Advertisement

Structural and Multidisciplinary Optimization

, Volume 59, Issue 4, pp 1125–1141 | Cite as

An optimality criteria-based method for the simultaneous optimization of the structural design and placement of piezoelectric actuators

  • Alexandre MolterEmail author
  • Lucas dos Santos Fernandez
  • Jonathan Brum Lauz
Research Paper
  • 177 Downloads

Abstract

This work provides an optimality criteria-based method for the simultaneous optimization of the structural design and optimal placement of piezoelectric actuators for statically loaded structures. The goal of the topology optimization is to find the optimal distribution of the structural and piezoelectric materials in the compliance minimization context with a volume constraint for each material. All expressions used in the implementation of the resulting algorithm are developed in detail. Some numerical complications inherent to the type of problem we are dealing with are discussed and a numerical procedure is proposed for each one. Results are shown for two-dimensional beams through four numerical examples.

Keywords

Topology optimization Actuator placement Piezoelectric material Statically loaded structures Optimality criteria-based method 

Notes

Acknowledgements

The authors are grateful to Fabrício Bandeira Cabral and Leslie Darien Pérez Fernández for their contributions to the improvement of this work.

Funding information

The second and third authors received financial support from the CNPq (Brazilian Research Council) and CAPES (Brazilian Higher Education Staff Training Agency), respectively.

References

  1. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRefGoogle Scholar
  2. Bendsøe MP (1995) Optimization of structural topology, shape and material. Springer, BerlinCrossRefzbMATHGoogle Scholar
  3. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654zbMATHGoogle Scholar
  4. Bendsøe MP, Sigmund O (2003) Topology optimization. Theory methods and applications. Springer, BerlinzbMATHGoogle Scholar
  5. Buehler MJ, Bettig B, Parker GG (2004) Topology optimization of smart structures using a homogenization approach. J Intell Mater Syst Struct 15:655–667CrossRefGoogle Scholar
  6. Carbonari RC, Silva ECN, Nishiwaki S (2007) Optimum placement of piezoelectric material in piezoactuator design. Smart Mater Struct 16:207–220CrossRefGoogle Scholar
  7. Cardoso EL, Fonseca JSO (2004) An incremental Lagrangian formulation to the analysis of piezoelectric bodies subjected to geometric non-linearities. Int J Numer Meth Eng 59:963–987CrossRefzbMATHGoogle Scholar
  8. De Leon DM, de Souza CE, Fonseca JSO, da Silva RGA (2012) Aeroelastic tailoring using fiber orientation and topology optimization. Struct Multidiscipl Optim 46(5):663–677MathSciNetCrossRefzbMATHGoogle Scholar
  9. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscipl Optim 49(1):1–38MathSciNetCrossRefGoogle Scholar
  10. Fernandez LS, Molter A, Botelho FS (2017) Simultaneous topology optimization and proportional actuators localization. SeMA J 74(4):385–409MathSciNetCrossRefzbMATHGoogle Scholar
  11. Frecker MI (2003) Recent advances in optimization of smart structures and actuators. J Intell Mater Syst Struct 14:207–216CrossRefGoogle Scholar
  12. Gonçalves JF, De Leon DM, Perondi EA (2017) Topology optimization of embedded piezoelectric actuators considering control spillover effects. J Sound Vib 388:20–41CrossRefGoogle Scholar
  13. Gonçalves JF, De Leon DM, Perondi EA (2018) Simultaneous optimization of piezoelectric actuator topology and polarization. Struct Multidiscipl Optim 58(3):1139–1154MathSciNetCrossRefGoogle Scholar
  14. Gupta V, Sharma M, Thakur N (2010) Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review. J Intell Mater Syst Struct 21:1227–1243CrossRefGoogle Scholar
  15. Kang Z, Tong L (2008) Integrated optimization of material layout and control voltage for piezoelectric laminated plates. J Intell Mater Syst Struct 19:889–904CrossRefGoogle Scholar
  16. Kang Z, Wang R, Tong L (2011) Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Comput Methods in Appl Mech Eng 200(13–16):1467–1478MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscipl Optim 26(5):295–307CrossRefGoogle Scholar
  18. Luo Z, Gao W, Song C (2010) Design of multi-phase piezoelectric actuators. J Intell Mater Syst Struct 21:1851–1865CrossRefGoogle Scholar
  19. Ma Z. -D., Kikuch N, Hagiwara L (1993) Structural topology and shape optimization for a frequency response problem. Comput Mech 13:157–174MathSciNetCrossRefzbMATHGoogle Scholar
  20. Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Meth Eng 59:1925–1944MathSciNetCrossRefzbMATHGoogle Scholar
  21. Menuzzi O, Fonseca JSO, Perondi EA, Gonçalves JF, Padoin E, da Silveira OAA (2017) Piezoelectric sensor location by the observability gramian maximization using topology optimization. Comput Appl Math.  https://doi.org/10.1007/s40314-017-0517-y
  22. Molter A, Fernandez LdS, Fonseca JSO (2016) Simultaneous topology optimization of structure and piezoelectric actuators distribution. Appl Math Model 40(9–10):5576–5588MathSciNetCrossRefGoogle Scholar
  23. Molter A, da Silveira OAA, Bottega V, Fonseca JSO (2013) Integrated topology optimization and optimal control for vibration suppression in structural design. Struct Multidiscipl Optim 47:389–397MathSciNetCrossRefzbMATHGoogle Scholar
  24. Piefort V (2001) Finite element modeling of piezoelectric active structures. Ph.D. Thesis. Université Libre de Bruxelles, Bruxelles, BelgiqueGoogle Scholar
  25. Qi H, Fang D, Yao Z (1997) FEM analysis of electro-mechanical coupling effect of piezoelectric materials. Comput Mater Sci 8:283–290CrossRefGoogle Scholar
  26. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRefGoogle Scholar
  27. Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscipl Optim 21 (2):120–127CrossRefGoogle Scholar
  28. Silva ECN (2003) Topology optimization applied to the design of linear piezoelectric motors. J Intell Mater Syst Struct 14:309– 322CrossRefGoogle Scholar
  29. Silveira OAA, Fonseca JSO, Santos IF (2014) Actuator topology design using the controllability Gramian. Struct Multidiscipl Optim 51(1):145–157MathSciNetCrossRefGoogle Scholar
  30. Wang Y, Luo Z, Zhang X, Kang Z (2014) Topological design of compliant smart structures with embedded movable actuators. Smart Mater Struct 23(4):045024CrossRefGoogle Scholar
  31. Yang K, Zhu J, Wu M, Zhang W (2018) Integrated optimization of actuators and structural topology of piezoelectric composite structures for static shape control. Comput Methods Appl Mech Engrg 334(1):440–469MathSciNetCrossRefGoogle Scholar
  32. Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods in Appl Mech Eng 89:309–336CrossRefGoogle Scholar
  33. Zuo W, Saitou K (2017) Multi-material topology optimization using ordered SIMP interpolation. Struct Multidisc Optim 55(2):477–491MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexandre Molter
    • 1
    Email author
  • Lucas dos Santos Fernandez
    • 2
  • Jonathan Brum Lauz
    • 3
  1. 1.Department of Mathematics and StatisticsFederal University of PelotasPelotasBrazil
  2. 2.National Laboratory for Scientific ComputingLNCC/MCTICPetrópolisBrazil
  3. 3.Federal University of PelotasPelotasBrazil

Personalised recommendations