Structural and Multidisciplinary Optimization

, Volume 56, Issue 4, pp 941–957 | Cite as

Optimization of a butterfly valve disc using 3D topology and genetic algorithms

  • S. Corbera Caraballo
  • J. L. Olazagoitia Rodríguez
  • J. A. Lozano Ruiz
  • R. Álvarez Fernández


Butterfly valves are a mechanical component used to regulate flow and pressure on a variety of tanks and pipeline systems. The design of this flow-control device needs to consider its structural performance as well as the flow of the fluid. In this sense, simulation and optimization tools play an important role in a butterfly valve successful development. This paper presents a global optimization of the disc of a butterfly valve by the combination of topology and shape optimization techniques. Topology optimization is employed during concept design stage to evaluate the best material distribution from a structural performance point of view. Then, based on the topology optimization results, a shape optimization, managed by Genetic Algorithms (GAs), is conducted considering structural and fluid dynamics at the same time. The results demonstrate the suitability of the proposed approach to obtain a light butterfly valve disc which satisfies the structural safety and the flow requirements.

Graphical abstract


Butterfly valve Topology optimization Genetic algorithms Computational fluid dynamics Static structural 



The authors would like to acknowledge the support of the Nebrija Santander Green Surface Transport chair.


  1. Baker RC (2005) Flow measurement handbook: industrial designs, operating principles, performance, and applications. Cambridge University Press, CambridgeMATHGoogle Scholar
  2. Baverey, F. (1916). U.S. Patent No. 1,167,145. Washington. Patent and trademark officeGoogle Scholar
  3. BVack T (1993) Optimal mutation rates in genetic search. In Proc. of the 5th International Conference on Genetic Algorithms 2–8Google Scholar
  4. Caille V, Laumonier J (1998) Effect of periodic aerodynamic pulsation on flow over a confined butterfly valve. Exp Fluids 25(4):362–368CrossRefGoogle Scholar
  5. Corbera S, Olazagoitia JL, Lozano JA (2016) Multi-objective global optimization of a butterfly valve using genetic algorithms. ISA Trans. doi: 10.1016/j.isatra.2016.03.008 Google Scholar
  6. De Jong K (1980) Adaptive system design: a genetic approach. IEEE Trans Syst Man Cybernet 10(9):566–574MathSciNetCrossRefGoogle Scholar
  7. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRefGoogle Scholar
  8. Deb K (2001) Multi-objective optimization using evolutionary algorithms (Vol. 16). WileyGoogle Scholar
  9. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  10. Goldberg DE (1989) Genetic algorithm in search, optimization and machine learning, mass: WesleyGoogle Scholar
  11. Han SU, Ahn DG, Lee MG, Lee KH, Han SH (2014) Structural safety analysis based on seismic service conditions for butterfly valves in a nuclear power plant. Sci World J. doi: 10.1155/2014/743470 Google Scholar
  12. Huang C, Kim RH (1996) Three-dimensional analysis of partially open butterfly valve flows. J Fluids Eng 118(3):562–568CrossRefGoogle Scholar
  13. Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683CrossRefGoogle Scholar
  14. Kim JO, Yang SM, Baek SH, Kang S (2012) Structural design strategy of double-eccentric butterfly valve using topology optimization techniques. World Acad Sci, Eng Technol, Int J Mech, Aeros, Ind, Mech Manuf Eng 6(6):1075–1080Google Scholar
  15. Kimura T, Tanaka T, Fujimoto K, Ogawa K (1995) Hydrodynamic characteristics of a butterfly valve—prediction of pressure loss characteristics. ISA Trans 34(4):319–326CrossRefGoogle Scholar
  16. Morris MJ, Dutton JC (1991) An experimental investigation of butterfly valve performance downstream of an elbow. J Fluids Eng 113(1):81–85CrossRefGoogle Scholar
  17. Nagpurkar PP, Tajane RS (2014) Design and development of double offset butterfly valve. In International Journal of Engineering Research and Technology (Vol. 3, no. 7 (July-2014)). ESRSA publicationsGoogle Scholar
  18. Odu GO, Charles-Owaba OE (2013) Review of multi-criteria optimization methods–theory and applications. IOSRJEN 3:1–14CrossRefGoogle Scholar
  19. Ogawa K, Kimura T (1995) Hydrodynamic characteristics of a butterfly valve—prediction of torque characteristics. ISA Trans 34(4):327–333CrossRefGoogle Scholar
  20. Prager W, Rozvany GI (1977) Optimization of structural geometry. Dynam Syst, 265–293Google Scholar
  21. Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048CrossRefMATHGoogle Scholar
  22. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127MathSciNetCrossRefGoogle Scholar
  23. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRefGoogle Scholar
  24. Song XG, Wang L, Baek SH, Park YC (2009) Multidisciplinary optimization of a butterfly valve. ISA Trans 48(3):370–377CrossRefGoogle Scholar
  25. Sorkine O (2006). Laplacian mesh processingGoogle Scholar
  26. Spears WM (1991) KA De Jong. On the virtues of parameterized uniform crossover. Proceedings of the fourth International Conference on Genetic AlgorithmsGoogle Scholar
  27. Ştefan MT, Iosif PZ, Florin P, Marius AE, Dorica SM (2011) Stresses and displacement FEM analysis on biplane disks of the butterfly valves. In Proceedings of the 4th WSEAS international conference on Finite differences-finite elements-finite volumes-boundary elements (pp. 88–91). World scientific and engineering academy and society (WSEAS)Google Scholar
  28. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRefGoogle Scholar
  29. Xie, Y. M., & Steven, G. P. (1997). Basic evolutionary structural optimization. In Evolutionary Structural Optimization (pp. 12–29). Springer LondonGoogle Scholar
  30. Yang SM, Baek SH, Kang S (2012) Shape design for disc of a double-eccentric butterfly valve using the topology optimization technique. J Comput Fluids Eng 17(1):61–69CrossRefGoogle Scholar
  31. Yi SI, Shin MK, Shin MS, Yoon JY, Park GJ (2008) Optimization of the eccentric check butterfly valve considering the flow characteristics and structural safety. Proc Inst Mech Eng, Part E: J Proc Mech Eng 222(1):63–73CrossRefGoogle Scholar
  32. Young V, Querin OM, Steven GP, Xie YM (1999) 3D and multiple load case bi-directional evolutionary structural optimization (BESO). Struct Opt 18(2–3):183–192CrossRefGoogle Scholar
  33. Zeheen, J. (1887). U.S. Patent No. 373,000. Washington. Patent and trademark officeGoogle Scholar
  34. Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim 21(1):80–83CrossRefGoogle Scholar
  35. Zhu JH, Zhang WH, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 1–28Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • S. Corbera Caraballo
    • 1
  • J. L. Olazagoitia Rodríguez
    • 2
  • J. A. Lozano Ruiz
    • 3
  • R. Álvarez Fernández
    • 2
  1. 1.Cátedra Nebrija Santander Green Surface TransportUniversidad NebrijaMadridSpain
  2. 2.Escuela Politécnica Superior y de ArquitecturaUniversidad NebrijaMadridSpain
  3. 3.Departamento de Ingeniería Mecánica, Química y Diseño Industrial. ETS de Ingeniería y Diseño IndustrialUniversidad Politécnica de MadridMadridSpain

Personalised recommendations