Advertisement

Axisymmetric hub-endwall profile optimization for a transonic fan to improve aerodynamic performance based on an integrated design optimization method

  • Cheng Yan
  • Zeyong Yin
  • Xiuli ShenEmail author
  • Fushui Guo
  • Yu Wu
Industrial Application
  • 41 Downloads

Abstract

This paper investigates an optimization for the axisymmetric hub-endwall profile of a transonic fan designed for a civil high bypass ratio turbofan engine. A time-saving integrated design optimization method is proposed based on a new hub-endwall profile modification method in combination with a novel two-stage polynomial response surface. The profile modification method is proposed to change the profile of the baseline hub curve by moving three control points, so as to redesign the hub-endwall. The two-stage polynomial response surface is proposed to obtain an accurate high-order polynomial while requiring fewer sampling points, so as to reduce the computational cost. The results show that the integrated design optimization method is suitable and valuable. After optimization, the corner separation of the studied fan is weakened, and the stall margin of the core fan is also enlarged. Moreover, the aerodynamic performance of the core fan at the design speed is improved.

Keywords

Transonic fan Hub-endwall Aerodynamic optimization Polynomial response surface Corner separation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

For the convenience of other researchers, the involved codes of the proposed two-stage polynomial response surface are included in the supplementary online material.

Supplementary material

158_2019_2266_MOESM1_ESM.m (1 kb)
(M 1.32 KB)
158_2019_2266_MOESM2_ESM.m (0 kb)
(M 218 bytes)
158_2019_2266_MOESM3_ESM.m (1 kb)
(M 1.31 KB)

References

  1. Acar E (2010) Various approaches for constructing an ensemble of metamodels using local measures. Struct Multidiscip Optim 42(6):879–896.  https://doi.org/10.1007/s00158-010-0520-z CrossRefGoogle Scholar
  2. Acar E, Rais-Rohani M (2009) Ensemble of metamodels with optimized weight factors. Struct Multidiscip Optim 37(3):279–294.  https://doi.org/10.1007/s00158-008-0230-y CrossRefGoogle Scholar
  3. Arnone A (1994) Viscous analysis of three-dimensional rotor flow using a multigrid method. J Turbomach 116 (3):435–445.  https://doi.org/10.1115/1.2929430 CrossRefGoogle Scholar
  4. Deng X, Guo F, Liu Y, Han P (2013) Aero-mechanical optimization design of a transonic fan blade. In: ASME turbo expo 2013: Turbine technical conference and exposition, pp V06BT43A014–V06BT43A014Google Scholar
  5. Denton JD (1993) Loss mechanisms in turbomachines. In: ASME 1993 international gas turbine and aeroengine congress and exposition, p V002T14A001.  https://doi.org/10.1115/93-GT-435
  6. Fidalgo VJ, Hall CA, Colin Y (2012) A study of fan-distortion interaction within the nasa rotor 67 transonic stage. In: ASME turbo expo 2010: Power for land, sea, and air, pp 369–380.  https://doi.org/10.1115/1.4003850
  7. Fottner L (1990) Test cases for computation of internal flows in aero engine componentsGoogle Scholar
  8. Gbadebo SA, Cumpsty NA, Hynes TP (2007) Control of three-dimensional separations in axial compressors by tailored boundary layer suction. J Turbomach 130(1):011,004–011,004–8.  https://doi.org/10.1115/1.2749294 CrossRefGoogle Scholar
  9. Goulos I, Stankowski T, MacManus D, Woodrow P, Sheaf C (2018) Civil turbofan engine exhaust aerodynamics: Impact of bypass nozzle after-body design. Aerosp Sci Technol 73:85–95.  https://doi.org/10.1016/j.ast.2017.09.002 CrossRefGoogle Scholar
  10. Grosvenor A D (2007) Rans prediction of transonic compressive rotor performance near stall. In: ASME turbo expo 2007: Power for land, sea, and air, pp 279-293.  https://doi.org/10.1115/GT2007-27691
  11. Grosvenor AD (2008) Numerical studies toward prediction, analysis and treatment of swbli in transonic compressors. In: International conference on methods of aerophysical research. ICMARGoogle Scholar
  12. Guo S, Duan F, Tang H, Lim SC, Yip MS (2014) Multi-objective optimization for centrifugal compressor of mini turbojet engine. Aerosp Sci Technol 39:414–425.  https://doi.org/10.1016/j.ast.2014.04.014 CrossRefGoogle Scholar
  13. Hecklau M, Wiederhold O, Zander V, King R, Nitsche W, Swoboda M, Huppertz A (2011) Active separation control with pulsed jets in a critically loaded compressor cascade. AIAA J 49(8):1729–1739.  https://doi.org/10.2514/1.J050931 CrossRefGoogle Scholar
  14. Hergt A, Meyer R, Engel K (2010) Effects of vortex generator application on the performance of a compressor cascade. J Turbomach 135(2):021,026–021,026–10.  https://doi.org/10.1115/1.4006605 CrossRefGoogle Scholar
  15. Ito Y, Watanabe T, Himeno T (2008) Effects of endwall contouring on flow instability of transonic compressor. Int J Gas Turb Propul Power Sys 2(1):24–29Google Scholar
  16. Jang CM, Samad A, Kim KY (2006) Optimal design of swept, leaned and skewed blades in a transonic axial compressor. In: ASME turbo expo 2006: Power for land, sea, and air, pp 1279–1288.  https://doi.org/10.1115/GT2006-90384
  17. Joseph V R, Hung Y (2008) Orthogonal-maximin latin hypercube designs. STAT SINICA 18(1):171–186MathSciNetzbMATHGoogle Scholar
  18. Kim JH, Choi KJ, Kim KY (2013) Aerodynamic analysis and optimization of a transonic axial compressor with casing grooves to improve operating stability. Aerosp Sci Technol 29(1):81–91.  https://doi.org/10.1016/j.ast.2013.01.010 CrossRefGoogle Scholar
  19. Kroger G, Cornelius C, Nicke E (2009) Rotor casing contouring in high pressure stages of heavy duty gas turbine compressors with large tip clearance heights. In: ASME turbo expo 2009: Power for land, sea and air, pp 215–225.  https://doi.org/10.1115/GT2009-59626
  20. Lian Y, Liou MS (2005) Multi-objective optimization of transonic compressor blade using evolutionary algorithm. J Propul Power 21(6):979–987.  https://doi.org/10.2514/1.14667 CrossRefGoogle Scholar
  21. Lu H, Li Q (2016) Cantilevered stator hub leakage flow control and loss reduction using non-uniform clearances. Aerosp Sci Technol 51:1–10.  https://doi.org/10.1016/j.ast.2016.01.013 CrossRefGoogle Scholar
  22. Lu H, Zheng X, Li Q (2014) A combinatorial optimization design method applied to sshaped compressor transition duct design. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering 228(10):1749–1758.  https://doi.org/10.1177/0954410014531922 CrossRefGoogle Scholar
  23. Lu J, Chu W, Wu Y (2009) Effects of endwall profiling on axial flow compressor stage. In: ASME turbo expo 2009: Power for land, sea, and air, pp 145–154.  https://doi.org/10.1115/GT2009-59418
  24. Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. Wiley, New York.  https://doi.org/10.2307/1270613 zbMATHGoogle Scholar
  25. Niazi S, Stein A, Sankar L (2000) Computational analysis of stall control using bleed valve in a high-speed compressor. In: 36th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit.  https://doi.org/10.2514/6.2000-3507
  26. Ning F, Xu L (2001) Numerical investigation of transonic compressor rotor flow using an implicit 3d flow solver with one-equation spalart-allmaras turbulence model. In: ASME turbo expo 2001: Power for land, sea, and air, p V001T03A054.  https://doi.org/10.1115/2001-GT-0359
  27. Pehlivanoglu YV, Yagiz B (2012) Aerodynamic design prediction using surrogate-based modeling in genetic algorithm architecture. Aerosp Sci Technol 23(1):479–491.  https://doi.org/10.1016/j.ast.2011.10.006 CrossRefGoogle Scholar
  28. Reising S, Schiffer H P (2009) Non-axisymmetric end wall profiling in transonic compressors — part II: Design study of a transonic compressor rotor using non-axisymmetric end walls optimization strategies and performance. In: ASME turbo expo 2009: Power for land, sea, and air, pp 25–37.  https://doi.org/10.1115/GT2009-59134
  29. Romanelli G, Mangani L, Casartelli E, Gadda A, Favale M (2015) Implementation of explicit density-based unstructured cfd solver for turbomachinery applications on graphical processing units. In: ASME turbo expo 2015: Turbine technical conference and exposition, p V02BT39A034.  https://doi.org/10.1115/GT2015-43396
  30. Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer, New York.  https://doi.org/10.1007/978-1-4757-3799-8 CrossRefzbMATHGoogle Scholar
  31. Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace sciences meeting and exhibit.Google Scholar
  32. Strazisar AJ, Wood JR, Hathaway MD, Suder KL (1989) Laser anemometer measurements in a transonic axial-flow fan rotor. Nasa Technical ReportGoogle Scholar
  33. Strazisar AJ, Bright MM, Thorp S, Culley DE, Suder KL (2004) Compressor stall control through endwall recirculation. In: Asme turbo expo power for land, sea, and air, pp 655-667.  https://doi.org/10.1115/GT2004-54295
  34. Tang X, Luo J, Liu F (2017) Aerodynamic shape optimization of a transonic fan by an adjoint-response surface method. Aerosp Sci Technol 68:26–36.  https://doi.org/10.1016/j.ast.2017.05.005 CrossRefGoogle Scholar
  35. Yan C, Shen X, Guo F (2018a) An improved support vector regression using least squares method. Struct Multidiscip Optim 57(6):2431–2445.  https://doi.org/10.1007/s00158-017-1871-5 MathSciNetCrossRefGoogle Scholar
  36. Yan C, Shen X, Guo F (2018b) Novel two-stage method for low-order polynomial model. Math Probl Eng 2018(1):1–13.  https://doi.org/10.1155/2018/8156390 Google Scholar
  37. Zhang C, Hu J, Wang Z (2014) Investigations on the effects of inflow condition and tip clearance size to the performance of a compressor rotor. J Eng Gas Turbines Power 136(12):122,608–122,608–7.  https://doi.org/10.1115/1.4027906 CrossRefGoogle Scholar
  38. Zhang D, Tang S, Che J (2015) Concurrent subspace design optimization and analysis of hypersonic vehicles based on response surface models. Aerosp Sci Technol 42:39–49.  https://doi.org/10.1016/j.ast.2015.01.003 CrossRefGoogle Scholar
  39. Zhang Y, Li J, Ji L (2017) Numerical research on effects of shroud contraction on tip leakage flow and overall performance of axial compressors. In: ASME turbo expo 2017: Turbomachinery technical conference and exposition, p V02AT39A011.  https://doi.org/10.1115/GT2017-63468
  40. Zhou X, Jiang T (2016) Metamodel selection based on stepwise regression. Struct Multidiscip Optim.  https://doi.org/10.1007/s00158-016-1442-1

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Cheng Yan
    • 1
    • 2
  • Zeyong Yin
    • 1
    • 3
  • Xiuli Shen
    • 1
    Email author
  • Fushui Guo
    • 3
  • Yu Wu
    • 3
  1. 1.School of Energy and Power EngineeringBeihang UniversityBeijingChina
  2. 2.Shen Yuan Honors CollegeBeihang UniversityBeijingChina
  3. 3.AECC Commercial Aircraft Engine Co., Ltd.ShanghaiChina

Personalised recommendations