Advertisement

Structural and Multidisciplinary Optimization

, Volume 60, Issue 4, pp 1407–1422 | Cite as

Multifunctional topology optimization of strain-sensing nanocomposite beam structures

  • Ryan SeifertEmail author
  • Mayuresh Patil
  • Gary Seidel
  • Gregory Reich
Research Paper
  • 124 Downloads

Abstract

Controlling volume fractions of nanoparticles in a matrix can have a substantial influence on composite performance. This paper presents a multi-start topology optimization algorithm that designs nanocomposite structures for objectives pertaining to stiffness and strain sensing. Local effective properties are obtained by controlling local volume fractions of carbon nanotubes (CNTs) in an epoxy matrix, which are assumed to be well dispersed and randomly oriented. Local Young’s modulus, conductivity, and piezoresistive constant drive the global objectives of strain energy and resistance change. Strain energy is obtained via a modified solution of Euler-Bernoulli equations and resistance change is obtained via solution of a bilinear quadrilateral finite element problem. The optimization uses a two-step restart method in which Pareto points from the first step are used as starting conditions in the second step. An efficient method for obtaining analytic sensitivities of the objective functions is presented. The method is used to solve a set of example problems pertaining to the design of a composite beam in bending. The results show that the strain energy may be optimized by placing high volume-fraction CNT elements away from the neutral axis. Resistance change is optimized through a combination of shifting the neutral axis, formation of conductive paths between electrodes, and asymmetric distribution of highly piezoresistive elements. Results also show that the strain energy is governed by the volume fraction constraint and the resistance change is dependent on a combination of the volume fraction constraint and the boundary electrode location.

Keywords

Topology optimization Multifunctional optimization Carbon nanotubes Micromechanics Analytic sensitivities Strain sensing 

Notes

Acknowledgments

The authors would like to acknowledge the support of the Air Force Research Laboratory under agreement number FA8650-09-2-3938. This material was cleared under case number 88ABW-2018-3771.

Compliance with Ethical Standards

Conflict of interests

The authors claim no conflict of interest.

References

  1. Alamusi HN, Fukunaga H, Atobe S, Liu Y, Li J (2011a) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11(12):10,691–10,723CrossRefGoogle Scholar
  2. Alamusi HN, Fukunaga H, Atobe S, Liu Y, Li J (2011b) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11(12):10,691–10,723.  https://doi.org/10.3390/s111110691. http://www.mdpi.com/1424-8220/11/11/10691/ CrossRefGoogle Scholar
  3. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRefGoogle Scholar
  4. Bendsoe MP, Sigmund O (2004) Topology optimization by distribution of isotropic material. Springer, Berlin, pp 1–69CrossRefGoogle Scholar
  5. Chaurasia AK, Seidel GD (2014a) Computational micromechanics analysis of electron-hopping-induced conductive paths and associated macroscale piezoresistive response in carbon nanotube–polymer nanocomposites. J Intell Mater Syst Struct 25(17):2141–2164.  https://doi.org/10.1177/1045389X13517314 CrossRefGoogle Scholar
  6. Chaurasia AK, Sengezer EC, Talamadupula KK, Povolny S, Seidel GD (2014b) Experimental characterization and computational modeling of deformation and damage sensing through the piezoresistive response of nanocomposite bonded surrogate energetic materials. Journal of Multifunctional Composites 2(4):227–253CrossRefGoogle Scholar
  7. de Kruijf N, Zhou S, Li Q, Mai YW (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 44(22-23):7092–7109CrossRefGoogle Scholar
  8. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRefGoogle Scholar
  9. Ehrgott M, Gandibleux X (2000) A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4):425–460MathSciNetCrossRefGoogle Scholar
  10. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond: Math, Phys Eng Sci 241(1226):376–396MathSciNetCrossRefGoogle Scholar
  11. Gang Yin NH (2011) A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity. J Compos Mater 45(12):1315–1323CrossRefGoogle Scholar
  12. Giurgiutiu V, Zagrai A, Bao JJ (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monit 1(1):41–61. http://shm.sagepub.com/content/1/1/41.short CrossRefGoogle Scholar
  13. Glaessgen E, Stargel D (2012) The digital twin paradigm for future NASA and US Air Force vehicles. In: 53Rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, pp 1818Google Scholar
  14. Hammerand DC, Seidel GD, Lagoudas DC (2007) Computational micromechanics of clustering and interphase effects in carbon nanotube composites. Mech Adv Mater Struct 14(4):277–294.  https://doi.org/10.1080/15376490600817370 CrossRefGoogle Scholar
  15. Hwang CL, Masud ASM (1979) Methods for multiple objective decision making. In: Multiple objective decision making—methods and applications. Springer, pp 21–283Google Scholar
  16. Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (am) and nanotechnology: promises and challenges. Rapid Prototyp J 19(5):353–364CrossRefGoogle Scholar
  17. Keulemans G, Ceyssens F, De Volder M, Seo JW, Puers R (2010) Fabrication and characterisation of carbon nanotube composites for strain sensor applications. In: Proceedings of the 21st Micromechanics and Micro systems Europe Workshop, vol 21, pp 231–234Google Scholar
  18. Kim YY, Kim TS (2000) Topology optimization of beam cross sections. Int J Solids Struct 37(3):477–493CrossRefGoogle Scholar
  19. Maute K, Tkachuk A, Wu J, Jerry Qi H, Ding Z, Dunn ML (2015) Level set topology optimization of printed active composites. J Mech Des 137(11):111,402–111,402–13.  https://doi.org/10.1115/1.4030994 CrossRefGoogle Scholar
  20. Mavrotas G (2009) Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl Math Comput 213(2):455–465MathSciNetzbMATHGoogle Scholar
  21. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRefGoogle Scholar
  22. Obitayo W, Liu T (2012) A review: carbon nanotube-based piezoresistive strain sensors. J Sensors 2012:1–15. http://www.hindawi.com/journals/js/2012/652438/ CrossRefGoogle Scholar
  23. Oskouyi A, Sundararaj U, Mertiny P (2014a) Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Materials 7(4):2501–2521CrossRefGoogle Scholar
  24. Oskouyi A, Sundararaj U, Mertiny P (2014b) Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Materials 7(12):2501–2521.  https://doi.org/10.3390/ma7042501. http://www.mdpi.com/1996-1944/7/4/2501 CrossRefGoogle Scholar
  25. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos A: Appl Sci Manuf 76:110–114CrossRefGoogle Scholar
  26. Reuss A (1929a) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-J Appl Math Mech/Z Angew Math Mech 9(1):49–58CrossRefGoogle Scholar
  27. Reuss A (1929b) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM - J Appl Math Mech / Z Angew Math Mech 9(1):49–58CrossRefGoogle Scholar
  28. Roberts SC, Aglietti GS (2008) Satellite multi-functional power structure: feasibility and mass savings. Proc IMechE 222(1):41–51.  https://doi.org/10.1243/09544100JAERO255 CrossRefGoogle Scholar
  29. Rubio WM, Silva ECN, Nishiwaki S (2008) Piezoresistive sensor design using topology optimization. Struct Multidiscip Optim 36(6):571–583CrossRefGoogle Scholar
  30. Sairajan KK, Aglietti GS, Mani KM (2016) A review of multifunctional structure technology for aerospace applications. Acta Astronaut 120:30–42CrossRefGoogle Scholar
  31. Sandler J, Kirk J, Kinloch I, Shaffer M, Windle A (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899CrossRefGoogle Scholar
  32. Sardan O, Eichhorn V, Petersen DH, Fatikow S, Sigmund O, Bøggild P (2008) Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19(49):495,503CrossRefGoogle Scholar
  33. Schueler R, Petermann J, Schulte K, Wentzel HP (1997) Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. J Appl Polym Sci 63(13):1741–1746CrossRefGoogle Scholar
  34. Seidel GD, Lagoudas DC (2006) Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. M Mater 38(8):884–907.  https://doi.org/10.1016/j.mechmat.2005.06.029. http://www.sciencedirect.com/science/article/pii/S0167663605001699. Advances in Disordered MaterialsCrossRefGoogle Scholar
  35. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRefGoogle Scholar
  36. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRefGoogle Scholar
  37. Stanford B, Ifju P (2009) Aeroelastic topology optimization of membrane structures for micro air vehicles. Struct Multidiscip Optim 38(3):301–316CrossRefGoogle Scholar
  38. Swan CC, Kosaka I (1997) Voigt-Reuss topology optimization for structures with linear elastic material behaviours. Int J Numer Methods Eng 40(16):3033–3057MathSciNetCrossRefGoogle Scholar
  39. Talreja R, Singh CV (2012) Damage and failure of composite materials, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Voigt W (1887) Theoretische Studien über die elasticitätsverhältnisse der Krystalle II. Abhandlungen der königlichen Gesellschaft der Wissenschaften in GöttingenGoogle Scholar
  41. Xiao J, Li Y, Fan W (1999) A laminate theory of piezoresistance for composite laminates. Compos Sci Technol 59(9):1369–1373CrossRefGoogle Scholar
  42. Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192CrossRefGoogle Scholar
  43. Zhu R, Pan E, Roy A (2007) Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng: A 447(1-2):51–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Wright-Patterson Air Force BaseUSA

Personalised recommendations