Structural and Multidisciplinary Optimization

, Volume 56, Issue 3, pp 571–586 | Cite as

Topology optimization using the p-version of the finite element method

RESEARCH PAPER

Abstract

A multiresolution topology optimization approach is proposed using the p-version finite element method (p-version FEM). Traditional topology optimization, where a density design variable is assigned to each element, is suitable for low-order h-version FEM. However, it cannot take advantage of the higher accuracy of higher-order p-version FEM analysis for generating results with higher resolution. In contrast, the proposed method separates density variables and finite elements so that the resolution of the density field, which defines the structure, can be higher than that of the finite element mesh. Thus, the method can take full advantage of the higher accuracy of p-version FEM.

Keywords

Topology optimization Finite element method Multiresolution Density method Density filter p-element 

Notes

Acknowledgements

This research was funded in part by the National Science Foundation under the Grant No. CMMI-1000666 and by Northeastern University. This support is gratefully acknowledged. The second author would like to thank the Vietnam National Foundation for Science and Technology Development (NAFOSTED) for the support under Grant No.107.02-2014.33.

References

  1. Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493–505MathSciNetCrossRefMATHGoogle Scholar
  2. Aage N, Nobel-Jørgensen M, Andreasen CS, Sigmund O (2013) Interactive topology optimization on hand-held devices. Struct Multidiscip Optim 47(1):1–6CrossRefGoogle Scholar
  3. Aage N, Andreassen E, Lazarov BS (2014) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565–572MathSciNetCrossRefGoogle Scholar
  4. Amir O, Bendsøe MP, Sigmund O (2009) Approximate reanalysis in topology optimization. Int J Numer Methods Eng 78(12):1474–1491MathSciNetCrossRefMATHGoogle Scholar
  5. Amir O, Stolpe M, Sigmund O (2010) Efficient use of iterative solvers in nested topology optimization. Struct Multidiscip Optim 42(1):55–72CrossRefMATHGoogle Scholar
  6. Amir O, Aage N, Lazarov BS (2014) On multigrid-CG for efficient topology optimization. Struct Multidiscip Optim 49(5):815–829MathSciNetCrossRefGoogle Scholar
  7. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATHGoogle Scholar
  8. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654MATHGoogle Scholar
  9. Borrvall T, Petersson J (2001) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229CrossRefMATHGoogle Scholar
  10. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATHGoogle Scholar
  11. Challis VJ, Roberts AP, Grotowski JF (2014) High resolution topology optimization using graphics processing units (GPUs). Struct Multidiscip Optim 49(2):315–325CrossRefGoogle Scholar
  12. Cook RD, Malkus DS, Plesha ME, Witt RJ (2007) Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York Google Scholar
  13. Costa JCA Jr, Alves MK (2003) Layout optimization with h-adaptivity of structures. Int J Numer Methods Eng 58(1):83–102CrossRefMATHGoogle Scholar
  14. Diaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Multidiscip Optim 10(1):40–45CrossRefGoogle Scholar
  15. Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52(7):673–703CrossRefMATHGoogle Scholar
  16. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45):3768–3782MathSciNetCrossRefMATHGoogle Scholar
  17. Evgrafov A (2014) State space Newton’s method for topology optimization. Comput Methods Appl Mech Eng 278:272–290MathSciNetCrossRefGoogle Scholar
  18. Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36(4):329–345MathSciNetCrossRefMATHGoogle Scholar
  19. Guest JK, Smith Genut LC (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng 81(8):1019–1045MATHGoogle Scholar
  20. Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATHGoogle Scholar
  21. Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009CrossRefGoogle Scholar
  22. Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226MathSciNetCrossRefMATHGoogle Scholar
  23. Kim JE, Jang GW, Kim YY (2003) Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization. Int J Solids Struct 40(23):6473–6496CrossRefMATHGoogle Scholar
  24. Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41(9–10):2623–2641CrossRefMATHGoogle Scholar
  25. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620CrossRefGoogle Scholar
  26. Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9):985–996MathSciNetCrossRefMATHGoogle Scholar
  27. Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59(14):1925–1944MathSciNetCrossRefMATHGoogle Scholar
  28. Maute K, Ramm E (1995) Adaptive topology optimization. Struct Multidiscip Optim 10(2):100–112CrossRefMATHGoogle Scholar
  29. Mello LAM, De Sturler E, Paulino GH, Silva ECN (2010) Recycling Krylov subspaces for efficient large-scale electrical impedance tomography. Comput Methods Appl Mech Eng 199(49–52):3101–3110MathSciNetCrossRefMATHGoogle Scholar
  30. Nguyen TH (2010) System reliability-based design and multiresolution topology optimization. Ph.D thesis, University of Illinois at Urbana-ChampaignGoogle Scholar
  31. Nguyen TH, Paulino GH, Song J, Le CH (2010a) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525–539MathSciNetCrossRefMATHGoogle Scholar
  32. Nguyen TH, Song J, Paulino GH (2010b) Single-loop system reliability-based design optimization using matrix-based system reliability method: theory and applications. J Mech Des 132(1):011005CrossRefGoogle Scholar
  33. Nguyen TH, Song J, Paulino GH (2010c) Challenges and advances in system reliability based optimization of structural topology. In: Proceedings of the 19th Analysis and Computation Specialty Conference, ASCE Conf. Proc. doi: 10.1061/41131(370)42
  34. Nguyen TH, Song J, Paulino GH (2011) Single-loop system reliability-based topology optimization considering statistical dependence between limit-states. Struct Multidiscip Optim 44(5):593–611MathSciNetCrossRefMATHGoogle Scholar
  35. Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92(6):507–530MathSciNetCrossRefMATHGoogle Scholar
  36. Nguyen TH, Le CH, Hajjar JF (2013) High-order finite elements for topology optimization. In: 10th world congress on structural and multidisciplinary optimization, OrlandoGoogle Scholar
  37. Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33(4):375–386MathSciNetCrossRefMATHGoogle Scholar
  38. Olhoff N, Bendsøe MP, Rasmussen J (1991) On CAD-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89(1):259–279CrossRefMATHGoogle Scholar
  39. Parvizian J, Düster A, Rank E (2012) Topology optimization using the finite cell method. Optim Eng 13(1):57–78MathSciNetCrossRefMATHGoogle Scholar
  40. Rozvany G (1996) Some shortcomings in Michell’s truss theory. Struct Multidiscip Optim 12(4):244–250MathSciNetCrossRefGoogle Scholar
  41. Rozvany G (1998) Exact analytical solutions for some popular benchmark problems in topology optimization. Struct Multidiscip Optim 15(1):42–48CrossRefMATHGoogle Scholar
  42. Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidiscip Optim 4(3):250–252CrossRefGoogle Scholar
  43. Schmidt S, Schulz V (2012) A 2589 line topology optimization code written for the graphics card. Comput Vis Sci 16:249–256MathSciNetGoogle Scholar
  44. Sigmund O (2000) Topology optimization: a tool for the tailoring of structures and materials. Philos Trans R Soc London, Ser A 358:211–227MathSciNetCrossRefMATHGoogle Scholar
  45. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4):401–424MathSciNetCrossRefGoogle Scholar
  46. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscip Optim 16(1):68–75CrossRefGoogle Scholar
  47. Stainko R (2006) An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun Numer Methods Eng 22(2):109–118MathSciNetCrossRefMATHGoogle Scholar
  48. Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci 107(30):13222–13227CrossRefGoogle Scholar
  49. Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318CrossRefMATHGoogle Scholar
  50. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATHGoogle Scholar
  51. Szabo BA, Babuska I (1991) Finite element analysis. Wiley, New YorkMATHGoogle Scholar
  52. Szabó B, Düster A, Rank E (eds) (2004) The p-Version of the Finite Element Method vol 1. Encyclopedia of Computational MechanicsGoogle Scholar
  53. Takezawa A, Kitamura M (2012) Geometrical design of thermoelectric generators based on topology optimization. Int J Numer Methods Eng 90(11):1363–1392CrossRefMATHGoogle Scholar
  54. Toogood R, Zecher J (2013) Creo Parametric 2.0 Tutorial. SDC PublicationsGoogle Scholar
  55. Vatanabe SL, Paulino GH, Silva ECN (2012) Influence of pattern gradation on the design of piezocomposite energy harvesting devices using topology optimization. Compos Part B 43(6):2646–2654CrossRefGoogle Scholar
  56. Wang S, Sturler E, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441–2468MathSciNetCrossRefMATHGoogle Scholar
  57. Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tam H. Nguyen
    • 1
  • Chau H. Le
    • 2
  • Jerome F. Hajjar
    • 1
  1. 1.Department of Civil and Environmental EngineeringNortheastern UniversityBostonUSA
  2. 2.BM Research and Development Co. Ltd.HanoiVietnam

Personalised recommendations