Advertisement

Structural and Multidisciplinary Optimization

, Volume 59, Issue 2, pp 461–483 | Cite as

Design of periodic elastoplastic energy dissipating microstructures

  • Ryan Alberdi
  • Kapil KhandelwalEmail author
Research Paper
  • 182 Downloads

Abstract

The design of periodic elastoplastic microstructures for maximum energy dissipation is carried out using topology optimization. While the topology optimization of elastic microstructures has been performed in numerous studies, microstructural design considering inelastic behavior is relatively untouched due to a number of reasons which are addressed in this study. An RVE-based multiscale model is employed for computational homogenization with periodic boundary constraints, satisfying the Hill-Mandel principle. The plastic anisotropy which may be prevalent in materials fabricated through additive manufacturing processes is considered by modeling the constitutive behavior at the microscale with Hoffman plasticity. Discretization is done using enhanced assumed strain elements to avoid locking from incompressible plastic flow under plane strain conditions and a Lagrange multiplier approach is used to enforce periodic boundary constraints in the discrete system. The design problem is formulated using a density-based parameterization in conjunction with a SIMP-like material interpolation scheme. Attention is devoted to issues such as dependence on initial design and enforcement of microstructural connectivity, and a number of optimized microstructural designs are obtained under different prescribed deformation modes.

Keywords

Architectured microstructures Nonlinear topology optimization RVE-based multiscale models Computational homogenization Anisotropic plasticity 

Notes

Funding information

The presented work is supported in part by the US National Science Foundation through Grant CMMI-1762277. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

References

  1. Alberdi R, Khandelwal K (2017) Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints. Finite Elem Anal Des 133:42–61.  https://doi.org/10.1016/j.finel.2017.05.004 MathSciNetGoogle Scholar
  2. Alberdi R, Zhang G, Khandelwal K (2018a) A framework for implementation of rve-based multiscale models in computational homogenization using isogeometric analysis. Int J Numer Methods Eng 114(9):1018–1051.  https://doi.org/10.1002/nme.5775 MathSciNetGoogle Scholar
  3. Alberdi R, Zhang G, Li L, Khandelwal K (2018b) A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization. International Journal for Numerical Methods in Engineering.  https://doi.org/10.1002/nme.5794
  4. Amstutz S, Andra H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216(2):573–588.  https://doi.org/10.1016/j.jcp.2005.12.015 MathSciNetzbMATHGoogle Scholar
  5. Amstutz S, Giusti SM, Novotny AA, de Souza Neto EA (2010) Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int J Numer Methods Eng 84(6):733–756.  https://doi.org/10.1002/nme.2922 MathSciNetzbMATHGoogle Scholar
  6. Aymeric M, Allaire G, Jouve F (2018) Elasto-plastic shape optimization using the level set method. SIAM J Control Optim 56(1):556–581.  https://doi.org/10.1137/17M1128940 MathSciNetzbMATHGoogle Scholar
  7. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654.  https://doi.org/10.1007/s004190050248 zbMATHGoogle Scholar
  8. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer Science & Business Media, BerlinzbMATHGoogle Scholar
  9. Bensoussan A, Lions JL, Papanikolau G (1978) Asymptotic analysis for periodic structures. North Holland, AmsterdamGoogle Scholar
  10. Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo RA (2016) Variational foundations and generalized unified theory of rve-based multiscale models. Arch Comput Meth Eng 23(2):191–253.  https://doi.org/10.1007/s11831-014-9137-5 MathSciNetzbMATHGoogle Scholar
  11. Cadman JE, Zhou S, Chen Y, Li Q (2013) On design of multi-functional microstructural materials. J Mater Sci 48(1):51–66.  https://doi.org/10.1007/s10853-012-6643-4 Google Scholar
  12. Cantrell J, Rohde S, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Jerez A, Steinbach D, Kroese C, Ifju P (2017) Experimental characterization of the mechanical properties of 3d printed abs and polycarbonate parts. In: Yoshida S, Lamberti L, Sciammarella C (eds) Advancement of optical methods in experimental mechanics, vol 3. Springer International Publishing, Cham, pp 89–105Google Scholar
  13. Carstensen JV, Lotfi R, Guest JK, Chen W, Schroers J (2015) Topology optimization of cellular materials with maximized energy absorption. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 2B: 41st Design Automation Conference.  https://doi.org/10.1115/DETC2015-47757
  14. Chen W, Xia L, Yang J, Huang X (2018) Optimal microstructures of elastoplastic cellular materials under various macroscopic strains. Mech Mater 118:120–132.  https://doi.org/10.1016/j.mechmat.2017.10.002 Google Scholar
  15. Christensen J, Kadic M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5(3):453–462.  https://doi.org/10.1557/mrc.2015.51 Google Scholar
  16. Crisfield M (1991) Non-linear finite element analysis of solids and structures. Wiley, West SussexzbMATHGoogle Scholar
  17. De Borst R, Feenstra PH (1990) Studies in anisotropic plasticity with reference to the hill criterion. Int J Numer Methods Eng 29(2):315–336.  https://doi.org/10.1002/nme.1620290208 zbMATHGoogle Scholar
  18. De Souza Neto EA, Feijoo RA (2006) Variational foundations of multi-scale constitutive models of solid: small and large strain kinematical formulation. LNCC Research & Development Report 16Google Scholar
  19. De Souza Neto EA, Amstutz S, Giusti SM, Novotny AA (2010) Topological derivative-based optimization of micro-structures considering different multi-scale models. CMES: Comput Model Eng Sci 62(1):23–56.  https://doi.org/10.3970/cmes.2010.062.023 MathSciNetzbMATHGoogle Scholar
  20. De Souza Neto EA, Peric D, Owen DRJ (2011) Computational methods for plasticity: theory and applications. Wiley, West SussexGoogle Scholar
  21. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49 (1):1–38.  https://doi.org/10.1007/s00158-013-0956-z MathSciNetGoogle Scholar
  22. Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: past, present and future. Proc R Soc London Math Phys Eng Sci 466(2121):2495–2516.  https://doi.org/10.1098/rspa.2010.0215 Google Scholar
  23. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928.  https://doi.org/10.1007/s11665-014-0958-z Google Scholar
  24. Geers M, Kouznetsova V, Brekelmans W (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182.  https://doi.org/10.1016/j.cam.2009.08.077 zbMATHGoogle Scholar
  25. Gibiansky LV, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498.  https://doi.org/10.1016/S0022-5096(99)00043-5 MathSciNetzbMATHGoogle Scholar
  26. Giusti S, Novotny A, de Souza Neto E, Feijoo R (2009) Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. J Mech Phys Solids 57(3):555–570.  https://doi.org/10.1016/j.jmps.2008.11.008 MathSciNetzbMATHGoogle Scholar
  27. Guo N, Leu M C (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243.  https://doi.org/10.1007/s11465-013-0248-8 Google Scholar
  28. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc London Math Phys Eng Sci 193(1033):281–297.  https://doi.org/10.1098/rspa.1948.0045 MathSciNetzbMATHGoogle Scholar
  29. Hill R (1963) Elastic properties of reinforced solids: Some theoretical principles. J Mech Phys Solids 11 (5):357–372.  https://doi.org/10.1016/0022-5096(63)90036-X zbMATHGoogle Scholar
  30. Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15(2):79–95.  https://doi.org/10.1016/0022-5096(67)90018-X Google Scholar
  31. Kasper EP, Taylor RL (1997) A mixed enhanced strain method: Linear problems. Department of Civil and Environmental Engineering, University of California at Berkeley; Report No: UCB/SEMM-97/02Google Scholar
  32. Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: Part i: Geometrically linear problems. Comput Struct 75(3):237–250.  https://doi.org/10.1016/S0045-7949(99)00134-0 Google Scholar
  33. Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 52(3):507–526.  https://doi.org/10.1007/s00158-015-1246-8 MathSciNetGoogle Scholar
  34. Lee JH, Singer JP, Thomas EL (2012) Micro-/nanostructured mechanical metamaterials. Adv Mater 24(36):4782–4810.  https://doi.org/10.1002/adma.201201644 Google Scholar
  35. Lefebvre LP, Banhart J, Dunand DC (2008) Porous metals and metallic foams: Current status and recent developments. Adv Eng Mater 10(9):769–774.  https://doi.org/10.1002/adem.200890025 Google Scholar
  36. Li J, Wu B, Myant C (2016) The current landscape for additive manufacturing research. ICL AMN reportGoogle Scholar
  37. Li L, Zhang G, Khandelwal K (2017a) Topology optimization of energy absorbing structures with maximum damage constraint. Int J Numer Methods Eng 112(7):737–775.  https://doi.org/10.1002/nme.5531 MathSciNetGoogle Scholar
  38. Li L, Zhang G, Khandelwal K (2017b) Topology optimization of energy absorbing structures with maximum damage constraint. Int J Numer Methods Eng 112(7):737–775.  https://doi.org/10.1002/nme.5531 MathSciNetGoogle Scholar
  39. Mandel J (1966) Contribution theorique a l’etude de l’ecrouissage et des lois de l’ecoulement plastique. Springer, BerlinGoogle Scholar
  40. Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91.  https://doi.org/10.1007/BF01278493 Google Scholar
  41. Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72(4):300–317.  https://doi.org/10.1007/s00419-002-0212-2 zbMATHGoogle Scholar
  42. Neves M, Rodrigues H, Guedes J (2000) Optimal design of periodic linear elastic microstructures. Comput Struct 76(1):421–429.  https://doi.org/10.1016/S0045-7949(99)00172-8 Google Scholar
  43. Osanov M, Guest JK (2016) Topology optimization for architected materials design. Annu Rev Mater Res 46(1):211–233.  https://doi.org/10.1146/annurev-matsci-070115-031826 Google Scholar
  44. Pavliotis G, Stuart A (2008) Multiscale methods: averaging and homogenization. Springer-Verlag, New YorkzbMATHGoogle Scholar
  45. Rashed M, Ashraf M, Mines R, Hazell P J (2016) Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Mater Des 95:518–533.  https://doi.org/10.1016/j.matdes.2016.01.146 Google Scholar
  46. Saeb S, Steinmann P, Javili A (2016) Aspects of computational homogenization at finite deformations: a unifying review from reuss’ to voigt’s bound. Appl Mech Rev 68(5): 050801-33.  https://doi.org/10.1115/1.4034024 Google Scholar
  47. Schaedler TA, Ro CJ, Sorensen AE, Eckel Z, Yang SS, Carter WB, Jacobsen AJ (2014) Designing metallic microlattices for energy absorber applications. Adv Eng Mater 16(3):276–283.  https://doi.org/10.1002/adem.201300206 Google Scholar
  48. Schellekens J, De Borst R (1990) The use of the hoffman yield criterion in finite element analysis of anisotropic composites. Comput Struct 37 (6):1087–1096.  https://doi.org/10.1016/0045-7949(90)90020-3 Google Scholar
  49. Sigmund O (1994) Materials with prescribed constitutive parameters: An inverse homogenization problem. Int J Solids Struct 31(17):2313–2329.  https://doi.org/10.1016/0020-7683(94)90154-6 MathSciNetzbMATHGoogle Scholar
  50. Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368.  https://doi.org/10.1016/0167-6636(94)00069-7 Google Scholar
  51. Sigmund O (2000) A new class of extremal composites. J Mech Phys Solids 48(2):397–428.  https://doi.org/10.1016/S0022-5096(99)00034-4 MathSciNetzbMATHGoogle Scholar
  52. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8):1595–1638.  https://doi.org/10.1002/nme.1620290802 MathSciNetzbMATHGoogle Scholar
  53. Strang G (2007) Computational science and engineering. Wellesley-Cambridge Press, WellesleyzbMATHGoogle Scholar
  54. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373.  https://doi.org/10.1002/nme.1620240207 MathSciNetzbMATHGoogle Scholar
  55. Swan CC, Arora JS (1997) Topology design of material layout in structured composites of high stiffness and strength. Struct Optim 13(1):45–59.  https://doi.org/10.1007/BF01198375 Google Scholar
  56. van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472.  https://doi.org/10.1007/s00158-013-0912-y MathSciNetGoogle Scholar
  57. Xu Q, Lv Y, Dong C, Sreeprased TS, Tian A, Zhang H, Tang Y, Yu Z, Li N (2015) Three-dimensional micro/nanoscale architectures: fabrication and applications. Nanoscale 7:10883–10895.  https://doi.org/10.1039/C5NR02048D Google Scholar
  58. Zhang G, Li L, Khandelwal K (2017) Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements. Struct Multidiscip Optim 55(6):1965–1988.  https://doi.org/10.1007/s00158-016-1612-1 MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil, Environmental EngineeringEarth Sciences University of Notre DameNotre DameUSA

Personalised recommendations