Advertisement

Topology optimization of freely vibrating continuum structures based on nonsmooth optimization

  • 738 Accesses

  • 7 Citations

Abstract

The non-differentiability of repeated eigenvalues is one of the key difficulties to obtain the optimal solution in the topology optimization of freely vibrating continuum structures. In this paper, the bundle method, which is a very promising one in the nonsmooth optimization algorithm family, is proposed and implemented to solve the problem of eigenfrequency optimization of continuum. The bundle method is well-known in the mathematical programming community, but has never been used to solve the problems of topology optimization of continuum structures with respect to simple or multiple eigenfrequencies. The advantage of this method is that the specified information of iteration history may be collected and utilized in a very efficient manner to ensure that the next stability center is closer to the optimal solution, so as to avoid the numerical oscillation in the iteration history. Moreover, in the present method, both the simple and multiple eigenfrequencies can be managed within a unified computational scheme. Several numerical examples are tested to validate the proposed method. Comparisons with nonlinear semidefinite programming method and 0–1 formulation based heuristic method show the advantages of the proposed method. It is showed that, the method can deal with the nonsmoothness of the repeated eigenvalues in topology optimization in a very effective and efficient manner without evaluating the multiplicity of the eigenvalues.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Notes

  1. 1.

    The problem (6) is not a standard LP problem, but since \( \hat{f} \) is piecewise-linear, (6) can be easily converted to a standard LP problem (Boyd and Vandenberghe 2004).

References

  1. Achtziger W, Kocvara M (2007a) Structural topology optimization with eigenvalues. SIAM J Optim 18(4):1129–1164

  2. Achtziger W, Kocvara M (2007b) On the maximization of the fundamental eigenvalue in topology optimization. Struct Multidiscip Optim 34(3):181–195

  3. Allwright JC (1989) On maximizing the minimum eigenvalue of a linear combination of symmetric matrices. SIAM J Matrix Anal Appl 10(3):347–382

  4. Apkarian P, Noll D, Prot O (2008) A trust region spectral bundle method for nonconvex eigenvalue optimization. SIAM J Optim 19(1):281–306

  5. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

  6. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications: Springer

  7. Blanco AM, Bandoni JA (2003) Eigenvalue and singular value optimization. Mecanica Computational:1258–1272

  8. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

  9. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Stanford

  10. Chen S, Guo R, Meng G (2009) Second-order sensitivity of eigenpairs in multiple parameter structures. Appl Math Mech 30(12):1475–1487. doi:10.1007/s10483-009-1201-z

  11. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. doi:10.1007/s00158-013-0956-z

  12. Díaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487–1502

  13. Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110. doi:10.1007/s00158-007-0101-y

  14. Fan MKH, Nekooie B (1992) On minimizing the largest eigenvalue of a symmetric matrix. Paper presented at the Proceedings of the 31st IEEE Conference

  15. Fiala J, Kočvara M, Stingl. M (2013) Penlab: a matlab solver for nonlinear semidefinite optimization. arXiv preprint arXiv: 1311.5240

  16. Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Exp Syst Appl 38(1):957–968. doi:10.1016/j.eswa.2010.07.086

  17. Grandhi R (1993) Structural optimization with frequency constraints — a review. AIAA J 31(12):2296–2303

  18. Haarala M, Miettinen K, Mäkelä MM (2004) New limited memory bundle method for large- scale nonsmooth optimization. Optim Methods Softw 19(6):673–692

  19. Hare W, Sagastizábal C (2010) A redistributed proximal bundle method for nonconvex optimization. SIAM J Optim 20(5):2442–2473

  20. Hiriart-Urruty J (2013) Convex analysis and minimization algorithms ii : advanced theory and bundle methods: Springer Science & Business Media

  21. Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5):357–364. doi:10.1016/j.compstruc.2009.11.011

  22. Kanno Y, Ohsaki M (2001) Necessary and sufficient conditions for global optimality of eigenvalue optimization problems. Struct Multidiscip Optim 22(3):248–252

  23. Karmitsa N, Mäkelä MM (2010) Adaptive limited memory bundle method for bound constrained large-scale nonsmooth optimization. Optimization 59(6)

  24. Karmitsaa N, Bagirovb A, Mäkeläa MM (2012) Comparing different nonsmooth minimization methods and software. Optim Methods Softw 27(1)

  25. Kaveh A, Ilchi Ghazaan M (2016) Optimal design of dome truss structures with dynamic frequency constraints. Struct Multidiscip Optim 53(3):605–621. doi:10.1007/s00158-015-1357-2

  26. Kaveh A, Zolghadr A (2013) Topology optimization of trusses considering static and dynamic constraints using the css. Appl Soft Comput 13(5):2727–2734. doi:10.1016/j.asoc.2012.11.014

  27. Kim TS, Kim YY (2000) MAC-based mode-tracking in structural topology optimization. Comput Struct 74(3):375–383

  28. Kiwiel KC (1985) Methods of descent for nondifferentiable optimization. Springer, Berlin

  29. Kočvara M, Sting M (2003) Pennon: a code for convex nonlinear and semidefinite programming. Optim Methods Softw 18(3):317–333

  30. Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72(4):535–563

  31. Lewis AS, Overton ML (1996) Eigenvalue optimization. ACTA NUMERICA 5(5):149–190

  32. Ma Z, Kikuchi N (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1):259–280

  33. Mäkelä M (2002) Survey of bundle methods for nonsmooth optimization. Optim Methods Softw 17(1):1–29

  34. Masur EF, Mrdz Z (1979) Non-stationary optimality conditions in structural design. Int J Solids Struct 15(6):503–512

  35. Miura H Jr, Schmit A (1978) Second order approximation of natural frequency constraints in structural synthesis. Int J Numer Methods Eng 13(2):337–351

  36. MOSEK Aps (2015) The mosek optimization toolbox for matlab manual. Version 7.1 (revision 28)

  37. Nocedal J, Wright SJ (2006) Numerical optimization: Springer

  38. Overton ML (1988) On minimizing the maximum eigenvalue of a symmetric matrix. SIAM J Matrix Anal Appl 9(2):256–268

  39. Overton ML (1992) Large-scale optimization of eigenvalues. SIAM J Optim 2(1):88–120

  40. Overton ML, Womersley RS (1995) Second derivatives for optimizing eigenvalues of symmetric matrices

  41. Parikh N, Boyd T (2014) Proximal algorithms. Found Trends Optim 1(3):127–239

  42. Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

  43. Peng X, Sui Y (2007) Topological optimization of the continuum structure with non-frequency-band constraints. ACTA Mech Solida Sin-Chin Edit 28(2):145–150

  44. Petersson J, Patriksson M (1997) Topology optimization of sheets in contact by a subgradient method. Int J Numer Methods Eng 40(7):1295–1321

  45. Rockafellar RT (2015) Convex analysis: Princeton university press

  46. Sagastizábal C, Solodov M (2005) An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J Optim 16(1):146–169

  47. Schramm H, Zowe J (1992) A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J Optim 2(1):121–152

  48. Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

  49. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424. doi:10.1007/s00158-006-0087-x

  50. Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43(5):589–596. doi:10.1007/s00158-011-0638-7

  51. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

  52. Tcherniak D (2002) Topology optimization of resonating structures using simp method. Int J Numer Methods Eng 54(11):1605–1622

  53. Te B, Da T (2001) Topology optimization of nonlinear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

  54. Thore C (2016) Multiplicity of the maximum eigenvalue in structural optimization problems. Struct Multidiscip Optim 53(5):961–965. doi:10.1007/s00158-015-1380-3

  55. van Ackooij W, de Oliveira W (2014) Level bundle methods for constrained convex optimization with various oracles. Comput Optim Appl 57(3):555–597

  56. Wolkowicz H, Saigal R, Vandenberghe L (2012) Handbook of semidefinite programming: theory, algorithms, and applications: Springer Science

  57. Xie YM, Steven GP (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58(6):1067–1073

  58. Yang Y, Pang L, Ma X, Shen J (2014) Constrained nonconvex nonsmooth optimization via proximal bundle method. J Optim Theory Appl 163(3):900–925. doi:10.1007/s10957-014-0523-9

  59. Zhang Y (2014) Topology optimization of continuous structure with frequency constraints and software development. Master, Beijing University of Technology, Beijing

Download references

Acknowledgements

The research is supported by NSFC (11372154) which is gratefully acknowledged by the authors. Prof. Kocvara is also of great help for sharing the PENLAB package. In the online version of this paper, we offer some sample codes showing how to use the bundle method, the SDP method and the GA to solve all the examples in this paper. Some animations showing the iteration process of the examples in this paper are also available in the online resource. Readers interested in this paper are welcome to contact the corresponding author for more original codes.

Author information

Correspondence to Pingzhang Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(FLV 1220 kb)

ESM 1

(MAT 2 kb)

ESM 2

(GIF 1125 kb)

ESM 3

(GIF 2747 kb)

ESM 4

(GIF 689 kb)

ESM 5

(GIF 1671 kb)

ESM 6

(GIF 609 kb)

ESM 7

(PDF 98 kb)

ESM 8

(FLV 1220 kb)

ESM 9

(M 1 kb)

ESM 10

(P 1 kb)

ESM 11

(P 1 kb)

ESM 12

(P 1 kb)

ESM 13

(P 1 kb)

ESM 14

(P 1 kb)

ESM 15

(M 312 bytes)

ESM 16

(P 1 kb)

ESM 17

(P 1 kb)

ESM 18

(M 3 kb)

ESM 19

(P 409 bytes)

ESM 20

(P 422 bytes)

ESM 21

(P 2 kb)

ESM 22

(P 566 bytes)

ESM 23

(P 159 bytes)

ESM 24

(P 653 bytes)

ESM 25

(DOCX 14 kb)

Appendix

Appendix

THEOREM Given two positive definite matrices \( \mathbf{A}\left(\mathbf{x}\right),\mathbf{B}\left(\mathbf{x}\right)\in {\mathbb{S}}_{++}^{ndof} \) which are smooth functions (the smoothness implies the continuity and differentiability) of the independent variables \( \mathbf{x}\in {\mathtt{\mathbb{R}}}^n \), λ is the largest eigenvalue of (A, B) with multiplicity t, the corresponding eigenvectors are the columns of Φ = [φ 1, ⋯, φ t ] ∈ ℝndof × t, then the subdifferential of λ(x) is the set

$$ \partial \lambda \left(\mathbf{x}\right)=\left\{\mathbf{v}\in {\mathbb{R}}^n\left|{v}_i=\right.\left\langle {\boldsymbol{\Phi}}^{\mathrm{T}}\left(\frac{\partial \mathbf{A}}{\partial {x}_i}-\lambda \frac{\partial \mathbf{B}}{\partial {x}_i}\right)\boldsymbol{\Phi}, \mathbf{U}\right\rangle \right\} $$
(39)

for some U ∈ ℝt, tr U = 1, U ≽ 0.

Proof. The generalized eigenvalue problem is given by

$$ \lambda =\underset{\boldsymbol{\upvarphi} \in {\mathbb{R}}^{ndof}}{ \sup}\left\{{\boldsymbol{\upvarphi}}^{\mathrm{T}}\mathbf{A}\boldsymbol{\upvarphi } \left|{\boldsymbol{\upvarphi}}^{\mathrm{T}}\mathbf{B}\boldsymbol{\upvarphi } =1\right.\right\} $$
(40)

It is useful to define another auxiliary eigenvalue problem corresponding to the original generalized eigenvalue problem,

$$ \begin{array}{c}\lambda =\underset{\mathbf{q}\in {\mathbb{R}}^{ndof}}{ \sup}\left\{\left\langle \mathbf{q},\mathbf{S}\mathbf{q}\right\rangle \left|{\mathbf{q}}^{\mathrm{T}}\mathbf{q}=1\right.\right\}\\ {}=\underset{\mathbf{q}\in {\mathbb{R}}^{ndof}}{ \sup}\left\{\left\langle \mathbf{q}{\mathbf{q}}^{\mathrm{T}},\mathbf{S}\right\rangle \left|{\mathbf{q}}^{\mathrm{T}}\mathbf{q}=1\right.\right\}\end{array} $$
(41)

where, S and q are related to A and φ by

$$ \begin{array}{l}\mathbf{S}={\mathbf{G}}^{-1}\mathbf{A}{\mathbf{G}}^{-\mathrm{T}}\\ {}\mathbf{q}={\mathbf{G}}^{\mathrm{T}}\boldsymbol{\upvarphi} \end{array} $$
(42)

G comes from the Cholesky factorization of matrix B,

$$ \mathbf{B}=\mathbf{G}{\mathbf{G}}^{\mathrm{T}} $$
(43)

where G is a lower triangular matrix.

First we consider the subdifferential of the eigenvalue λ with respect to S by (41),

$$ \partial \lambda \left(\mathbf{S}\right)=\mathrm{conv}\left\{\mathbf{q}{\mathbf{q}}^{\mathrm{T}}\left|{\mathbf{q}}^{\mathrm{T}}\mathbf{q}=1,\mathbf{Sq}=\lambda \mathbf{q}\right.\right\} $$
(44)

where, conv(⋅) denotes the convex hull of a set.

Next we compute \( \frac{\partial \mathbf{S}}{\partial {x}_i} \) which will be used afterwards,

$$ \begin{array}{l}\kern1em \frac{\partial \mathbf{S}}{\partial {x}_i}=\frac{\partial \left({\mathbf{G}}^{-1}\mathbf{A}{\mathbf{G}}^{-\mathrm{T}}\right)}{\partial {x}_i}\\ {}=-{\mathbf{G}}^{-1}\frac{\partial \mathbf{G}}{\partial {x}_i}\mathbf{S}+{\mathbf{G}}^{-1}\frac{\partial \mathbf{A}}{\partial {x}_i}{\mathbf{G}}^{-\mathrm{T}}-\mathbf{S}\frac{\partial {\mathbf{G}}^{\mathrm{T}}}{\partial {x}_i}{\mathbf{G}}^{-\mathrm{T}}\end{array} $$
(45)

The inner product of qq T and \( \frac{\partial \mathbf{S}}{\partial {x}_i} \) gives,

$$ \begin{array}{l}\left\langle \frac{\partial \mathbf{S}}{\partial {x}_i},\mathbf{q}{\mathbf{q}}^{\mathrm{T}}\right\rangle =\left\langle \frac{\partial \mathbf{S}}{\partial {x}_i}\mathbf{q},\mathbf{q}\right\rangle \\ {}=-2\lambda {\mathbf{q}}^{\mathrm{T}}{\mathbf{G}}^{-1}\frac{\partial \mathbf{G}}{\partial {x}_i}\mathbf{q}+{\mathbf{q}}^{\mathrm{T}}{\mathbf{G}}^{-1}\frac{\partial \mathbf{A}}{\partial {x}_i}{\mathbf{G}}^{-\mathrm{T}}\mathbf{q}\end{array} $$
(46)

By using the chain rule, we have

$$ \frac{\partial \lambda}{\partial {x}_i}=\left\langle \frac{\partial \lambda}{\partial \mathbf{S}},\frac{\partial \mathbf{S}}{\partial {x}_i}\right\rangle $$
(47)

Using (44) and (46), after some trivial algebra, we have

$$ \frac{\partial \lambda}{\partial {x}_i}=\mathrm{conv}\left\{{\boldsymbol{\upvarphi}}^{\mathrm{T}}\frac{\partial \mathbf{A}}{\partial {x}_i}\boldsymbol{\upvarphi} -\lambda {\boldsymbol{\upvarphi}}^{\mathrm{T}}\frac{\partial \mathbf{B}}{\partial {x}_i}\boldsymbol{\upvarphi} \right\} $$
(48)

Equation (48) can be further simplified to drop the convex hull operator,

$$ \begin{array}{c}\kern1em \frac{\partial \lambda}{\partial {x}_i}\\ {}=\mathrm{conv}\left\{\left\langle \frac{\partial \mathbf{A}}{\partial {x}_i}-\lambda \frac{\partial \mathbf{B}}{\partial {x}_i},\boldsymbol{\Phi} \boldsymbol{\upomega} {\boldsymbol{\upomega}}^{\mathrm{T}}{\boldsymbol{\Phi}}^{\mathrm{T}}\right\rangle \right\}\\ {}=\left\{\left\langle \frac{\partial \mathbf{A}}{\partial {x}_i}-\lambda \frac{\partial \mathbf{B}}{\partial {x}_i},\boldsymbol{\Phi} \mathbf{U}{\boldsymbol{\Phi}}^{\mathrm{T}}\right\rangle \right\}\\ {}=\left\{\left\langle {\boldsymbol{\Phi}}^{\mathrm{T}}\left(\frac{\partial \mathbf{A}}{\partial {x}_i}-\lambda \frac{\partial \mathbf{B}}{\partial {x}_i}\right)\boldsymbol{\Phi}, \mathbf{U}\right\rangle \right\}\end{array} $$
(49)

where,

\( \boldsymbol{\upomega} \in {\mathbb{R}}^t,{\boldsymbol{\upomega}}^{\mathrm{T}}\boldsymbol{\upomega} =1 \) ;Φ = [φ 1, ⋯, φ t ] ;U ∈  t, tr U = 1, U ≽ 0;

t is the multiplicity of the maximum eigenvalue;

The first equation holds because of inner product’s properties and φ = Φω; the second equation holds because of the lemma (Overton 1992)

$$ \begin{array}{l}\kern1.5em \mathrm{conv}\left\{\boldsymbol{\upomega} {\boldsymbol{\upomega}}^{\mathrm{T}}\left|{\boldsymbol{\upomega}}^{\mathrm{T}}\boldsymbol{\upomega} =1\right.\right\}\\ {}=\left\{\left.\mathbf{U}\right|\mathbf{U}\in {\mathbb{S}}^t,\mathrm{tr}\kern0.5em \mathbf{U}=1,\mathbf{U}\succcurlyeq 0\right\}\end{array} $$
(50)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Du, J. & Lü, Z. Topology optimization of freely vibrating continuum structures based on nonsmooth optimization. Struct Multidisc Optim 56, 603–618 (2017). https://doi.org/10.1007/s00158-017-1677-5

Download citation

Keywords

  • Nonsmooth optimization
  • Topology optimization
  • Bundle method
  • Repeated eigenvalues
  • Continuum structures