Advertisement

Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves

  • Yundong Gai
  • Xuefeng Zhu
  • Yongjie Jessica Zhang
  • Wenbin Hou
  • Ping HuEmail author
Research Paper
  • 83 Downloads

Abstract

In this paper, we propose an explicit isogeometric topology optimization approach based on moving morphable voids (MMVs) with closed B-spline boundary curves, named TOP-IGA-MMV in short. We model the design domain by a non-uniform rational B-spline (NURBS) patch, and then employ the NURBS-based isogeometric analysis (IGA) for structural response and the well-established adjoint approach for sensitivity analysis. As for the geometry representation of structural topology, we utilize MMVs to describe boundaries of void material regions and model MMVs by closed star-like B-spline curves. Design variables consist of the coordinates of the central points and the distances from the central points to their corresponding independent control points of these closed B-spline MMVs. We perform structure analysis on a coarse mesh in which four identification schemes (control points, nodal points, Gaussian points, and Greville points) are adopted to form the Young’s modulus and volume fraction of a NURBS element and plot the structural topology on a high-resolution mesh after obtaining explicit boundaries. Three benchmark numerical examples are presented, demonstrating the effectiveness of TOP-IGA-MMV for topology optimization with different initial design and identification schemes and comparing numerical efficiency with the solid isotropic material with penalization (SIMP) method and the TOP-IGA-MMC method.

Keywords

Topology optimization Moving morphable voids Moving morphable components NURBS Isogeometric analysis 

Notes

Acknowledgements

The authors would like to thank the constructive suggestions from Prof. Xu Guo and Prof. Weisheng Zhang and the valuable comments from anonymous reviewers on improving the quality of the present work.

Funding information

This work was sponsored by the National Natural Science Fund of China (No. 11272077), and the Research Funds of State Key Laboratory of Structural Analysis for Industrial Equipment (No. S15108). Y. Gai was also supported by the State Scholarship Fund of China Scholarship Council (No. 201806060022). Y. J. Zhang was supported in part by the PECASE award N00014-16-1-2254, NSF grant CBET-1804929 and CMU Manufacturing Futures Initiative.

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest.

References

  1. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetzbMATHCrossRefGoogle Scholar
  2. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16zbMATHCrossRefGoogle Scholar
  3. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(45–46):3534–3550MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRefGoogle Scholar
  6. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetzbMATHCrossRefGoogle Scholar
  7. Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5–8):276–289MathSciNetzbMATHCrossRefGoogle Scholar
  8. Brivadis E, Buffa A, Wohlmuth B, Wunderlich L (2015) Isogeometric mortar methods. Comput Methods Appl Mech Eng 284:292– 319MathSciNetzbMATHCrossRefGoogle Scholar
  9. Casquero H, Liu L, Bona-Casas C, Zhang Y, Gomez H (2016) A hybrid variational-collocation immersed method for fluid-structure interaction using unstructured T-splines. Int J Numer Methods Eng 105(11):855–880MathSciNetCrossRefGoogle Scholar
  10. Cheng KT, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305– 323MathSciNetzbMATHCrossRefGoogle Scholar
  11. Cho S, Ha SH (2009) Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct Multidiscip Optim 38(1):53–70MathSciNetzbMATHCrossRefGoogle Scholar
  12. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195(41–43):5257–5296MathSciNetzbMATHCrossRefGoogle Scholar
  13. Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. WileyGoogle Scholar
  14. Dedè L, Borden MJ, Hughes TJR (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19(3):427–465MathSciNetzbMATHCrossRefGoogle Scholar
  15. Ghasemi H, Park HS, Rabczuk T (2017) A level-set based IGA formulation for topology optimization of flexoelectric materials. Comput Methods Appl Mech Eng 313:239–258MathSciNetCrossRefGoogle Scholar
  16. Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J Appl Mech 81(8):081009CrossRefGoogle Scholar
  17. Hassani B, Khanzadi M, Tavakkoli SM (2012) An isogeometrical approach to structural topology optimization by optimality criteria. Struct Multidiscip Optim 45(2):223–233MathSciNetzbMATHCrossRefGoogle Scholar
  18. Hou W, Gai Y, Zhu X, Wang X, Zhao C, Xu L, Jiang K, Hu P (2017) Explicit isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 326:694–712MathSciNetCrossRefGoogle Scholar
  19. Huang X, Xie Y (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049CrossRefGoogle Scholar
  20. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetzbMATHCrossRefGoogle Scholar
  21. Jahangiry HA, Tavakkoli SM (2017) An isogeometrical approach to structural level set topology optimization. Comput Methods Appl Mech Eng 319:240–257MathSciNetCrossRefGoogle Scholar
  22. Kang P, Youn SK (2016) Isogeometric shape optimization of trimmed shell structures. Struct Multidiscip Optim 53(4):825–845MathSciNetCrossRefGoogle Scholar
  23. Kiendl J, Bletzinger KU, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914MathSciNetzbMATHCrossRefGoogle Scholar
  24. Kim HJ, Seo YD, Youn SK (2009) Isogeometric analysis for trimmed CAD surfaces. Comput Methods Appl Mech Eng 198(37–40):2982–2995zbMATHCrossRefGoogle Scholar
  25. Kim HJ, Seo YD, Youn SK (2010) Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Comput Methods Appl Mech Eng 199(45-48):2796–2812MathSciNetzbMATHCrossRefGoogle Scholar
  26. Komkov V, Choi KK, Haug EJ (1986) Design sensitivity analysis of structural systems, vol 177. Academic PressGoogle Scholar
  27. Laporte E, Le Tallec P (2012) Numerical methods in sensitivity analysis and shape optimization. Springer Science; Business MediaGoogle Scholar
  28. Lee SB, Kwak BM, Kim IY (2007) Smooth boundary topology optimization using B-spline and hole generation. Int J CAD/CAM 7(1):11–20Google Scholar
  29. Lieu QX, Lee J (2017a) A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 323:272–302MathSciNetCrossRefGoogle Scholar
  30. Lieu QX, Lee J (2017b) Multiresolution topology optimization using isogeometric analysis. Int J Numer Methods Eng 112(13):2025–2047MathSciNetCrossRefGoogle Scholar
  31. Liu H, Zhu X, Yang D (2016) Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams. Struct Eng Mech 59(3):503–526CrossRefGoogle Scholar
  32. Liu L, Zhang YJ, Wei X (2015) Weighted T-splines with application in reparameterizing trimmed nurbs surfaces. Comput Methods Appl Mech Eng 295:108–126MathSciNetzbMATHCrossRefGoogle Scholar
  33. Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327MathSciNetzbMATHCrossRefGoogle Scholar
  34. Norato JA (2018) Topology optimization with supershapes. Struct Multidiscip Optim 58(2):415–434MathSciNetCrossRefGoogle Scholar
  35. Piegl L, Tiller W (1997) The NURBS Book, 2nd edn. Springer, New YorkzbMATHCrossRefGoogle Scholar
  36. Prager W, Rozvany GIN (1977) Optimal layout of grillages. J Struct Mech 5(1):1–18CrossRefGoogle Scholar
  37. Qian X (2010) Full analytical sensitivities in nurbs based isogeometric shape optimization. Comput Methods Appl Mech Eng 199(29):2059–2071MathSciNetzbMATHCrossRefGoogle Scholar
  38. Qian X (2013) Topology optimization in B-spline space. Comput Methods Appl Mech Eng 265:15–35MathSciNetzbMATHCrossRefGoogle Scholar
  39. Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048zbMATHCrossRefGoogle Scholar
  40. Scott M, Li X, Sederberg T, Hughes T (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222MathSciNetzbMATHCrossRefGoogle Scholar
  41. Seo YD, Kim HJ, Youn SK (2010a) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49–52):3270–3296MathSciNetzbMATHCrossRefGoogle Scholar
  42. Seo YD, Kim HJ, Youn SK (2010b) Shape optimization and its extension to topological design based on isogeometric analysis. Int J Solids Struct 47(11–12):1618–1640zbMATHCrossRefGoogle Scholar
  43. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21 (2):120–127MathSciNetCrossRefGoogle Scholar
  44. Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetzbMATHCrossRefGoogle Scholar
  45. Tavakkoli SM, Hassani B, Ghasemnejad H (2013) Isogeometric topology optimization of structures by using MMA. Int J Optim Civil Eng 3(2):313–326zbMATHGoogle Scholar
  46. Vuong AV, Heinrich C, Simeon B (2010) ISOGAT: a 2D tutorial MATLAB code for isogeometric analysis. Comput Aided Geom Des 27(8):644–655MathSciNetzbMATHCrossRefGoogle Scholar
  47. Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33):2976–2988MathSciNetzbMATHCrossRefGoogle Scholar
  48. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MathSciNetzbMATHCrossRefGoogle Scholar
  49. Wang X, Zhu X, Hu P (2015) Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions. Int J Mech Sci 104:190–199CrossRefGoogle Scholar
  50. Wang Y, Benson DJ (2016a) Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements. Front Mech Eng 11(4):328–343CrossRefGoogle Scholar
  51. Wang Y, Benson DJ (2016b) Isogeometric analysis for parameterized LSM-based structural topology optimization. Comput Mech 57(1):19–35MathSciNetzbMATHCrossRefGoogle Scholar
  52. Wei X, Zhang Y, Liu L, Hughes TJ (2017) Truncated T-splines: fundamentals and methods. Comput Methods Appl Mech Eng 316:349–372MathSciNetCrossRefGoogle Scholar
  53. Xia Q, Wang MY, Shi T (2014) A level set method for shape and topology optimization of both structure and support of continuum structures. Comput Methods Appl Mech Eng 272:340–353MathSciNetzbMATHCrossRefGoogle Scholar
  54. Xia Q, Wang MY, Shi T (2015) Topology optimization with pressure load through a level set method. Comput Methods Appl Mech Eng 283:177–195MathSciNetzbMATHCrossRefGoogle Scholar
  55. Xia L, Fritzen F, Breitkopf P (2017) Evolutionary topology optimization of elastoplastic structures. Struct Multidiscip Optim 55(2):569–581MathSciNetCrossRefGoogle Scholar
  56. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRefGoogle Scholar
  57. Xie X, Wang S, Xu M, Wang Y (2018) A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes. Comput Methods Appl Mech Eng 339:61–90MathSciNetCrossRefGoogle Scholar
  58. Zhang J, Li X (2018) Local refinement for analysis-suitable++ T-splines. Comput Methods Appl Mech Eng 342:32–45MathSciNetCrossRefGoogle Scholar
  59. Zhang S, Norato JA, Gain AL, Lyu N (2016a) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54(5):1173–1190MathSciNetCrossRefGoogle Scholar
  60. Zhang W, Yuan J, Zhang J, Guo X (2016b) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260MathSciNetCrossRefGoogle Scholar
  61. Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017a) Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614MathSciNetCrossRefGoogle Scholar
  62. Zhang W, Li D, Yuan J, Song J, Guo X (2017b) A new three-dimensional topology optimization method based on moving morphable components (MMCs). Comput Mech 59(4):647– 665MathSciNetzbMATHCrossRefGoogle Scholar
  63. Zhang W, Liu Y, Wei P, Zhu Y, Guo X (2017c) Explicit control of structural complexity in topology optimization. Comput Methods Appl Mech Eng 324:149–169MathSciNetCrossRefGoogle Scholar
  64. Zhang W, Yang W, Zhou J, Li D, Guo X (2017d) Structural topology optimization through explicit boundary evolution. J Appl Mech 84(1):011011Google Scholar
  65. Zhang W, Zhao L, Gao T, Cai S (2017e) Topology optimization with closed B-splines and boolean operations. Comput Methods Appl Mech Eng 315:652–670MathSciNetCrossRefGoogle Scholar
  66. Zhang S, Gain AL, Norato JA (2018a) A geometry projection method for the topology optimization of curved plate structures with placement bounds. Int J Numer Methods Eng 114(2):128– 146MathSciNetCrossRefGoogle Scholar
  67. Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018b) A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413MathSciNetCrossRefGoogle Scholar
  68. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336CrossRefGoogle Scholar
  69. Zhu X, Hu P, Ma ZD (2016) B++ splines with applications to isogeometric analysis. Comput Methods Appl Mech Eng 311:503–536MathSciNetCrossRefGoogle Scholar
  70. Zhu X, Ma Z, Hu P (2017) Nonconforming isogeometric analysis for trimmed CAD geometries using finite-element tearing and interconnecting algorithm. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science 231(8):1371–1389Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Automotive EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianChina

Personalised recommendations