Advertisement

Structural topology optimization under limit analysis

  • Juliano Fin
  • Lavinia Alves Borges
  • Eduardo Alberto Fancello
Research Paper
  • 98 Downloads

Abstract

The objective of this paper is to look for structural designs arising from topological optimization procedures that aim at maximizing the loading capacity regarding incipient plastic collapse. The mechanical problem is described by limit analysis (LA) formulation that allows a direct determination of the load that produces the plastic collapse phenomenon without information about the load history. In case of proportional loading processes, LA consists of computing a critical load factor such that the structure undergoes plastic collapse when the reference load is amplified by this factor. In this case, LA can be cast mathematically as a convex constrained optimization problem. The design optimization is formally stated as the maximization of the collapse load factor subject to a fixed quantity of available material. The design is controlled by solid isotropic microstructure with penalization (SIMP) technique. In the particular case of the chosen objective function, the solution of the adjoint problem in sensitivity analysis coincides with the Newton–Raphson update vector obtained at the convergence of the procedure developed to solve the LA optimization problem, fact that reduces the numerical cost of gradient calculations. In order to keep the implementation straightforward, the optimality conditions are solved by a classical heuristic element-by-element density updating algorithm, well known in the literature. The set of tested examples brings encouraging results with structures being stressed to ultimate bearing states. Implementation was kept as simple as possible, leaving the field open to further investigations. Numerical tests show that, despite having similar geometries, plastic collapse factor obtained with compliance optimal designs are lower than those obtained with present formulation.

Keywords

Limit analysis Topology optimization Elastoplasticity 

Notes

References

  1. Alberdi R, Khandelwal K (2017) Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints. Finite Elem Anal Des 133:42–61.  https://doi.org/10.1016/j.finel.2017.05.004 MathSciNetCrossRefGoogle Scholar
  2. Amir O (2017) Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity. Struct Multidiscip Optim 55(5):1797–1818.  https://doi.org/10.1007/s00158-016-1618-8 MathSciNetCrossRefGoogle Scholar
  3. Andersen KD, Christiansen E, Overton ML (1998) Computing limit loads by minimizing a sum of norms. SIAM J Sci Comput 19(3):1046–1062.  https://doi.org/10.1137/s1064827594275303 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224.  https://doi.org/10.1016/0045-7825(88)90086-2 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, 2nd. Springer, Berlin.  https://doi.org/10.1063/1.3278595 zbMATHGoogle Scholar
  6. Borges LA, Zouain N, Huespe AE (1996) Nonlinear optimization procedure for limit analysis. Eur J Mech A/Solid 15(3):487–512zbMATHGoogle Scholar
  7. Cardoso EL, Fonseca JSO (2003) Complexity control in the topology optimization of continuum structures. J Braz Soc Mech Sci Eng 25(3):293–301.  https://doi.org/10.1590/s1678-58782003000300012 CrossRefGoogle Scholar
  8. Christiansen E (1980) Limit analysis in plasticity as a mathematical programming problem. CALCOLO 17(1):41–65.  https://doi.org/10.1007/BF02575862 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Christiansen E (1981) Computation of limit loads. Int J Numer Methods Eng 17(10):1547–1570.  https://doi.org/10.1002/nme.1620171009 MathSciNetCrossRefzbMATHGoogle Scholar
  10. Christiansen E (1996) Limit analysis of collapse states. In: Handbook of Numerical Analysis, Elsevier, pp 193–312.  https://doi.org/10.1016/s1570-8659(96)80004-4 Google Scholar
  11. Cohn M, Maier G (1977) Engineering plasticity by math programming. In: Proceedings of the NATO Advances Study Institute, OntarioGoogle Scholar
  12. Emmendoerfer H Jr, Fancello EA (2015) Otimização topológica com restrições de tensão local usando uma equação de reação-difusão baseada em level sets. In: Proceedings of the XXXVI Iberian Latin American Congress on Computational Methods in Engineering, ABMEC Brazilian Association of Computational Methods in Engineering.  https://doi.org/10.20906/cps/cilamce2015-0764
  13. Fancello EA (2006) Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Struct Multidiscip Optim 32(3):229–240.  https://doi.org/10.1007/s00158-006-0019-9 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Feijóo RA, Zouain N (1987) Variational formulations for rates and increments in plasticity. 1st Int Cong on Comput Plast I:33–57MathSciNetGoogle Scholar
  15. Frémond M, FRIAA A (1982) Les Métodes Statique et Cinématique en Calcul à la Rupture et an Analyse Limite. Eur J App Comp Mech 1(Nro 5):881–905zbMATHGoogle Scholar
  16. Fusch P, Pisano AA, Weichert D (eds) (2015) Direct methods for limit and shakedown analysis advanced computational algorithms and material modelling. Springer, Berlin.  https://doi.org/10.1007/978-3-319-12928-0 Google Scholar
  17. Kamenjarzh J (1996) Limit analysis of solids and structures. CRC Press, Boca RatonzbMATHGoogle Scholar
  18. Kammoun Z, Smaoui H (2014) A direct approach for continuous topology optimization subject to admissible loading. Comptes Rendus Mécanique 342(9):520–531.  https://doi.org/10.1016/j.crme.2014.06.003 CrossRefGoogle Scholar
  19. Kammoun Z, Smaoui H (2015) A direct method formulation for topology plastic design of continua. In: Fuschi P, Pisano A A, Weichert D (eds) Direct methods for limit and shakedown analysis of structures: Advanced computational algorithms and material modelling. Springer International Publishing, Cham, pp 47–63, DOI  https://doi.org/10.1007/978-3-319-12928-0-3
  20. Komkov V, Choi KK, Haug EJ (1986) Design sensitivity analysis of structural systems, vol 177. Academic Press, CambridgezbMATHGoogle Scholar
  21. Krabbenhoft K, Damkilde L (2002) A general non-linear optimization algorithm for lower bound limit analysis. Int J Numer Methods Eng 56(2):165–184.  https://doi.org/10.1002/nme.551 CrossRefzbMATHGoogle Scholar
  22. Li L, Zhang G, Khandelwal K (2017a) Design of energy dissipating elastoplastic structures under cyclic loads using topology optimization. Struct Multidiscip Optim 56(2):391–412.  https://doi.org/10.1007/s00158-017-1671-y MathSciNetCrossRefGoogle Scholar
  23. Li L, Zhang G, Khandelwal K (2017b) Topology optimization of energy absorbing structures with maximum damage constraint. Int J Numer Methods Eng 112:737–775.  https://doi.org/10.1002/nme.5531 MathSciNetCrossRefGoogle Scholar
  24. Lubliner J (1990) Plasticity theory. Maxwell Macmillan international editions in engineering. Macmillan, LondonGoogle Scholar
  25. Makrodimopoulos A, Martin CM (2007) Upper bound limit analysis using simplex strain elements and second-order cone programming. Int J Numer Anal Methods Geomech 31(6):835–865.  https://doi.org/10.1002/nag.567 CrossRefzbMATHGoogle Scholar
  26. Pastor F, Loute E (2005) Solving limit analysis problems: an interior-point method. Commun Numer Methods Eng 21(11):631–642.  https://doi.org/10.1002/cnm.779 MathSciNetCrossRefzbMATHGoogle Scholar
  27. Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscip Optim 26(1):50–66MathSciNetCrossRefGoogle Scholar
  28. Rockafellar RT (1970) Convex analysis. Princeton University Press, PrincetonCrossRefGoogle Scholar
  29. de Saxcé G, Bousshine L (1998) Limit analysis theorems for implicit standard materials: Application to the unilateral contact with dry friction and the non-associated flow rules in soils and rocks. Int J Mech Sci 40(4):387–398.  https://doi.org/10.1016/S0020-7403(97)00058-1, http://www.sciencedirect.com/science/article/pii/S0020740397000581 CrossRefGoogle Scholar
  30. Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21(2):120–127.  https://doi.org/10.1007/s001580050176 MathSciNetCrossRefGoogle Scholar
  31. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75.  https://doi.org/10.1007/BF01214002 CrossRefGoogle Scholar
  32. Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Struct Multidiscip Optim 54(4):783–793.  https://doi.org/10.1007/s00158-016-1435-0 MathSciNetCrossRefGoogle Scholar
  33. Yu Mh, Ma GW, Li JC (2009) Structural plasticity: limit, shakedown and dynamic plastic analyses of structures, 1st.  https://doi.org/10.1007/978-3-540-88152-0 CrossRefGoogle Scholar
  34. Zhang G, Li L, Khandelwal K (2017) Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements. Struct Multidiscip Optim 55(6):1965–1988.  https://doi.org/10.1007/s00158-016-1612-1 MathSciNetCrossRefGoogle Scholar
  35. Zouain N, Herskovits J, Borges LA, Feijóo RA (1993) An iterative algorithm for limit analysis with nonlinear yield functions. Int J Solids Struct 30(10):1397–1417.  https://doi.org/10.1016/0020-7683(93)90220-2 MathSciNetCrossRefzbMATHGoogle Scholar
  36. Zouain N, Borges L, Silveira LJ (2002) An algorithm for shakedown analysis with nonlinear yield functions. Comput Methods Appl Mech Eng 191(23-24):2463–2481.  https://doi.org/10.1016/S0045-7825(01)00374-7 MathSciNetCrossRefzbMATHGoogle Scholar
  37. Zouain N, Borges L, Silveira JL (2014) Quadratic velocity-linear stress interpolations in limit analysis. Int J Numer Methods in Eng 98(7):469–491.  https://doi.org/10.1002/nme.4636 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GRANTE - Department of Mechanical EngineeringUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Mechanical Engineering, COPPE-PolitécnicaUniversidade Federal de Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations