Advertisement

Structural and Multidisciplinary Optimization

, Volume 59, Issue 2, pp 389–401 | Cite as

Optimal design of a model energy conversion device

  • Lincoln Collins
  • Kaushik BhattacharyaEmail author
Research Paper
  • 183 Downloads

Abstract

Fuel cells, batteries, and thermochemical and other energy conversion devices involve the transport of a number of (electro-) chemical species through distinct materials so that they can meet and react at specified multi-material interfaces. Therefore, morphology or arrangement of these different materials can be critical in the performance of an energy conversion device. In this paper, we study a model problem motivated by a solar-driven thermochemical conversion device that splits water into hydrogen and oxygen. We formulate the problem as a system of coupled multi-material reaction-diffusion equations where each species diffuses selectively through a given material and where the reaction occurs at multi-material interfaces. We introduce a phase-field formulation of the optimal design problem and numerically study selected examples.

Keywords

Energy convergence device Phase field approach Reaction-diffusion equations Thermal hydrolysis Interfacial reactions 

Notes

Acknowledgments

This work draws from the doctoral thesis of LC at the California Institute of Technology. It is a pleasure to acknowledge many interesting discussions with Sossina M. Haile, Robert V. Kohn and Patrick Dondl. We gratefully acknowledge the financial support of the National Science Foundation through the PIRE grant: OISE-0967140.

Funding information

We gratefully acknowledge the financial support of the National Science Foundation through the PIRE grant: OISE-0967140.

References

  1. Allaire G (2001) Shape optimization by the homogenization method. Applied Mathematical Sciences. Springer, New YorkGoogle Scholar
  2. Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27(6):1085–1095CrossRefGoogle Scholar
  3. Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var 1(1):55–69MathSciNetCrossRefzbMATHGoogle Scholar
  4. Arico AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRefGoogle Scholar
  5. Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3(1):17–27, 01CrossRefGoogle Scholar
  6. Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Engineering online library. Springer, Berlin HeidelbergGoogle Scholar
  7. Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77–107MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bourdin B (2003) Design-dependent loads in topology optimization. ESAIM: Control Optim Calc Var 9:19–48, 8MathSciNetzbMATHGoogle Scholar
  9. Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946CrossRefGoogle Scholar
  10. Chen Y-H, Wang C-W, Zhang X, Sastry AM (2010) Porous cathode optimization for lithium cells Ionic and electronic conductivity, capacity, and selection of materials. J Power Sources 195(9):2851–2862CrossRefGoogle Scholar
  11. Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330(6012):1797–1801CrossRefGoogle Scholar
  12. Clemmer RMC, Corbin SF (2004) Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes. Solid State Ionics 166(3):251–259CrossRefGoogle Scholar
  13. Collins LN (2017) Optimal design of materials for energy conversion. Phd thesis, California Institute of TechnologyGoogle Scholar
  14. Comsol (2015) Multiphysics reference guide for COMSOL 5.1. www.comsol.com
  15. Cronin JS, Wilson JR, Barnett SA (2011) Impact of pore microstructure evolution on polarization resistance of ni-Yttria-stabilized zirconia fuel cell anodes. J Power Sources 196(5):2640– 2643CrossRefGoogle Scholar
  16. Dacorogna B (2007) Direct methods in the calculus of variations. Applied Mathematical Sciences. Springer, New YorkGoogle Scholar
  17. Ekeland I, Témam R (1999) Convex analysis and variational problems. Society of Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  18. Goodman J, Kohn R V, Reyna L (1986) Numerical study of a relaxed variational problem from optimal design. Comput Methods Appl Mech Eng 57(1):107–127MathSciNetCrossRefzbMATHGoogle Scholar
  19. Hu Y-S, Philipp A, Smarsly BM, Hore S, Antonietti M, Maier J (2007) Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv Funct Mater 17(12):1873–1878CrossRefGoogle Scholar
  20. Jia H, Gao P, Yang J, Wang J, Nuli Y, Yang Z (2011) Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv Energy Mater 1(6):1036– 1039CrossRefGoogle Scholar
  21. Jung WC, Dereux JO, Chueh WC, Hao Y, Haile SM (2012) High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells. Energy Environ Sci 5:8682–8689CrossRefGoogle Scholar
  22. Kohn RV, Strang G (1986) Optimal design and relaxation of variational problems, i. Commun Pur Appl Math 39(1):113–137MathSciNetCrossRefzbMATHGoogle Scholar
  23. Yu L, Fu Z-Y, Su B-L (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 22(22):4634–4667CrossRefGoogle Scholar
  24. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRefGoogle Scholar
  25. Smith JR, Chen A, Gostovic D, Hickey D, Kundinger D, Duncan KL, DeHoff RT, Jones KS, Wachsman ED (2009) Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs. Solid State Ionics 180(1):90–98CrossRefGoogle Scholar
  26. Stephenson DE, Walker BC, Skelton CB, Gorzkowski P, Rowenhorst DJ, Wheeler DR (2011) Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes. J Electrochem Soc 158(7):A781–A789CrossRefGoogle Scholar
  27. Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2009) Impact of anode microstructure on solid oxide fuel cells. Science 325(5942):852–855CrossRefGoogle Scholar
  28. Umeda GA, Chueh WC, Noailles L, Haile SM, Dunn BS (2008) Inverse opal ceria-zirconia: architectural engineering for heterogeneous catalysis. Energy Environ Sci 1:484–486CrossRefGoogle Scholar
  29. Wen Z, Wang Q, Zhang Q, Jinghong L (2007) In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv Funct Mater 17(15):2772–2778CrossRefGoogle Scholar
  30. Wilson JR, Cronin JS, Duong AT, Rukes S, Chen H-Y, Thornton K, Mumm DR, Barnett S (2010) Effect of composition of (La0.8Sr0.2MnO3 −Y2O3 −stabilized ZrO2) cathodes: correlating three-dimensional microstructure and polarization resistance. J Power Sources 195(7):1829–1840CrossRefGoogle Scholar
  31. Wilson JR, Kobsiriphat W, Mendoza R, Chen H-Y, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Stuart BA, Barnett SA (2006) Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5(7):541–544, 07CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sandia National LaboratoriesAlbuquerqueUSA
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations