagnetic design 

Notes

Acknowledgments

The authors would like to thank the reviewers and editor for their very beneficial comments and suggestion, which helped a lot in improving this paper.

Funding information

This work was supported by the National Natural Science Foundation of China No. 51705388 and Young Talent fund of University Association for Science and Technology in Shaanxi, China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The presented results in both the structural and electromagnetic disciplines are produced by subroutines using our in-house codes, which compute the structural sensitivity matrices and the average radiation patterns for cable mesh reflectors with random structural errors, respectively. The optimization iteration is implemented with the help of fmincon in the optimization toolbox of MATLAB software. The code and data for producing the presented results will be made available by request.

References

  1. Bahadori K, Rahmat-Samii Y (2005) Characterization of effects of periodic and aperiodic surface distortions on membrane reflector antennas. IEEE Trans Antennas Propag 53(9):2782–2791CrossRefGoogle Scholar
  2. Chahat N, Hodges RE, Sauder J, Thomson M, Peral E, Rahmt-Samii Y (2016) CubeSat deployable Ka-band mesh reflector antenna development for earth science missions. IEEE Trans Antennas Propag 64(6):2083–2093MathSciNetCrossRefGoogle Scholar
  3. Deng H, Li T, Wang Z (2015) Pretension design for space deployable mesh reflectors under multi-uncertainty. Acta Astronaut 115:270–276CrossRefGoogle Scholar
  4. Du J, Zong Y, Bao H (2013) Shape adjustment of cable mesh antennas using sequential quadratic programming. Aerosp Sci Technol 30:26–32CrossRefGoogle Scholar
  5. Du J, Bao H, Cui C (2014) Shape adjustment of cable mesh reflector antennas considering modeling uncertainties. Acta Astronaut 97:164–171CrossRefGoogle Scholar
  6. Fu K, Du J, Li J, Zhao Z (2018) Robust design of tension truss antennas against variation in tension truss. AIAA J 56(8):3374–3381CrossRefGoogle Scholar
  7. Haftka RT, Adelman HM (1985) An analytical investigation of shape control of large space structures by applied temperatures. AIAA J 23(3):450–457CrossRefGoogle Scholar
  8. Haftka RT, Adelman HM (1987) The effect of sensor and actuator errors on static shape control of large space structures. AIAA J 25(1):134–138CrossRefGoogle Scholar
  9. Hill J, Wang KW, Fang H (2013) Advances of surface control methodologies for flexible space reflectors. J Spacecr Rocket 50(4):816–828CrossRefGoogle Scholar
  10. Liu JS, Hollaway L (1998) Integrated structure-electromagnetic optimization of large reflector antenna systems. Struct Optim 16(1):29–36CrossRefGoogle Scholar
  11. Padula SL, Adelman HM, Bailey MC, Haftka RT (1989) Integrated structural electromagnetic shape control of large space antenna reflectors. AIAA J 27(6):814–819CrossRefGoogle Scholar
  12. Rahmat-Samii Y (1983) An efficient computational method for characterizing the effects of random surface errors on the average power pattern of reflectors. IEEE Trans Antennas Propag 31(1):92–98MathSciNetCrossRefGoogle Scholar
  13. Rocca P, Anselmi N, Massa A (2014a) Interval arithmetic for pattern tolerance analysis of parabolic reflectors. IEEE Trans Antennas Propag 62(10):4952–4960CrossRefGoogle Scholar
  14. Rocca P, Manica L, Massa A (2014b) Interval-based analysis of pattern distortions in reflector antennas with bump-like surface deformations. IET Microw Antennas Propag 8(15):1277–1285CrossRefGoogle Scholar
  15. Ruze J (1966) Antenna tolerance theory-a review. P IEEE 54(4):633–640CrossRefGoogle Scholar
  16. Sinton S, Rahmat-Samii Y (2003) Random surface error effects on offset cylindrical reflector antennas. IEEE Trans Antennas Propag 51(6):1331–1337CrossRefGoogle Scholar
  17. Smith WT, Bastian RJ (1997) An approximation of the radiation integral for distorted reflector antennas using surface-error decomposition. IEEE Trans Antennas Propag 45(1):5–10CrossRefGoogle Scholar
  18. Tabata M, Yamamoto K, Inoue T, Noda T, Miura K (1992) Shape adjustment of a flexible space antenna reflector. J Intell Mater Syst Struct 3(4):646–658CrossRefGoogle Scholar
  19. Tolson RH, Huang JK (1992) Integrated control of thermally distorted large space antennas. J Guid Control Dyn 15(3):605–614CrossRefGoogle Scholar
  20. Yamaki Y, Sato Y, Izui K, Yamada T, Nishiwaki S, Hirai Y (2018) A heuristic approach for actuator layout designs in deformable mirror devices based on current value optimization. Struct Multidiscip Optim 58:1243–1254MathSciNetCrossRefGoogle Scholar
  21. Yang D, Zhang Y, Yang G, Du J (2018) Least-squares minimization of boundary cable tension ratios for mesh reflectors. AIAA J 56(2):883–888CrossRefGoogle Scholar
  22. Zhang S, Duan B, Yang G, Zong Y, Zhang Y (2013) An approximation of pattern analysis for distorted reflector antennas using structural-electromagnetic coupling model. IEEE Trans Antennas Propag 61(9):4844–4847CrossRefGoogle Scholar
  23. Zhang S, Du J, Duan B, Yang G, Ma Y (2015) Integrated structural-electromagnetic shape control of cable mesh reflector antennas. AIAA J 53(5):1395–1398CrossRefGoogle Scholar
  24. Zhang S, Du J, Wang W, Zhang X, Zong Y (2017a) Two-step structural design of mesh antennas for high beam pointing accuracy. Chin J Mech Eng 30:604–613CrossRefGoogle Scholar
  25. Zhang S, Du J, Yang D, Zhang Y, Li S (2017b) A combined shape control procedure of cable mesh reflector antennas with optimality criterion and integrated structural electromagnetic concept. Struct Multidiscip Optim 55:289–295MathSciNetCrossRefGoogle Scholar
  26. Zhang S, Duan B, Huang J, Gu Y (2018) Fast pattern calculation of rib reflectors with varying surface distortions. IEEE Trans Antennas Propag 66(3):1198–1207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Key Laboratory of Electronic Equipment Structure Design (Ministry of Education)Xidian UniversityXi’anChina

Personalised recommendations