Structural and Multidisciplinary Optimization

, Volume 55, Issue 5, pp 1797–1818 | Cite as

Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity

  • Oded Amir


A new approach for generating stress-constrained topological designs in continua is presented. The main novelty is in the use of elasto-plastic modeling and in optimizing the design such that it will exhibit a linear-elastic response. This is achieved by imposing a single global constraint on the total sum of equivalent plastic strains, providing accurate control over all local stress violations. The single constraint essentially replaces a large number of local stress constraints or an approximate aggregation of them – two common approaches in the literature. A classical rate-independent plasticity model is utilized, for which analytical adjoint sensitivity analysis is derived and verified. Several examples demonstrate the capability of the computational procedure to generate designs that challenge results from the literature, in terms of the obtained stiffness-strength-weight trade-offs. A full elasto-plastic analysis of the optimized designs shows that prior to the initial yielding, these designs can sustain significantly higher loads than minimum compliance topological layouts, with only a minor compromise on stiffness.


Topology optimization Stress constraints Elasto-plasticity 



This research was supported by the Israel Science Foundation (grant No. 750/15).


  1. Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32(11):909–918CrossRefzbMATHGoogle Scholar
  2. Amir O (2011) Efficient reanalysis procedures in structural topology optimization. PhD thesis, Technical University of DenmarkGoogle Scholar
  3. Amir O (2013) A topology optimization procedure for reinforced concrete structures. Comput Struct 114–115:46–58. doi: 10.1016/j.compstruc.2012.10.011.
  4. Amir O, Sigmund O (2013) Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct Multidiscip Optim 47(2):157–174. doi: 10.1007/s00158-012-0817-1
  5. Amstutz S, Novotny A A (2010) Topological optimization of structures subject to von mises stress constraints. Struct Multidiscip Optim 41(3):407–420MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRefGoogle Scholar
  7. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bendsøe MP, Sigmund O (2003) Topology optimization - theory, methods and applications. Springer, BerlinzbMATHGoogle Scholar
  9. Bogomolny M, Amir O (2012) Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling. Int J Numer Methods Eng 90(13):1578–1597. doi: 10.1002/nme.4253
  10. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158MathSciNetCrossRefzbMATHGoogle Scholar
  11. Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141MathSciNetCrossRefzbMATHGoogle Scholar
  12. Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384MathSciNetCrossRefzbMATHGoogle Scholar
  13. Bruggi M, Venini P (2008) A mixed fem approach to stress-constrained topology optimization. Int J Numer Methods Eng 73(12):1693–1714MathSciNetCrossRefzbMATHGoogle Scholar
  14. Bruns T E, Tortorelli D A (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459CrossRefzbMATHGoogle Scholar
  15. Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Optim 13(4):258–266CrossRefGoogle Scholar
  16. Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20(2):129–148CrossRefGoogle Scholar
  17. Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. doi: 10.1007/s00158-013-0956-z
  18. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478MathSciNetCrossRefzbMATHGoogle Scholar
  19. Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: Proceedings of 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary design optimization, AIAA, Saint Louis, Missouri, AIAA Paper, pp 98–4906Google Scholar
  20. Eschenauer H A, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389CrossRefGoogle Scholar
  21. Fancello E (2006) Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Struct Multidiscip Optim 32(3):229–240MathSciNetCrossRefzbMATHGoogle Scholar
  22. Fritzen F, Xia L, Leuschner M, Breitkopf P (2015) Topology optimization of multiscale elastoviscoplastic structures. Int J Numer Methods EngGoogle Scholar
  23. Guest J K, Prévost J H, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238– 254MathSciNetCrossRefzbMATHGoogle Scholar
  24. James K A, Waisman H (2014) Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. Comput Methods Appl Mech Eng 268:614–631MathSciNetCrossRefzbMATHGoogle Scholar
  25. James K A, Waisman H (2015) Topology optimization of viscoelastic structures using a time-dependent adjoint method. Comput Methods Appl Mech Eng 285:166–187MathSciNetCrossRefGoogle Scholar
  26. Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 1–20Google Scholar
  27. Kirsch U (1990) On singular topologies in optimum structural design. Struct Optim 2(3):133–142MathSciNetCrossRefGoogle Scholar
  28. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRefGoogle Scholar
  29. Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91CrossRefGoogle Scholar
  30. Michaleris P, Tortorelli D A, Vidal C A (1994) Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37(14):2471–2499CrossRefzbMATHGoogle Scholar
  31. Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326. doi: 10.1016/j.cma.2015.05.004.
  32. París J, Navarrina F, Colominas I, Casteleiro M (2007) Block aggregation of stress constraints in topology optimization of structures. In: Hernández S, Brebbia CA (eds) Computer aided optimum design of structures, vol 10Google Scholar
  33. París J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441CrossRefzbMATHGoogle Scholar
  34. Park YK (1995) Extensions of optimal layout design using the homogenization method. PhD thesis, University of Michigan, Ann ArborGoogle Scholar
  35. Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscip Optim 26(1–2):50–66MathSciNetCrossRefzbMATHGoogle Scholar
  36. Rozvany G (1996) Difficulties in truss topology optimization with stress, local buckling and system stability constraints. Struct Optim 11(3-4):213–217CrossRefGoogle Scholar
  37. Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15):2135–2155CrossRefzbMATHGoogle Scholar
  38. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRefGoogle Scholar
  39. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRefGoogle Scholar
  40. Simo J, Taylor R (1986) A return mapping algorithm for plane stress elastoplasticity. Int J Numer Methods Eng 22:649–670MathSciNetCrossRefzbMATHGoogle Scholar
  41. Simo JC, Hughes TJ (2006) Computational inelasticity, vol 7. Springer Science & Business MediaGoogle Scholar
  42. Stolpe M, Svanberg K (2001) On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization. Struct Multidiscip Optim 21(2):140–151CrossRefGoogle Scholar
  43. Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefzbMATHGoogle Scholar
  44. Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 10(10):803–805CrossRefGoogle Scholar
  45. Swan CC, Kosaka I (1997) Voigt-reuss topology optimization for structures with nonlinear material behaviors. Int J Numer Methods Eng 40(20):3785–3814MathSciNetCrossRefzbMATHGoogle Scholar
  46. Verbart A, Langelaar M, van Keulen F (2016) Damage approach: a new method for topology optimization with local stress constraints. Struct Multidiscip Optim 53(5):1081–1098MathSciNetCrossRefGoogle Scholar
  47. von Mises R (1928) Mechanics of the ductile form changes of crystals. Z Angew Math Mech 8:161–185CrossRefGoogle Scholar
  48. Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505. doi: 10.1007/s00158-009-0452-7
  49. Yang R, Chen C (1996) Stress-based topology optimization. Struct Optim 12(2-3):98–105CrossRefGoogle Scholar
  50. Yoon GH, Kim YY (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Eng 69(10):2196–2218MathSciNetCrossRefzbMATHGoogle Scholar
  51. Yuge K, Kikuchi N (1995) Optimization of a frame structure subjected to a plastic deformation. Struct Optim 10(3-4):197–208CrossRefGoogle Scholar
  52. Zienkiewicz OC, Taylor RL (2000) The finite element method: solid mechanics, vol 2. Butterworth-HeinemannGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations