Advertisement

Penalty functions and two-step selection procedure based DIRECT-type algorithm for constrained global optimization

  • Linas Stripinis
  • Remigijus PaulavičiusEmail author
  • Julius Žilinskas
Research Paper
  • 65 Downloads

Abstract

Applied optimization problems often include constraints. Although the well-known derivative-free global-search DIRECT algorithm performs well solving box-constrained global optimization problems, it does not naturally address constraints. In this article, we develop a new algorithm DIRECT-GLce for general constrained global optimization problems incorporating two-step selection procedure and penalty function approach in our recent DIRECT-GL algorithm. The proposed algorithm effectively explores hyper-rectangles with infeasible centers which are close to boundaries of feasibility and may cover feasible regions. An extensive experimental investigation revealed the potential of the proposed approach compared with other existing DIRECT-type algorithms for constrained global optimization problems, including important engineering problems.

Keywords

DIRECT-type algorithm DIRECT-type constraint-handling Nonconvex optimization Derivative-free optimization 

Notes

Acknowledgements

The authors would like to thank all anonymous referees for their valuable comments and suggestions to improve the paper.

Funding information

The research work of R. Paulavičius and L. Stripinis was funded by a Grant (No. P-MIP-17-60) from the Research Council of Lithuania.

References

  1. Basudhar A, Dribusch C, Lacaze S, Missoum S (2012) Constrained efficient global optimization with support vector machines. Struct Multidiscip Optim 46(2):201–221.  https://doi.org/10.1007/s00158-011-0745-5 CrossRefzbMATHGoogle Scholar
  2. Biegler LT, Grossmann IE (2004) Retrospective on optimization. Comput Chem Eng 28(8):1169–1192.  https://doi.org/10.1016/j.compchemeng.2003.11.003 CrossRefGoogle Scholar
  3. Birgin EG, Floudas CA, Martínez JM (2010) Global minimization using an augmented lagrangian method with variable lower-level constraints. Math Programming 125(1):139–162.  https://doi.org/10.1007/s10107-009-0264-y MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cagnina LC, Esquivel SC, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica (Ljubljana) 32(3):319–326zbMATHGoogle Scholar
  5. Costa MFP, Rocha AMAC, Fernandes EMGP (2017) Filter-based direct method for constrained global optimization. Journal of Global Optimization in Press.  https://doi.org/10.1007/s10898-017-0596-8
  6. Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91(2):201–213.  https://doi.org/10.1007/s101070100263 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Finkel DE (2005) Global optimization with the Direct algorithm. Ph.D. thesis, North Carolina State UniversityGoogle Scholar
  8. Fletcher R (1987) Practical methods of optimization, 2nd. John and Sons, Chichester.  https://doi.org/10.1097/00000539-200101000-00069 zbMATHGoogle Scholar
  9. Fletcher R, Leyffer S (2002) Nonlinear programming without a penalty function. Math Programming 91 (2):239–269.  https://doi.org/10.1007/s101070100244 MathSciNetCrossRefzbMATHGoogle Scholar
  10. Floudas CA (1999) Deterministic global optimization: theory, methods and applications, nonconvex optimization and its applications, vol 37. Springer, New York.  https://doi.org/10.1007/978-1-4757-4949-6 Google Scholar
  11. Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1):50–79.  https://doi.org/10.1016/j.paerosci.2008.11.001 CrossRefGoogle Scholar
  12. Gablonsky JM (2001) Modifications of the Direct algorithm. Ph.D. thesis, North Carolina State UniversityGoogle Scholar
  13. Hedar A (2005) Test functions for unconstrained global optimization. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm. Online; accessed: 2017-03-22
  14. Horst R, Pardalos PM, Thoai NV (1995) Introduction to global optimization. Nonconvex optimization and its application. Kluwer Academic Publishers, DordrectzbMATHGoogle Scholar
  15. Jones DR (2001) The Direct global optimization algorithm. In: Floudas CA, Pardalos PM (eds) The encyclopedia of optimization. Kluwer Academic Publishers, Dordrect, pp 431–440Google Scholar
  16. Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157–181.  https://doi.org/10.1007/BF00941892 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kazemi M, Wang GG, Rahnamayan S, Gupta K (2011) Metamodel-based optimization for problems with expensive objective and constraint functions. J Mech Des 133(1):14,505.  https://doi.org/10.1115/1.4003035 CrossRefGoogle Scholar
  18. Liu H, Xu S, Chen X, Wang X, Ma Q (2017) Constrained global optimization via a direct-type constraint-handling technique and an adaptive metamodeling strategy. Struct Multidiscip Optim 55(1):155–177.  https://doi.org/10.1007/s00158-016-1482-6 MathSciNetCrossRefGoogle Scholar
  19. Liu Q, Cheng W (2014) A modified DIRECT algorithm with bilevel partition. J Glob Optim 60(3):483–499.  https://doi.org/10.1007/s10898-013-0119-1 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20 (1):172–191.  https://doi.org/10.1137/080724083 MathSciNetCrossRefzbMATHGoogle Scholar
  21. Na J, Lim Y, Han C (2017) A modified DIRECT algorithm for hidden constraints in an LNG process optimization. Energy 126(C):488–500Google Scholar
  22. Paulavičius R, Chiter L, žilinskas J (2018) Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants. J Glob Optim 71(1):5–20.  https://doi.org/10.1007/s10898-016-0485-6 MathSciNetCrossRefzbMATHGoogle Scholar
  23. Paulavičius R, Sergeyev YD, Kvasov DE, žilinskas J (2014) Globally-biased DISIMPL algorithm for expensive global optimization. J Glob Optim 59(2-3):545–567.  https://doi.org/10.1007/s10898-014-0180-4 MathSciNetCrossRefzbMATHGoogle Scholar
  24. Paulavičius R, žilinskas J (2013) Simplicial Lipschitz optimization without the Lipschitz constant. J Glob Optim 59(1):23–40.  https://doi.org/10.1007/s10898-013-0089-3 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Paulavičius R, žilinskas J (2014) Simplicial global optimization. Springer Briefs in optimization. Springer, New YorkCrossRefGoogle Scholar
  26. Paulavičius R, žilinskas J (2016) Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim Lett 10(2):237–246.  https://doi.org/10.1007/s11590-014-0772-4 MathSciNetCrossRefzbMATHGoogle Scholar
  27. Pillo GD, Liuzzi G, Lucidi S, Piccialli V, Rinaldi F (2016) A direct-type approach for derivative-free constrained global optimization. Comput Optim Appl 65(2):361–397.  https://doi.org/10.1007/s10589-016-9876-3 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Pillo GD, Lucidi S, Rinaldi F (2010) An approach to constrained global optimization based on exact penalty functions. J Optim Theory Appl 54(2):251–260.  https://doi.org/10.1007/s10898-010-9582-0 MathSciNetCrossRefzbMATHGoogle Scholar
  29. Pintér JD (1996) Global optimization in action: continuous and Lipschitz optimization: algorithms, implementations and applications, nonconvex optimization and its applications, vol 6. Springer, New YorkzbMATHGoogle Scholar
  30. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396.  https://doi.org/10.1109/TEVC.2003.814902 CrossRefGoogle Scholar
  31. Regis RG (2011) Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions. Comput Oper Res 38(5):837–853.  https://doi.org/10.1016/j.cor.2010.09.013 MathSciNetCrossRefGoogle Scholar
  32. Regis RG (2014) Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points. Eng Optim 46(2):218–243.  https://doi.org/10.1080/0305215X.2013.765000 MathSciNetCrossRefGoogle Scholar
  33. Sergeyev YD, Kvasov DE (2006) Global search based on diagonal partitions and a set of Lipschitz constants. SIAM J Optim 16(3):910–937.  https://doi.org/10.1137/040621132 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Shan S, Wang GG (2010) Metamodeling for high dimensional simulation-based design problems. J Mech Des 132(5):051,009.  https://doi.org/10.1115/1.4001597 CrossRefGoogle Scholar
  35. Shan S, Wang GG (2010) Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally- expensive black-box functions. Struct Multidiscip Optim 41(2):219–241.  https://doi.org/10.1007/s00158-009-0420-2 MathSciNetCrossRefzbMATHGoogle Scholar
  36. Stripinis L, Paulavičius R, žilinskas J (2018) Improved scheme for selection of potentially optimal hyper-rectangles in direct. Optim Lett 12(7):1699–1712.  https://doi.org/10.1007/s11590-017-1228-4
  37. Stripinis L, Paulavičius R (2018) DIRECTLib – a library of global optimization problems for DIRECT-type methods, v1.1.  https://doi.org/10.5281/zenodo.1403547
  38. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. KanGAL, pp 251–256Google Scholar
  39. Vaz A, Vicente L (2009) Pswarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim Methods Softw 24(4–5):669–685.  https://doi.org/10.1080/10556780902909948 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Vilnius University Institute of Data Science and Digital TechnologiesVilniusLithuania

Personalised recommendations