Advertisement

Optimum design of large steel skeletal structures using chaotic firefly optimization algorithm based on the Gaussian map

  • A. KavehEmail author
  • R. Mahdipour Moghanni
  • S. M. Javadi
Research Paper
  • 51 Downloads

Abstract

In this paper, a new chaotic firefly algorithm based on Gaussian map (CGFA) is proposed for structural optimization problems. Different chaotic maps have different behaviors, and it is acknowledged by researchers that these maps improve the convergence and prevent algorithms to get stuck on local solutions. The objective function in this paper is considered as the weight of the structure, which is minimized subjected to serviceability and strength requirements. Three steel structures are designed by the LRFD-AISC specification to illustrate the performance of the presented algorithm. Comparison of the results of CGFA with some other well-known metaheuristic algorithms shows the robustness of the algorithm.

Keywords

Chaos Structural design optimization Firefly algorithm Computational efficiency Discrete optimization 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adeli H, Cheng NT (1994) Concurrent genetic algorithms for optimization of large structures. J Aerosp Eng 7(3):276–296CrossRefGoogle Scholar
  2. American Institute of Steel Construction (2001) Load and resistance factor design. Amer Inst Steel ConstrGoogle Scholar
  3. Baykasoğlu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Comput 36:152–164CrossRefGoogle Scholar
  4. Camp CV (2007) Design of space trusses using Big Bang–Big Crunch optimization. J Struct Eng 133(7):999–1008CrossRefGoogle Scholar
  5. Camp CV, Bichon BJ (2004) Design of space trusses using ant colony optimization. J Struct Eng 130(5):741–751CrossRefGoogle Scholar
  6. Camp CV, Farshchin M (2014) Design of space trusses using modified teaching–learning based optimization. Eng Struct 62:87–97CrossRefGoogle Scholar
  7. Cao G (1997) Optimized design of framed structures using a genetic algorithm. Dissertation, University of MemphisGoogle Scholar
  8. Chou JS, Ngo NT (2017) Modified firefly algorithm for multidimensional optimization in structural design problems. Struct Multidiscip Optim 55(6):2013–2028CrossRefGoogle Scholar
  9. Davison JH, Adams PF (1974) Stability of braced and unbraced frames. J Struct Div 100(2):319–334Google Scholar
  10. Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct Multidiscip Optim 36(4):393–401CrossRefGoogle Scholar
  11. Dos Santos Coelho L, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34(3):1905–1913CrossRefGoogle Scholar
  12. Dumonteil P (1992) Simple equations for effective length factors. Eng J AISC 29(3):111–115Google Scholar
  13. Dumonteil P, Moore W (1993) Simple equations for effective length factors-discussion. Eng J AISC 30(1):37–37Google Scholar
  14. Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, BerlinCrossRefzbMATHGoogle Scholar
  15. Erbatur F, Hasançebi O, Tütüncü I, Kılıç H (2000) Optimal design of planar and space structures with genetic algorithms. Comput Struct 75(2):209–224CrossRefGoogle Scholar
  16. Farshchin M, Maniat M, Camp CV, Pezeshk S (2018) School based optimization algorithm for design of steel frames. Eng Struct 171:326–335CrossRefGoogle Scholar
  17. Fister I Jr, Perc M, Kamal SM, Fister I (2015) A review of chaos-based firefly algorithms: perspectives and research challenges. Appl Math Comput 252:155–165MathSciNetzbMATHGoogle Scholar
  18. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336CrossRefGoogle Scholar
  19. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98MathSciNetCrossRefzbMATHGoogle Scholar
  20. Hasançebi O, Erbatur F (2002) On efficient use of simulated annealing in complex structural optimization problems. Acta Mech 157(1–4):27–50CrossRefzbMATHGoogle Scholar
  21. Hilborn R C (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on DemandGoogle Scholar
  22. Kaveh A (2017) Advances in metaheuristic algorithms for optimal design of structures. Springer, 2nd edition, SwitzerlandGoogle Scholar
  23. Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70CrossRefGoogle Scholar
  24. Kaveh A, Javadi SM (2014) An efficient hybrid particle swarm strategy, ray optimizer, and harmony search algorithm for optimal design of truss structures. Period Polytec-Civ Eng 58(2):155–171CrossRefGoogle Scholar
  25. Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang–Big Crunch algorithm. Comput Struct 87(17–18):1129–1140CrossRefGoogle Scholar
  26. Kogiso N, Watson LT, Gurdal Z, Haftka RT (1994) Genetic algorithms with local improvement for composite laminate design. Struct Multidiscip Optim 7:207–218CrossRefGoogle Scholar
  27. Kumar S, Tejani G, Mirjalili S (2018). Modified symbiotic organisms search for structural optimization. Eng Comput 1–28.Google Scholar
  28. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82(9–10):781–798CrossRefGoogle Scholar
  29. Leriche R, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956CrossRefzbMATHGoogle Scholar
  30. Miguel LFF, Lopez RH, Miguel LFF (2013) Multimodal size, shape, and topology optimisation of truss structures using the firefly algorithm. Adv Eng Softw 56:23–37CrossRefGoogle Scholar
  31. Perez RL, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85(19–20):1579–1588CrossRefGoogle Scholar
  32. Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369CrossRefGoogle Scholar
  33. Saka MP, Kameshki, ES (1998) Optimum design of multi-storey sway steel frames to BS5950 using a genetic algorithm. Adv Eng Comput Tech 135–141.Google Scholar
  34. Saka MP, Kameshki ES (1998b) Optimum design of unbraced rigid frames. Comput Struct 69(4):433–442CrossRefzbMATHGoogle Scholar
  35. Schutte JF, Groenwold AA (2003) Sizing design of truss structures using particle swarms. Struct Multidiscip Optim 25(4):261–269CrossRefGoogle Scholar
  36. Talatahari S, Gandomi AH, Yang XS, Deb S (2015) Optimum design of frame structures using the eagle strategy with differential evolution. Eng Struct 91:16–25CrossRefGoogle Scholar
  37. Tejani GG, Pholdee N, Bureerat S, Prayogo D (2018) Multiobjective adaptive symbiotic organisms search for truss optimization problems. Knowl-Based Syst 161:398–414CrossRefGoogle Scholar
  38. Todoroki A, Haftka RT (1998) Stacking sequence optimization by a genetic algorithm with a new recessive gene like repair strategy. Compos Part B 29:277–285CrossRefGoogle Scholar
  39. Toğan V (2012) Design of planar steel frames using teaching–learning based optimization. Eng Struct 34:225–232CrossRefGoogle Scholar
  40. Yang XS (2009) Firefly algorithms for multimodal optimization. Int Symp Stoch Algorithm 169–178. Springer, Berlin, HeidelbergGoogle Scholar
  41. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, BristolGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. Kaveh
    • 1
    Email author
  • R. Mahdipour Moghanni
    • 1
  • S. M. Javadi
    • 1
  1. 1.Centre of Excellence for Fundamental Studies in Structural EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations