Advertisement

Simultaneous design of non-Newtonian lubricant and surface texture using surrogate-based multiobjective optimization

  • Yong Hoon LeeEmail author
  • Jonathon K. Schuh
  • Randy H. Ewoldt
  • James T. Allison
Research Paper

Abstract

Surface textures decrease friction in lubricated sliding with Newtonian fluids. Viscoelastic non-Newtonian lubricants can enhance frictional performance, but the optimal rheological material properties and their coupling to the texture design are non-obvious. In this study, we present a simultaneous design of both surface texture shape and non-Newtonian properties, which can be achieved by fluid additives that introduce viscoelasticity, shear thinning, and normal stress differences. Two models with different fidelity and computational cost are used to model laminar non-Newtonian fluid flow between a rotating flat plate and a textured disk. At lower fidelity, we use the Criminale-Ericksen-Filbey (CEF) constitutive model and a thin-film approximation for conservation of momentum (Reynolds equation). At higher fidelity, we use a fully nonlinear constitutive model typically applicable to polymer solutions (multimode Giesekus model) and the full 3-D momentum equations. Fluid additive design is parameterized by two relaxation modes each having a timescale, added viscosity, and a nonlinear anisotropic drag parameter. To manage the computational complexity and constraints between design variables, we use our previously developed multiobjective adaptive surrogate modeling-based optimization (MO-ASMO) method. A new data-driven extension of MO-ASMO is introduced that constructs general boundaries to prevent attempts to evaluate designs that would lead to simulation failure. We demonstrate the efficiency of our MO-ASMO method and provide insights into co-designing the lubricant and textured surface. The Pareto-optimal solutions include fluid designs with both high and low viscoelastic additive loading. We rationalize this trade-off and discuss how the optimal design targets can be physically realized.

Keywords

Simultaneous co-design Non-Newtonian lubricant Nonlinear viscoelasticity Surrogate-based optimization 

Notes

Funding information

This work was supported by the National Science Foundation under Grant No. CMMI-1463203. The authors also gratefully acknowledge support from the Procter & Gamble Company.

Supplementary material

158_2019_2201_MOESM1_ESM.pdf (588 kb)
(PDF 588 KB)

References

  1. Ashmore J, Shen A Q, Kavehpour H P, Stone H A, McKinley G H (2008) Coating flows of non-Newtonian fluids: weakly and strongly elastic limits. J Eng Math 60(1):17–41.  https://doi.org/10.1007/s10665-007-9152-8 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Atalık K, Keunings R (2004) On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear. J Non-Newtonian Fluid Mech 122(1):107–116.  https://doi.org/10.1016/j.jnnfm.2003.11.012 CrossRefzbMATHGoogle Scholar
  3. Batra R L, Mohan V (1978) Roller bearing lubrication with shear thinning lubricants. Wear 51(2):213–225.  https://doi.org/10.1016/0043-1648(78)90261-2 CrossRefGoogle Scholar
  4. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1 Fluid Mechanics, 2nd edn. Wiley, New York. ISBN 978-0-471-80245-7Google Scholar
  5. Corman R E, Rao L, Bharadwaj N A, Allison J T, Ewoldt R H (2016) Setting material function design targets for linear viscoelastic materials and structures. J Mech Des 138(5):051402.  https://doi.org/10.1115/1.4032698 CrossRefGoogle Scholar
  6. Criminale WO Jr, Ericksen J L, Filbey GL Jr (1957) Steady shear flow of non-Newtonian fluids. Arch Ration Mech Anal 1(1):410–417.  https://doi.org/10.1007/BF00298018 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197.  https://doi.org/10.1109/4235.996017 CrossRefGoogle Scholar
  8. Deshmukh A P, Allison J T (2016) Multidisciplinary dynamic optimization of horizontal axis wind turbine design. Struct Multidiscip Optim 53(1):15–27.  https://doi.org/10.1007/s00158-015-1308-y MathSciNetCrossRefGoogle Scholar
  9. Deville MO, Fischer PF, Mund EH (2002) High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge. ISBN 978-0-521-45309-7CrossRefzbMATHGoogle Scholar
  10. Etsion I (2004) Improving tribological performance of mechanical components by laser surface texturing. Tribol Lett 17(4):733–737.  https://doi.org/10.1007/s11249-004-8081-1 CrossRefGoogle Scholar
  11. Ewoldt R H (2014) Extremely soft: design with rheologically-complex fluids. Soft Robot 1(1):12–20.  https://doi.org/10.1089/soro.2013.1508 CrossRefGoogle Scholar
  12. Fornberg B (2009) A practical guide to pseudospectral methods. Cambridge University Press, Cambridge. ISBN 978-0-511-62635-7.  https://doi.org/10.1017/CBO9780511626357
  13. Freund J B, Ewoldt R H (2015) Quantitative rheological model selection: good fits versus credible models using Bayesian inference. J Rheol 59(3):667–701.  https://doi.org/10.1122/1.4915299 CrossRefGoogle Scholar
  14. Gropper D, Wang L, Harvey T J (2016) Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol Int 94:509–529.  https://doi.org/10.1016/j.triboint.2015.10.009 CrossRefGoogle Scholar
  15. Hamilton D B, Walowit J A, AC M (1966) A theory of lubrication by microirregularities. J Basic Eng 88(1):177–185.  https://doi.org/10.1115/1.3645799 CrossRefGoogle Scholar
  16. Heath MT (2002) Scientific computing: an introductory survey, 2nd edn. McGraw-Hill, New York. ISBN 978-0-07-239910-3zbMATHGoogle Scholar
  17. Herber D R, Allison J T (2019) Nested and simultaneous solution strategies for general combined plant and control design problems. J Mech Des 141(1):011402.  https://doi.org/10.1115/1.4040705 CrossRefGoogle Scholar
  18. Hirani H, Athre K, Biswas S (2008) Lubricant shear thinning analysis of engine journal bearings. Tribol Trans 44(1):125–131.  https://doi.org/10.1080/10402000108982435 CrossRefGoogle Scholar
  19. Huggins M L (1942) The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc 64(11):2716–2718.  https://doi.org/10.1021/ja01263a056 CrossRefGoogle Scholar
  20. Johnston M T, King W P, Ewoldt R H (2015) Shear stress characteristics of microtextured surfaces in gap-controlled hydrodynamic lubrication. Tribol Int 82:123–132.  https://doi.org/10.1016/j.triboint.2014.10.005 CrossRefGoogle Scholar
  21. Keunings R (2000) A survey of computational rheology. In: Proceedings of the XIIIth international congress on rheology, pp 7–14Google Scholar
  22. Kopriva DA (2009) Implementing spectral methods for partial differential equations. Springer, Netherlands, ISBN 978-90-481-2260-8.  https://doi.org/10.1007/978-90-481-2261-5
  23. Lee YH, Corman RE, Ewoldt RH, Allison JT (2017a) A multiobjective adaptive surrogate modeling-based optimization (MO-ASMO) framework using efficient sampling strategies. In: Proceedings of the ASME 2017 IDETC/CIE conference.  https://doi.org/10.1115/DETC2017-67541, vol 2B. 43rd Design Automation Conference, DETC2017-67541, Cleveland, p V02BT03A023
  24. Lee YH, Schuh JK, Ewoldt RH, Allison JT (2017b) Enhancing full-film lubrication performance via arbitrary surface texture design. J Mech Des 139 (5):053401–1–13.  https://doi.org/10.1115/1.4036133
  25. Lin C, Lee YH, Schuh JK, Ewoldt RH, Allison JT (2018) Efficient optimal surface texture design using linearization. In: Schumacher A, Vietor T, Fiebig S, Bletzinger KU, Maute K (eds) Advances in structural and multidisciplinary optimization: Proceedings of the 12th world congress of structural and multidisciplinary optimization (WCSMO12).  https://doi.org/10.1007/978-3-319-67988-4_48. Springer, Cham, pp 632–647
  26. Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley, New York. ISBN 978-0-471-18575-8Google Scholar
  27. Malak RJ Jr, Paredis C J J (2010) Using support vector machines to formalize the valid input domain of predictive models in systems design problems. J Mech Des 132(10):101001.  https://doi.org/10.1115/1.4002151 CrossRefGoogle Scholar
  28. Nelson A Z, Ewoldt R H (2017) Design of yield-stress fluids: a rheology-to-structure inverse problem. Soft Matter 13(41):7578–7594.  https://doi.org/10.1039/C7SM00758B CrossRefGoogle Scholar
  29. Oldroyd J G (1950) On the formulation of rheological equations of state. Proc R Soc A: Math Phys Eng Sci 200(1063):523–541.  https://doi.org/10.1098/rspa.1950.0035 MathSciNetCrossRefzbMATHGoogle Scholar
  30. Owens RG, Phillips TN (2002) Computational rheology. Imperial College Press, London. ISBN 978-1-86094-186-3CrossRefzbMATHGoogle Scholar
  31. Pettersson U, Jacobson S (2003) Influence of surface texture on boundary lubricated sliding contacts. Tribol Int 36(11):857–864.  https://doi.org/10.1016/S0301-679X(03)00104-X CrossRefGoogle Scholar
  32. Reynolds O (1886) On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos Trans R Soc Lond 177:157–234.  https://doi.org/10.1098/rspl.1886.0021 CrossRefzbMATHGoogle Scholar
  33. Schuh JK (2015a) Surface textures and non-Newtonian fluids for decreased friction in full film lubrication. Master’s thesis, University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/78561
  34. Schuh J K, Lee Y H, Allison J T, Ewoldt RH (2015b) Surface textures and non-Newtonian fluids for decreasing friction in lubricated sliding contact. In: 2015 fluid power innovation and research conference. Minneapolis, MNGoogle Scholar
  35. Schuh JK, Lee YH, Allison JT, Ewoldt RH (2017) Design-driven modeling of surface-textured full-film lubricated sliding: validation and rationale of nonstandard thrust observations. Tribol Lett 65(2):35–1–17.  https://doi.org/10.1007/s11249-017-0818-8 CrossRefGoogle Scholar
  36. Schuh JK (2018) Co-design of surface textures and non-Newtonian fluids for decreased friction. PhD thesis, University of Illinois at Urbana-Champaign, http://hdl.handle.net/2142/100988
  37. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464.  https://doi.org/10.1214/aos/1176344136 MathSciNetCrossRefzbMATHGoogle Scholar
  38. Shan S, Wang G G (2004) An efficient Pareto set identification approach for multiobjective optimization on black-box functions. J Mech Des 127(5):866–874.  https://doi.org/10.1115/1.1904639 CrossRefGoogle Scholar
  39. Steponaviĉè I, Shirazi-Manesh M, Hyndman RJ, Smith-Miles K, Villanova L (2016) On sampling methods for costly multiobjective black-box optimization. In: Advances in Stochastic and deterministic global optimization. Springer, Cham. ISBN 978-3-319-29975-4, pp 273–296.  https://doi.org/10.1007/978-3-319-29975-4_15
  40. Suh N P, Mosleh M, Howard P S (1994) Control of friction. Wear 175(1-2):151–158.  https://doi.org/10.1016/0043-1648(94)90178-3 CrossRefGoogle Scholar
  41. Tax D M, Duin R P (1999) Support vector domain description. Pattern Recogn Lett 20(11-13):1191–1199.  https://doi.org/10.1016/S0167-8655(99)00087-2 CrossRefGoogle Scholar
  42. Varenberg M, Halperin G, Etsion I (2002) Different aspects of the role of wear debris in fretting wear. Wear 252(11-12):902–910.  https://doi.org/10.1016/S0043-1648(02)00044-3 CrossRefGoogle Scholar
  43. Wakuda M, Yamauchi Y, Kanzaki S, Yasuda Y (2003) Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 254(3–4):356–363.  https://doi.org/10.1016/S0043-1648(03)00004-8 CrossRefGoogle Scholar
  44. Wang G G, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380.  https://doi.org/10.1115/1.2429697 CrossRefGoogle Scholar
  45. Wilson B, Cappelleri D, Simpson TW, Frecker M (2001) Efficient Pareto frontier exploration using surrogate approximations. Optim Eng 2(1):31–50.  https://doi.org/10.1023/A:1011818803494 MathSciNetCrossRefzbMATHGoogle Scholar
  46. Xiaodi L, Haosheng C, Darong C, Jiadao W (2009) Normal stress effects in journal bearing lubrication with maxwell fluid. In: Luo J, Meng Y, Shao T, Zhao Q (eds) Advanced tribology. Springer, Berlin, pp 231–234.  https://doi.org/10.1007/978-3-642-03653-8_73
  47. Yu H, Wang X, Zhou F (2010) Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribol Lett 37(2):123–130.  https://doi.org/10.1007/s11249-009-9497-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Industrial and Enterprise Systems EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations