Advertisement

A practical satellite layout optimization design approach based on enhanced finite-circle method

  • Xianqi Chen
  • Wen Yao
  • Yong Zhao
  • Xiaoqian Chen
  • Xiaohu Zheng
RESEARCH PAPER
  • 85 Downloads

Abstract

Satellite layout optimization design problems with complicated performance constraints are studied in this paper. In addition to the traditional geometric constraint, system centroid constraint, inertia angles constraint and dynamics performance, more complex design factors based on practical engineering requirements are considered, including thermal performance, CMA (compatibility, maintainability and accessibility) constraint and the special rules of the placement of special components. An enhanced interference algorithm based on finite-circle method (FCM) is proposed to handle CMA constraint, which can effectively control the distance between any two components. Moreover, to provide system engineers with the information of design space about dynamics and thermal performance, the accelerated particle swarm optimization (APSO) is proposed to optimize the constructed layout model globally. Finally, the feasibility and effectiveness of the proposed methodology are validated by a numerical test and an engineering example.

Keywords

Satellite layout optimization design CMA Finite-circle method Accelerated particle swarm optimization 

Notes

Acknowledgements

This work was supported in part by National Natural Science Foundation of China under Grant No.51675525 and 11725211.

References

  1. Adamowicz M, Albano A (1976) Nesting two-dimensional shapes in rectangular modules. Comput Des 8:27–33.  https://doi.org/10.1016/0010-4485(76)90006-3 Google Scholar
  2. Bennell JA, Dowsland KA, Dowsland WB (2000) The irregular cutting-stock problem - a new procedure for deriving the no-fit polygon. Comput Oper Res 28:271–287.  https://doi.org/10.1016/S0305-0548(00)00021-6 CrossRefMATHGoogle Scholar
  3. Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25:1–54.  https://doi.org/10.1162/EVCO_r_00180 CrossRefGoogle Scholar
  4. Cagan J, Degentesh D, Yin S (1998) A simulated annealing-based algorithm using hierarchical models for general three-dimensional component layout. Comput Des 30:781–790.  https://doi.org/10.1016/S0010-4485(98)00036-0 MATHGoogle Scholar
  5. Cao L, Li H (2016) Novel cubature predictive filter for relative position and attitude estimation of satellite formation considering J2. J Aerosp Eng 29:04015049.  https://doi.org/10.1061/(ASCE)AS.1943-5525.0000545 CrossRefGoogle Scholar
  6. Che C, Wang Y, Teng H (2008) Test problems for quasi-satellite packing: Cylinders packing with behavior constraints and all the optimal solutions known. http://www.optimization-online.org/DB_FILE/2008/09/2093.pdf
  7. Cuco APC, De Sousa FL, Silva Neto AJ (2015) A multi-objective methodology for spacecraft equipment layouts. Optim Eng 16:165–181.  https://doi.org/10.1007/s11081-014-9252-z CrossRefGoogle Scholar
  8. Cui F-Z, Xu Z-Z, Wang X-K et al (2017) A dual-system cooperative co-evolutionary algorithm for satellite equipment layout optimization. Proc Inst Mech Eng part G. J Aerosp Eng.  https://doi.org/10.1177/0954410017715280
  9. De Bont FMJ, Aarts EHL, Meehan P, OBrien CG (1988) Placement of shapeable blocks. Philips J Res 43:1–22Google Scholar
  10. De Sousa FL, Muraoka I (2007) On the optimal positioning of electronic equipment in space platforms. In: 19th International Congress of Mechanical Engineering(COBEM). Brasilia,BrasilGoogle Scholar
  11. Fakoor M, Taghinezhad M (2016) Layout and configuration design for a satellite with variable mass using hybrid optimization method. Proc Inst Mech Eng Part G J Aerosp Eng 230:360–377.  https://doi.org/10.1177/0954410015591834 CrossRefGoogle Scholar
  12. Fakoor M, Ghoreishi SMN, Sabaghzadeh H (2016) Spacecraft component adaptive layout environment (SCALE): an efficient optimization tool. Adv Sp Res 58:1654–1670.  https://doi.org/10.1016/j.asr.2016.07.020 CrossRefGoogle Scholar
  13. Fakoor M, Mohammad Zadeh P, Momeni Eskandari H (2017) Developing an optimal layout design of a satellite system by considering natural frequency and attitude control constraints. Aerosp Sci Technol 71:172–188.  https://doi.org/10.1016/j.ast.2017.09.012 CrossRefGoogle Scholar
  14. Guo X, Zhang W, Zhong W (2014a) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378.  https://doi.org/10.1016/j.cma.2014.01.010 MathSciNetCrossRefMATHGoogle Scholar
  15. Guo X, Zhang W, Zhong W (2014b) Doing topology optimization explicitly and geometrically—a new moving Morphable components based framework. J Appl Mech 81:081009.  https://doi.org/10.1115/1.4027609 CrossRefGoogle Scholar
  16. Hengeveld DW, Braun JE, Groll EA, Williams AD (2011) Optimal placement of electronic components to minimize heat flux nonuniformities. J Spacecr Rocket 48:556–563.  https://doi.org/10.2514/1.47507 CrossRefGoogle Scholar
  17. Huo J, Shi Y-J, Teng H-F (2007) Layout design of a satellite module using a human-guided genetic algorithm. 2006 Int Conf Comput Intell Secur ICCIAS 1:230–235. doi:  https://doi.org/10.1109/ICCIAS.2006.294127
  18. Kennedy J, Eberhart R (1995) Particle swarm optimization. Neural networks, 1995 proceedings. IEEE Int Conf 4:1942–1948.  https://doi.org/10.1109/ICNN.1995.488968 Google Scholar
  19. Lau V, de Sousa FL, Galski RL et al (2014) A multidisciplinary design optimization tool for spacecraft equipment layout conception. J Aerosp Technol Manag 6:431–446.  https://doi.org/10.5028/jatm.v6i4.399 CrossRefGoogle Scholar
  20. Li Z (2010) A fast projection-separation approach for collision detection between polytopes. J Comput Des Comput Graph 22:639–646 (in Chinese)Google Scholar
  21. Li Z, Teng H-F (2006) A static and dynamic no fit boundary approach for ellipse-rectangle. Comput Eng Appl 42(5):1–3 (in Chinese)Google Scholar
  22. Liu J, Hao L, Li G et al (2016a) Multi-objective layout optimization of a satellite module using the Wang-landau sampling method with local search *. Front Inf Technol Electron Eng 17:527–542  https://doi.org/10.1631/FITEE.1500292 Google Scholar
  23. Liu J, Huang J, Li G et al (2016b) A new energy landscape paving heuristic for satellite module layouts. Front Inf Technol Electron Eng 17:1031–1043.  https://doi.org/10.1631/FITEE.1500302 CrossRefGoogle Scholar
  24. Pühlhofer T, Langer H, Baier H, Huber MBT (2004) Multicriteria and Discrete Configuration and Design Optimization with Applications for Satellites. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. AlbanyGoogle Scholar
  25. Qin Z, Liang Y-G (2016) A study on the particle swarm optimization with adaptive weight constrained layout optimization. In: 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). pp 283–287.  https://doi.org/10.1109/IHMSC.2016.195
  26. Qin Z, Liang Y, Zhou J (2018) An optimization tool for satellite equipment layout. Adv Sp Res 61:223–234.  https://doi.org/10.1016/j.asr.2017.10.030 CrossRefGoogle Scholar
  27. Ran D, Sheng T, Cao L et al (2014) Attitude control system design and on-orbit performance analysis of nano-satellite - “Tian Tuo 1”. Chinese J Aeronaut 27:593–601.  https://doi.org/10.1016/j.cja.2013.11.001 CrossRefGoogle Scholar
  28. Shafaee M, Mohammadzadeh P, Elkaie A, Abbasi S (2017) Layout design optimization of a space propulsion system using hybrid optimization algorithm. Proc Inst Mech Eng Part G J Aerosp Eng 231:338–349.  https://doi.org/10.1177/0954410016636914 CrossRefGoogle Scholar
  29. Shan P (2008) Optimal embedding objects in the topology design of structure (Master Thesis). Dalian University of Technology.  https://doi.org/10.7666/d.y1247462. (in Chinese)
  30. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. 1998 IEEE Int Conf Evol Comput Proceedings IEEE World Congr Comput Intell (Cat No98TH8360) 69–73. doi:  https://doi.org/10.1109/ICEC.1998.699146
  31. Shi Y, Li B, Zhang Z (2011) Layout design of satellite module using a modified artificial bee colony algorithm. Adv Sci Lett 4. doi:  https://doi.org/10.1166/asl.2011.1370
  32. Sun ZG, Teng H-F (2003) Optimal layout design of a satellite module. Eng Optim 35:513–529.  https://doi.org/10.1080/03052150310001602335 CrossRefGoogle Scholar
  33. Sun ZG, Teng H-F, Liu Z (2003) Several key problems in automatic layout design of spacecraft modules. Prog Nat Sci 13:801–808.  https://doi.org/10.1080/10020070312331344460 CrossRefGoogle Scholar
  34. Teng H-F, Liu J, Wang X et al (2001a) A dynamic non-interference algorithm for rectangles. J Image Graph 6:259–263 (in Chinese)Google Scholar
  35. Teng H-F, lin SS, quan LD, zhao LY (2001b) Layout optimization for the objects located within a rotating vessel - a three-dimensional packing problem with behavioral constraints. Comput Oper Res 28:521–535.  https://doi.org/10.1016/S0305-0548(99)00132-X CrossRefGoogle Scholar
  36. Teng H-F, Che C, Chen Y, Wang Y (2004) Test problems of circles in circle packing with constraints and known the optimal solutions. 11:291–300. http://www.optimization-online.org/DB_FILE/2004/10/976.pdf
  37. Teng H-F, Chen Y, Zeng W et al (2010) A dual-system variable-grain cooperative Coevolutionary algorithm : satellite-module layout design. IEEE Trans Evol Comput 14:438–455.  https://doi.org/10.1109/TEVC.2009.2033585 CrossRefGoogle Scholar
  38. Verbeke J, Cools R (1995) The Newton-Raphson method. Int J Math Educ Sci Technol 26:177–193.  https://doi.org/10.1080/0020739950260202 CrossRefMATHGoogle Scholar
  39. Wang Y-S, Teng H-F, Shi Y-J (2009) Cooperative co-evolutionary scatter search for satellite module layout design. Eng Comput (Swansea, Wales) 26:761–785.  https://doi.org/10.1108/02644400910985161 CrossRefMATHGoogle Scholar
  40. Xia L, Zhu J, Zhang W (2012) A superelement formulation for the efficient layout design of complex multi-component system. Struct Multidiscip Optim 45:643–655.  https://doi.org/10.1007/s00158-011-0720-1 MathSciNetCrossRefMATHGoogle Scholar
  41. Xu YC, Xiao R Bin, Amos M (2007) A novel genetic algorithm for the layout optimization problem. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007). 3938–3943.  https://doi.org/10.1109/CEC.2007.4424984
  42. Xu YC, Dong FM, Liu Y et al (2010) Ant colony algorithm for the weighted item layout optimization problem. Comput Sci 03:221–232. http://arxiv.org/abs/1001.4099v1
  43. Xu Z-Z, Zhong C-Q, Teng H-F (2017) Assignment and layout integration optimization for simplified satellite re-entry module component layout. Proc Inst Mech Eng part G. J Aerosp Eng.  https://doi.org/10.1177/0954410017704220
  44. Yang X (2010) Nature-inspired metaheuristic algorithms, Second edn. Luniver Press, FromeGoogle Scholar
  45. Yue B, Wang Y, Shi Y-J, Teng H-F (2011) Satellite payloads configuration and layout design using co-evolutionary algorithm. Int J Adv Comput Technol 3:223–230.  https://doi.org/10.4156/ijact.vol3.issue11.28 Google Scholar
  46. Zhang WH, Zhang Q (2009) Finite-circle method for component approximation and packing design optimization. Eng Optim 41:971–987.  https://doi.org/10.1080/03052150902890056 CrossRefGoogle Scholar
  47. Zhang B, Teng H-F, Shi Y-J (2008) Layout optimization of satellite module using soft computing techniques. Appl Soft Comput 8:507–521.  https://doi.org/10.1016/j.asoc.2007.03.004 CrossRefGoogle Scholar
  48. Zhang W, Sun G, Guo X, Shan P (2013) A level set-based approach for simultaneous optimization of the structural topology and the layout of embedding structural components. Eng Mech 30:. doi:  https://doi.org/10.6052/j.issn.1000-4750.2012.03.0183 (in Chinese)
  49. Zhang W, Zhong W, Guo X (2015) Explicit layout control in optimal design of structural systems with multiple embedding components. Comput Methods Appl Mech Eng 290:290–313.  https://doi.org/10.1016/j.cma.2015.03.007 MathSciNetCrossRefGoogle Scholar
  50. Zhu JH, Zhang WH, Xia L et al (2012) Optimal packing configuration design with finite-circle method. J Intell Robot Syst Theory Appl 67:185–199.  https://doi.org/10.1007/s10846-011-9645-6 CrossRefMATHGoogle Scholar
  51. Zhu JH, Gao HH, Zhang WH, Zhou Y (2015) A multi-point constraints based integrated layout and topology optimization design of multi-component systems. Struct Multidiscip Optim 51:397–407.  https://doi.org/10.1007/s00158-014-1134-7 CrossRefGoogle Scholar
  52. Zhu JH, Guo WJ, Zhang WH, Liu T (2017) Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems. Struct Multidiscip Optim 56:21–45.  https://doi.org/10.1007/s00158-016-1645-5 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xianqi Chen
    • 1
  • Wen Yao
    • 2
  • Yong Zhao
    • 1
  • Xiaoqian Chen
    • 2
  • Xiaohu Zheng
    • 1
  1. 1.College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaChina
  2. 2.National Innovation Institute of Defense TechnologyChinese Academy of Military ScienceBeijingChina

Personalised recommendations