Structural and Multidisciplinary Optimization

, Volume 59, Issue 1, pp 165–184 | Cite as

Topology optimization for the computationally poor: efficient high resolution procedures using beam modeling

  • Eilam AmirEmail author
  • Oded Amir


A structural optimization approach based on beam modeling is formulated and investigated. Its computational efficiency and enhanced design freedom place it as a computationally cheap alternative to continuum topology optimization. The optimization uses a ground structure parametrization and consists of alternating shape and sizing-topology design phases. The sizing-topology phase controls the thicknesses of tapered beams. Linear constraints applied in the shape phase provide regularity and consistency to the structure and enable the shape design variables to benefit from large freedom of movement. A direct comparison to continuum-based topology optimization shows that the beam-based optimization can offer significant computational savings while generating designs that perform similarly to continuum designs. The result of the beam optimization can be utilized also as an effective starting point for further design iterations on a refined continuum model. The reduced computational effort facilitates the optimization of high resolution structures without separating to micro and macro scales, hence non-uniform and non-periodic porous structures can be designed in a single-level optimization process. Furthermore, the beam modeling allows to impose minimum and maximum length scales explicitly without any additional constraints. The applicability of the suggested approach is demonstrated on several cases of stiffness maximization and mechanism design.


Topology optimization Beam modeling Tapered beam Computational efficiency 



  1. Aage N, Andreassen E, Lazarov BS (2014) Topology optimization using petsc: An easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565–572MathSciNetCrossRefGoogle Scholar
  2. Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84CrossRefGoogle Scholar
  3. Achtziger W (2007) On simultaneous optimization of truss geometry and topology. Struct Multidiscip Optim 33(4-5):285–304MathSciNetzbMATHCrossRefGoogle Scholar
  4. Alexandersen J, Lazarov B (2015) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Methods Appl Mech Eng 290:156–182MathSciNetCrossRefGoogle Scholar
  5. Andreassen E, Lazarov B, Sigmund O (2014) Design of manufacturable 3d extremal elastic microstructure. Mech Mater 69(1):1–10CrossRefGoogle Scholar
  6. Bathe K-J (2006) Finite element procedures Klaus-Jurgen BatheGoogle Scholar
  7. Ben-Tal A, Kočvara M, Zowe J (1993) Two nonsmooth approaches to simultaneous geometry and topology design of trusses. In: Topology Design of Structures. Springer, pp 31–42Google Scholar
  8. Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654zbMATHGoogle Scholar
  9. Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods, and applications Springer Science & Business MediaGoogle Scholar
  10. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetzbMATHCrossRefGoogle Scholar
  11. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158MathSciNetzbMATHCrossRefGoogle Scholar
  12. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459zbMATHCrossRefGoogle Scholar
  13. Challis V, Roberts A, Grotowski J (2014) High resolution topology optimization using graphics processing units (gpus). Struct Multidiscip Optim 49(2):315–325CrossRefGoogle Scholar
  14. Christensen PW, Klarbring A (2009) An introduction to structural optimization springerGoogle Scholar
  15. Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidiscip Optim 56(5):1147–1155MathSciNetCrossRefGoogle Scholar
  16. Cleghorn W, Tabarrok B (1992) Finite element formulation of a tapered timoshenko beam for free lateral vibration analysis. J Sound Vib 152(3):461–470zbMATHCrossRefGoogle Scholar
  17. Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. ISSN 1615-147XMathSciNetCrossRefGoogle Scholar
  18. Eisenberger M (1991) Stiffness matrices for non-prismatic members including transverse shear. Comput Struct 40(4):831–835CrossRefGoogle Scholar
  19. Gavranovic S, Hartmann D, Wever U (2015) Topology optimization using gpgpu. Master’s thesis, Master’s thesis, Technical University MunichGoogle Scholar
  20. Gil L, Andreu A (2001) Shape and cross-section optimisation of a truss structure. Comput Struct 79 (7):681–689CrossRefGoogle Scholar
  21. Groen J, Sigmund O (2017) Homogenization based topology optimization for high resolution manufacturable micro structures. Int J Numer Methods EngGoogle Scholar
  22. Guest J (2009) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37 (5):463–473MathSciNetzbMATHCrossRefGoogle Scholar
  23. Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238– 254MathSciNetzbMATHCrossRefGoogle Scholar
  24. Lazarov B, Wang F (2017) Maximum length scale in density based topology optimization. Comput Methods Appl Mech EngGoogle Scholar
  25. Lazarov B, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1-2):189–218CrossRefGoogle Scholar
  26. MATLAB (2013) MATLAB version (R2013a). The MathWorks, NatickGoogle Scholar
  27. Ramos JrA., Paulino G (2016) Filtering structures out of ground structures–a discrete filtering tool for structural design optimization. Struct Multidiscip Optim 54(1):95–116MathSciNetCrossRefGoogle Scholar
  28. Schmidt S, Schulz V (2011) A 2589 line topology optimization code written for the graphics card. Comput Vis Sci 14(6):249–256MathSciNetzbMATHCrossRefGoogle Scholar
  29. Schury F (2013) Two Scale Material Design From Theory to Practice. PhD thesis, University of Erlangen Nuremberg, Erlangen, p 6Google Scholar
  30. Schury F, Stingl M, Wein F (2012) Efficient two scale optimization of manufacturable graded structures. SIAM J Sci Comput 34(6): B711–B733MathSciNetzbMATHCrossRefGoogle Scholar
  31. Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329MathSciNetzbMATHCrossRefGoogle Scholar
  32. Sigmund O (2000) A new class of extremal composites. Journal of the Mechanics and Physics of Solids 48 (2):397–428MathSciNetzbMATHCrossRefGoogle Scholar
  33. Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25(2):227–239zbMATHCrossRefGoogle Scholar
  34. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRefGoogle Scholar
  35. Smith CJ, Gilbert M, Todd I, Derguti F (2016) Application of layout optimization to the design of additively manufactured metallic components. Struct Multidiscip Optim 54(5):1297–1313MathSciNetCrossRefGoogle Scholar
  36. Suresh K (2013) Efficient generation of large-scale pareto-optimal topologies. Struct Multidiscip Optim 47 (1):49–61MathSciNetzbMATHCrossRefGoogle Scholar
  37. Svanberg K (1987) The method of moving asymptotesa new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetzbMATHCrossRefGoogle Scholar
  38. Wadbro E, Berggren M (2009) Megapixel topology optimization on a graphics processing unit. SIAM Rev 51(4):707–721MathSciNetzbMATHCrossRefGoogle Scholar
  39. Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784zbMATHCrossRefGoogle Scholar
  40. Weaver W, Gere J (2012) Matrix analysis framed structures. Springer science & business mediaGoogle Scholar
  41. Wu J, Aage N, Westermann R, Sigmund O (2016a) Infill optimization for additive manufacturing - approaching bone-like porous structures. arXiv:1608.04366
  42. Wu J, Dick C, Westermann R (2016b) A system for high-resolution topology optimization. IEEE Trans Vis Comput Graph 22(3):1195–1208CrossRefGoogle Scholar
  43. Zegard T, Paulino GH (2013) Toward GPU accelerated topology optimization on unstructured meshes. Struct Multidiscip Optim 48(3):473–485. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technion – Israel Institute of Technology, Faculty of Civil and Environmental EngineeringHaifaIsrael

Personalised recommendations