Advertisement

Structural and Multidisciplinary Optimization

, Volume 60, Issue 6, pp 2189–2204 | Cite as

A density-based topology optimization methodology for thermal energy storage systems

  • Christian Lundgaard
  • Kurt Engelbrecht
  • Ole SigmundEmail author
Research Paper
  • 419 Downloads

Abstract

As many renewable energy resources are prone to an intermittent production of energy and the electric energy demand varies on daily and seasonal time-scales, it is critical to develop technologies which can reduce the residual between the production and the consumption of electric energy. By storing and releasing thermal energy and converting energy between thermal and electric phases, thermal energy storage (TES) systems can be used to reduce this residual. In this paper, we present a design methodology which can be used to improve the performance of TES systems by distributing two materials with different thermal characteristics in a two dimensional design space. The design methodology is developed with basis in density-based topology optimization and a transient potential flow model coupled with heat transfer. By solving a sequence of design problems, important model and optimization parameters are identified and the performance of TES systems is increased by 46% compared with benchmark designs.

Keywords

Thermal energy storage Solar energy Transient problems Topology optimization Multiphysics 

Notes

Funding information

This received financial support from the TopTen project sponsored by the Danish Council for Independent Research (DFF-4005-00320).

Compliance with ethical standards

Conflict of interest

No conflicts of interest.

References

  1. Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (lhtess). Renewable Sustain Energy Rev 14(2):615–628CrossRefGoogle Scholar
  2. Alexandersen J, Aage N, Andreasen CS, Sigmund O (2014) Topology optimisation for natural convection problems. Int J Numer Meth Fluids, 699–721.  https://doi.org/10.1002/fld
  3. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bendsøe M, Sigmund O (2003) Topology optimization - theory, methods and applications. SpringerGoogle Scholar
  5. Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41(1):77–107MathSciNetzbMATHCrossRefGoogle Scholar
  6. Brooks AN, Hughes TJR (1982) Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-stokes equations. Comput Methods Appl Mech Eng 32 (1):199–259MathSciNetzbMATHCrossRefGoogle Scholar
  7. Bruch A, Fourmigué JF, Couturier R (2014) Experimental and numerical investigation of a pilot-scale thermal oil packed bed thermal storage system for csp power plant. Sol Energy 105:116–125CrossRefGoogle Scholar
  8. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Progress Nat Sci 19(3):291–312CrossRefGoogle Scholar
  9. Cook RD, Malkus DS, Plesha ME, Witt RJ (2007) Concepts and applications of finite element analysis, 4th edn. WileyGoogle Scholar
  10. Dahl J, Jensen JS, Sigmund O (2008) Topology optimization for transient wave propagation problems in one dimension: design of filters and pulse modulators. Struct Multidiscip Optim 36(6):585–595.  https://doi.org/10.1007/s00158-007-0192-5. ISSN 1615147XMathSciNetzbMATHCrossRefGoogle Scholar
  11. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRefGoogle Scholar
  12. Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011) Topology optimization of unsteady incompressible Navier-Stokes flows. J Comput Phys 230(17):6688–6708MathSciNetzbMATHCrossRefGoogle Scholar
  13. Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B, Cabeza LF (2010) State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew Sustain Energy Rev 14(1):31–55CrossRefGoogle Scholar
  14. Jensen JS, Nakshatrala PB, Tortorelli DA (2014) On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems. Struct Multidiscip Optim 49(5):831–837MathSciNetCrossRefGoogle Scholar
  15. Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J, Cable R, Potrovitza N, Blake D, Price H (2003) Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Solar Energy Eng 125(2):170–176CrossRefGoogle Scholar
  16. Laughlin RB (2017) Pumped thermal grid storage with heat exchange. J Renew Sustain Energy 9(4):044103CrossRefGoogle Scholar
  17. Li Y, Saitou K, Kikuchi N (2004) Topology optimization of thermally actuated compliant mechanisms considering time-transient effect. Finite Elem Anal Des 40(11):1317–1331CrossRefGoogle Scholar
  18. Lund H (2007) Renewable energy strategies for sustainable development. Energy 32(6):912–919CrossRefGoogle Scholar
  19. Lundgaard C, Sigmund O (2018) A density-based topology optimization methodology for thermoelectric energy conversion problems. Struct Multidiscip Optim 57(4):1427–1442MathSciNetCrossRefGoogle Scholar
  20. Lundgaard C, Sigmund O (2019) Design of segmented off-diagonal thermoelectric generators using topology optimization. Appl Energy 236:950–960CrossRefGoogle Scholar
  21. Lundgaard C, Alexandersen J, Zhou M, Andreasen CS, Sigmund O (2018) Revisiting density-based topology optimization for fluid-structure-interaction problems. Struct Multidiscip Optim 58(3):969–995.  https://doi.org/10.1007/s00158-018-1940-4 MathSciNetCrossRefGoogle Scholar
  22. McTigue J (2016) Analysis and optimisation of thermal energy storage. PhD thesis Department of Engineering University of CambridgeGoogle Scholar
  23. Muthusivagami RM, Velraj R, Sethumadhavan R (2010) Solar cookers with and without thermal storage—a review. Renew Sustain Energy Rev 14(2):691–701CrossRefGoogle Scholar
  24. Nørgaard S, Sigmund O, Lazarov B (2016) Topology optimization of unsteady flow problems using the lattice Boltzmann method. J Comput Phys 307:291–307MathSciNetzbMATHCrossRefGoogle Scholar
  25. Novo AV, Bayon JR, Castro-Fresno D, Rodriguez-Hernandez J (2010) Review of seasonal heat storage in large basins: water tanks and gravel–water pits. Appl Energy 87(2):390–397CrossRefGoogle Scholar
  26. Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys Rev E 75:016301CrossRefGoogle Scholar
  27. Pedersen CBW (2004) Crashworthiness design of transient frame structures using topology optimization. Comput Methods Appl Mech Eng 193(6-8):653–678zbMATHCrossRefGoogle Scholar
  28. Pizzolato A, Sharma A, Maute K, Sciacovelli A, Verda V (2017) Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization. Appl Energy 208:210–227CrossRefGoogle Scholar
  29. Strauss WA (2007) Partial differential equations: an introduction. WileyGoogle Scholar
  30. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetzbMATHCrossRefGoogle Scholar
  31. Wang Z (2010) Prospectives for China’s solar thermal power technology development. Energy 35(11):4417–4420CrossRefGoogle Scholar
  32. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784zbMATHCrossRefGoogle Scholar
  33. Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transp Porous Media 1 (1):3–25MathSciNetCrossRefGoogle Scholar
  34. Yoon GH (2010) Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82(5):591–616zbMATHCrossRefGoogle Scholar
  35. Xi Z, Zhou M, Sigmund O, Andreasen CS (2018) A “poor man’s approach” to topology optimization of cooling channels based on a Darcy flow model. Int J Heat Mass Transf 116:1108–1123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechinical University of DenmarkKongens LyngbyDenmark
  2. 2.Department of Energy Conversion and StorageTechinical University of DenmarkRoskildeDenmark

Personalised recommendations