Skip to main content
Log in

Distance correlation-based method for global sensitivity analysis of models with dependent inputs

  • Review Article
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Global sensitivity analysis (GSA) plays an important role to quantify the relative importance of uncertain parameters to the model response. However, performing quantitative GSA directly is still a challenging problem for complex models with dependent inputs. A novel method is proposed for screening dependent inputs in the study. The proposed method inherits the capability of easily handing multivariate dependence from the distance correlation. With the help of a projection operator in the Hilbert space, it can work without knowing the specific conditional distribution of inputs. The advantages of the proposed method are discussed and demonstrated through applications to numerical and environmental modeling examples containing many dependent variables. Compared to classical GSA methods with dependent variables, the proposed method can be easily used, while the accuracy of inputs screening is well maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Borgonovo E (2007) A new uncertainty importance measure. Reliab Eng Syst Saf. 92(6):771–784

    Article  Google Scholar 

  • Botev ZI, Grotowski JF, Kroese DP (2010) Kernel density estimation via diffusion. Ann Stat 38(5):2916–2957

    Article  MathSciNet  MATH  Google Scholar 

  • Brell G, Li G, Rabitz H (2010) An efficient algorithm to accelerate the discovery of complex material formulations. J Chem Phys 132(17):174103

    Article  Google Scholar 

  • Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environ Model Softw 22(10):1509–1518

    Article  Google Scholar 

  • Campolongo F, Saltelli A, Cariboni J (2011) From screening to quantitative sensitivity analysis. A Unifi- Approach. Comput Phys Commun 182(4):978–988

    Article  MATH  Google Scholar 

  • Da Veiga S (2015) Global sensitivity analysis with dependence measures. J Stat Comput Simul 85(7):1283–1305

    Article  MathSciNet  Google Scholar 

  • Da Veiga S, Wahl F, Gamboa F (2009) Local polynomial estimation for sensitivity analysis on models with correlated inputs. Technometrics. 51(4):452–463

    Article  MathSciNet  Google Scholar 

  • De Lozzo M, Marrel A (2016) New improvements in the use of dependence measures for sensitivity analysis and screening. J Stat Comput Simul 86(15):3038–3058

    Article  MathSciNet  Google Scholar 

  • De Lozzo M, Marrel A (2017) Sensitivity analysis with dependence and variance-based measures for spatio-temporal numerical simulators. Stoch Env Res Risk A 31(6):1437–1453

    Article  Google Scholar 

  • Feng K, Lu Z, Yun W (2018) Aircraft icing severity analysis considering three uncertainty types. AIAA J. https://doi.org/10.2514/1.J057529. Accessed 25 March 2019

  • Ge Q, Menendez M (2014) An efficient sensitivity analysis approach for computationally expensive microscopic traffic simulation models. Int J Transp 2(2):49–64

    Article  Google Scholar 

  • Ge Q, Menendez M (2017) Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs. Reliab Eng Syst Saf 162:28–39

    Article  Google Scholar 

  • Ge Q, Ciuffo B, Menendez M (2014) An exploratory study of two efficient approaches for the sensitivity analysis of computationally expensive traffic simulation models. IEEE Trans Intell Transp Syst 15(3):1288–1297

    Article  Google Scholar 

  • Gretton A, Bousquet O, Smola A, Schölkopf B (2005) Measuring statistical dependence with Hilbert-Schmidt norms. In: Jain S, Simon H, Tomita E (eds) Algorithmic learning theory. Lecture Notes in Computer Science, vol 3734. Springer, Berlin, pp 63–77

    Chapter  Google Scholar 

  • Hamilton AS, Hutchinson DG, Moore RD (2000) Estimating winter streamflow using conceptual streamflow model. J Cold Reg Eng 14(4):158–175

    Article  Google Scholar 

  • Huo X, Székely GJ (2016) Fast computing for distance covariance. Technometrics. 58(4):435–447

    Article  MathSciNet  Google Scholar 

  • Iman RL (2008) Latin hypercube sampling. Encyclopedia of Quantitative Risk Analysis and Assessment. Wiley, Hoboken

    Google Scholar 

  • Iman RL, Conover WJ (1982) A distribution-free approach to inducing rank correlation among input variables. Commun Stat Simul Comput 11(3):311–334

    Article  MATH  Google Scholar 

  • Janon A, Klein T, Lagnoux A, Nodet M, Prieur C (2014) Asymptotic normality and efficiency of two Sobol’ index estimators. ESAIM-Probab Stat 18:342–364

  • Joeph H, Pierre G (2018) An approximation theoretic perspective of the Sobol’ indices with dependent variables. Int J Uncertain Quan 8(6):483–493

  • Kala Z, Valeš J (2017) Global sensitivity analysis of lateral-torsional buckling resistance based on finite element simulations. Eng Struct 134:37–47

    Article  Google Scholar 

  • Kala Z, Valeš J (2018) Imperfection sensitivity analysis of steel columns at ultimate limit state. Arch Civ Mech Eng 18:1207–1218

  • Kollat JB, Reed PM, Wagener T (2012) When are multiobjective calibration trade-offs in hydrologic models meaningful? Water Resour Res 48(3)

  • Kucherenko S (2009) Derivative based global sensitivity measures and their link with global sensitivity indices. Math Comput Simul 79(10):3009–3017

    Article  MathSciNet  MATH  Google Scholar 

  • Lambert RS, Lemke F, Kucherenko SS, Song S, Shah N (2016) Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling. Math Comput Simul 128:42–54

    Article  MathSciNet  Google Scholar 

  • Li R, Zhong W, Zhu L (2012) Feature screening via distance correlation learning. J Am Stat 107(499):1129–1139

    Article  MathSciNet  MATH  Google Scholar 

  • Lindström G (1997) A simple automatic calibration routine for the HBV model. Hydrol Res 28(3):153–168

    Article  MathSciNet  Google Scholar 

  • Lyons R (2013) Distance covariance in metric spaces. Ann Probab 41(5):3284–3305

    Article  MathSciNet  MATH  Google Scholar 

  • Malte K. Vine copula MATLAB toolbox, version 1.2, 2016, https://github.com/MalteKurz/VineCopulaMatlab.git. Accessed 25 Mar 2019

  • Mara TA, Tarantola S (2012) Variance-based sensitivity indices for models with dependent inputs. Reliab Eng Syst Saf 107:115–121

    Article  Google Scholar 

  • Mara TA, Tarantola S, Annoni P (2015) Non-parametric methods for global sensitivity analysis of model output with dependent inputs. Environ Model Softw 72:173–183

    Article  Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics. 33(2):161–174 https://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484804. Accessed 25 March 2019

  • Nelsen RB (2007) An introduction to copulas. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Owen AB (2013) Better estimation of small Sobol’ sensitivity indices. ACM T Model Comput S (TOMACS) 23(2):11

  • Pianosi F, Sarrazin F, Wagener T (2015) A Matlab toolbox for global sensitivity analysis. Environ Model Softw 70:80–85

    Article  Google Scholar 

  • Plischke E, Borgonovo E, Smith CL (2013) Global sensitivity measures from given data. Eur J Oper Res 226(3):536–550

    Article  MathSciNet  MATH  Google Scholar 

  • Rizzo ML, Székely GJ (2016) Energy distance. WIREs Comput Stat 8:27–38

    Article  MathSciNet  Google Scholar 

  • Saltelli A (2002) Sensitivity analysis for importance assessment. Risk Anal 22(3):579–590

    Article  Google Scholar 

  • Saltelli A, Tarantola S (2002) On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal. J Am Stat Assoc 97(459):702–709

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, Hoboken

    MATH  Google Scholar 

  • Saltelli A, Campolongo F, Cariboni J (2009) Screening important inputs in models with strong interaction properties. Reliab Eng Syst Saf 94(7):1149–1155

    Article  Google Scholar 

  • Sobol IM (1976) Uniformly distributed sequences with an additional uniform property. USSR Comput Math Math Phys 16(5):236–242

    Article  MATH  Google Scholar 

  • Sobol’ IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Modeling Comput Exp 1(4):407–414

  • Székely GJ, Rizzo ML (2013) The distance correlation t-test of independence in high dimension. J Multivar Anal 117:193–213

    Article  MathSciNet  MATH  Google Scholar 

  • Szekely GJ, Rizzo ML (2014) Partial distance correlation with methods for dissimilarities. Ann Stat 42(6):2382–2412

    Article  MathSciNet  MATH  Google Scholar 

  • Székely GJ, Rizzo ML, Bakirov NK (2007) Measuring and testing dependence by correlation of distances. Ann Stat:2769–2794

  • Xiao S, Lu Z, Wang P (2018) Multivariate global sensitivity analysis for dynamic models based on energy distance. Struct Multidiscip Optim 57:279–291

    Article  MathSciNet  Google Scholar 

  • Xu C (2013) Decoupling correlated and uncorrelated parametric uncertainty contributions for nonlinear models. Appl Math Model 37(24):9950–9969

    Article  MathSciNet  MATH  Google Scholar 

  • Xu L, Lu Z, Xiao S (2019) Generalized sensitivity indices based on vector projection with multivariate outputs. Appl Math Model 66:592–610

    Article  Google Scholar 

  • Yun W, Lu Z, Jiang X, Zhang L (2018) Borgonovo moment independent global sensitivity analysis by Gaussian radial basis function meta-model. Appl Math Model 54:378–392

    Article  MathSciNet  Google Scholar 

  • Yun W, Lu Z, Jiang X (2018) An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy. Reliab Eng Syst Saf. https://doi.org/10.1016/j.ress.2018.03.029. Accessed 25 March 2019

  • Zadeh FK, Nossent J, Sarrazin F, Pianosi F, van Griensven A, Wagener T, Bauwens W (2017) Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model. Environ Model Softw 91:210–222

    Article  Google Scholar 

  • Zhang K, Lu Z, Wu D, Zhang Y (2017) Analytical variance based global sensitivity analysis for models with correlated variables. Appl Math Model 45:748–767

    Article  MathSciNet  Google Scholar 

  • Zhou C, Lu Z, Zhang L, Hu J (2014) Moment independent sensitivity analysis with correlations. Appl Math Model 38(19–20):4885–4896

    Article  MATH  Google Scholar 

  • Zhou C, Lu Z, Li W (2015) Sparse grid integration based solutions for moment-independent importance measures. Probabilist Eng Mech 39:46–55

  • Zhou Y, Lu Z, Cheng K (2019a) Sparse polynomial chaos expansions for global sensitivity analysis with partial least squares and distance correlation. Struct Multidiscip Optim 59(1):229–247

    Article  MathSciNet  Google Scholar 

  • Zhou Y, Lu Z, Cheng K, Yun W (2019b) A Bayesian Monte Carlo-based method for efficient computation of global sensitivity indices. Mech Syst Signal Process 117(15):498–516

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (Grant No. NSFC 51775439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhou Lu.

Additional information

Responsible Editor: Nestor V Queipo

Appendix

Appendix

If none of the Xs, Y, and X~s are constant convergence and \( \mid {P}_{{X_{\sim s}}^{\perp }}\left({X}_s\right)\mid >0 \). We have

$$ {\displaystyle \begin{array}{c}\left({P}_{{X_{\sim s}}^{\perp }}\cdot {B}_Y\right)=\left({A}_{X_s}-\alpha {C}_{{X_{\sim s}}^{\perp }}\cdot {B}_Y\right)\\ {}=\left({A}_{X_s}\cdot {B}_Y\right)-\alpha \left({C}_{{X_{\sim s}}^{\perp }}\cdot {B}_Y\right)\\ {}={\mathcal{V}}^2\left({\mathrm{X}}_s,\mathrm{Y}\right)-\frac{{\mathcal{V}}^2\left({\mathrm{X}}_s,{\mathrm{X}}_{\sim s}\right){\mathcal{V}}^2\left(\mathrm{Y},{\mathrm{X}}_{\sim s}\right)}{{\mathcal{V}}^2\left({\mathrm{X}}_{\sim s},{\mathrm{X}}_{\sim s}\right)}\end{array}} $$
(A.1)

Similarly,

$$ {\displaystyle \begin{array}{c}\mid {P}_{{X_{\sim s}}^{\perp }}\mid \cdot \mid {P}_{{X_{\sim s}}^{\perp }}\mid ={\mathcal{V}}^2\left({X}_s,{X}_s\right)-\frac{{\mathcal{V}}^2\left({X}_s,{X}_{\sim s}\right){\mathcal{V}}^2\left({X}_s,{X}_{\sim s}\right)}{{\mathcal{V}}^2\left({X}_{\sim s},{X}_{\sim s}\right)}\\ {}={\mathcal{V}}^2\left({X}_s,{X}_s\right)\left(1-\frac{{\left({\mathcal{V}}^2\left({X}_s,{X}_{\sim s}\right)\right)}^2}{{\mathcal{V}}^2\left({X}_s,{X}_s\right){\mathcal{V}}^2\left({X}_{\sim s},{X}_{\sim s}\right)}\right)\\ {}={\mathcal{V}}^2\left({X}_s,{X}_s\right)\left(1-{\mathcal{R}}^4\left({X}_s,{X}_{\sim s}\right)\right)\end{array}} $$
(A.2)

Combining (A.1) and (A.2), we have

$$ {\displaystyle \begin{array}{c}{\mathcal{R}}^2\left({\mathrm{X}}_s|{\mathrm{X}}_{\sim s},\mathrm{Y}\right)=\frac{\left({P}_{{X_{\sim s}}^{\perp }}\left({X}_s\right)\cdot {B}_Y\right)}{\mid {P}_{{X_{\sim s}}^{\perp }}\left({\mathrm{X}}_s\right)\Big\Vert {B}_Y\mid}\\ {}=\frac{{\mathcal{V}}^2\left({\mathrm{X}}_s,\mathrm{Y}\right)-\frac{{\mathcal{V}}^2\left({\mathrm{X}}_s,{\mathrm{X}}_{\sim s}\right){\mathcal{V}}^2\left(\mathrm{Y},{\mathrm{X}}_{\sim s}\right)}{{\mathcal{V}}^2\left({\mathrm{X}}_{\sim s},{\mathrm{X}}_{\sim s}\right)}}{\sqrt{{\mathcal{V}}^2\left({\mathrm{X}}_s,{\mathrm{X}}_s\right)\left(1-{\mathcal{R}}^4\left({\mathrm{X}}_s,{\mathrm{X}}_{\sim s}\right)\right)}\mathcal{V}\left(\mathrm{Y},\mathrm{Y}\right)}\\ {}=\frac{\frac{{\mathcal{V}}^2\left({\mathrm{X}}_s,\mathrm{Y}\right)}{\mathcal{V}\left({\mathrm{X}}_s,{\mathrm{X}}_s\right)\mathcal{V}\left(\mathrm{Y},\mathrm{Y}\right)}-\frac{{\mathcal{V}}^2\left({\mathrm{X}}_s,{\mathrm{X}}_{\sim s}\right){\mathcal{V}}^2\left(\mathrm{Y},{\mathrm{X}}_{\sim s}\right)}{\mathcal{V}\left({X}_s,{X}_s\right)\mathcal{V}\left(\mathrm{Y},\mathrm{Y}\right){\mathcal{V}}^2\left({\mathrm{X}}_{\sim s},{\mathrm{X}}_{\sim s}\right)}}{\sqrt{\left(1-{\mathcal{R}}^4\left({X}_s,{X}_{\sim s}\right)\right)}}\\ {}=\frac{{\mathcal{R}}^2\left({\mathrm{X}}_s,\mathrm{Y}\right)-{\mathcal{R}}^2\left({\mathrm{X}}_s,{\mathrm{X}}_{\sim s}\right){\mathcal{R}}^2\left(\mathrm{Y},{\mathrm{X}}_{\sim s}\right)}{\sqrt{1-{\mathcal{R}}^4\left({\mathrm{X}}_s,{\mathrm{X}}_{\sim s}\right)}}\end{array}} $$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Lu, Z., Xiao, S. et al. Distance correlation-based method for global sensitivity analysis of models with dependent inputs. Struct Multidisc Optim 60, 1189–1207 (2019). https://doi.org/10.1007/s00158-019-02257-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02257-z

Keywords

Navigation