Structural and Multidisciplinary Optimization

, Volume 55, Issue 4, pp 1301–1309 | Cite as

Topology optimization of inertia driven dosing units

RESEARCH PAPER
  • 228 Downloads

Abstract

This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization to the Brinkman penalized Navier-Stokes equation the design of the dosing units can be optimized with respect to dosing capability without initial design assumptions. The influence of flow resistance and speed is investigated to assess design performance under varying operating conditions.

Keywords

Topology optimization Navier-stokes Flow optimization Nozzle Dosing unit Eductor 

Notes

Acknowledgments

The author would like to thank Professor K. Svanberg, KTH, Sweden for use of his MMA implementation and the TopOpt group for fruitful discussions on the topic.

References

  1. Alexandersen J, Aage N, Andreasen CS, Sigmund O (2014) Topology optimisation for natural convection problems. Int J Numer Methods Fluids 76(10):699–721. doi: 10.1002/fld.3954 MathSciNetCrossRefGoogle Scholar
  2. Alexandersen J, Sigmund O, Aage N (2016) Large scale threedimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Trans 100:876–891. doi: 10.1016/j.ijheatmasstransfer.2016.05.013. http://www.sciencedirect.com/science/article/pii/S0017931015307365
  3. Andreasen CS, Sigmund O (2013) Topology optimization of fluid-structure-interaction problems in poroelasticity. Comput Methods Appl Mech Eng 258(0):55 – 62. doi: 10.1016/j.cma.2013.02.007 MathSciNetCrossRefMATHGoogle Scholar
  4. Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61(5):498–513. doi: 10.1002/fld.1964 MathSciNetCrossRefMATHGoogle Scholar
  5. Andreasen CS, Aage N, Madsen TBS (2014) Topology optimization of flow machinery. In: Karlaftis M G, Lagaros N D, Papadrakakis M (eds) Proceedings of 1st International Conference on Engineering and Applied Sciences Optimization, National Technical University of Athens, p 1964Google Scholar
  6. Bendsøe M, Sigmund O (2003) Topology optimization - theory, methods and applications, 2nd edn. Springer VerlagGoogle Scholar
  7. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224. doi: 10.1016/0045-7825(88)90086-2 MathSciNetCrossRefMATHGoogle Scholar
  8. Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41(1):77–107. doi: 10.1002/fld.426 MathSciNetCrossRefMATHGoogle Scholar
  9. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158MathSciNetCrossRefMATHGoogle Scholar
  10. Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res Sect A-mech Heat Chem Eng Math Methods 1(1):27–34. doi: 10.1007/BF02120313 MATHGoogle Scholar
  11. Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459CrossRefMATHGoogle Scholar
  12. Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011) Topology optimization of unsteady incompressible Navier-Stokes flows. J Comput Phys 230(17):6688–6708. doi: 10.1016/j.jcp.2011.05.004
  13. Dvorák V (2006) Shape optimization of axisymmetric ejector. In: ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands. Delft University of Technology; European Community on Computational Methods in Applied Sciences (ECCOMAS), pp 5–8Google Scholar
  14. Evgrafov A, Pingen G, Maute K (2008) Topology optimization of fluid domains: kinetic theory approach. ZAMM - J Appl Math Mech / Z Angew Math Mech 88(2):129–141. doi: 10.1002/zamm.200700122 MathSciNetCrossRefMATHGoogle Scholar
  15. Fan J, Eves J, Thompson H, Toropov V, Kapur N, Copley D, Mincher A (2011) Computational fluid dynamic analysis and design optimization of jet pumps. Comput Fluids 46(1):2010. doi: 10.1016/j.compfluid.2010.10.024, 10th {ICFD} Conference Series on Numerical Methods for Fluid Dynamics (ICFD)
  16. Gersborg-Hansen A, Sigmund O, Haber R (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192. doi: 10.1007/s00158-004-0508-7
  17. Guest J, Asadpoure A, Ha SH (2011) Eliminating beta-continuation from heaviside projection and density filter algorithms. Struct Multidiscip Optim 44(4):443–453. doi: 10.1007/s00158-011-0676-1 MathSciNetCrossRefMATHGoogle Scholar
  18. Hauke G, Hughes T (1994) A unified approach to compressible and incompressible flows. Comput Methods Appl Mech Eng 113(3-4):389–395. doi: 10.1016/0045-7825(94)90055-8 MathSciNetCrossRefMATHGoogle Scholar
  19. Hu H, Kobayashi T, Saga T, Taniguchi N, Liu H, Wu S (1999) Research on the rectangular lobed exhaust ejector/mixer systems. Trans-Jpn Soc Aeronaut Space Sci 41:187–194Google Scholar
  20. Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326. doi: 10.1007/s00158-012-0782-8 MathSciNetCrossRefMATHGoogle Scholar
  21. Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidiscip Optim 42:495–516. doi: 10.1007/s00158-010-0526-6 CrossRefGoogle Scholar
  22. Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87(13):1229–1253. doi: 10.1002/nme.3151 MathSciNetMATHGoogle Scholar
  23. Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781. doi: 10.1002/nme.3072
  24. Marck G, Nemer M, Harion JL (2013) Topology optimization of heat and mass transfer problems: Laminar flow. Numer Heat Transf Part B: Fundam 63(6):508–539. doi: 10.1080/10407790.2013.772001 CrossRefMATHGoogle Scholar
  25. Michaleris P, Tortorelli DA, Vidal CA (1994) Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int J Numer Meth Engng 37(14):2471–2499. doi: 10.1002/nme.1620371408 CrossRefMATHGoogle Scholar
  26. Nørgaard S, Sigmund O, Lazarov B (2016) Topology optimization of unsteady flow problems using the lattice boltzmann method. J Comput Phys 307:291–307. doi: 10.1016/j.jcp.2015.12.023 MathSciNetCrossRefMATHGoogle Scholar
  27. Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys Rev E 75(1):016,301. doi: 10.1103/PhysRevE.75.016301 CrossRefGoogle Scholar
  28. Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58(8):861–877. doi: 10.1002/fld.1770  10.1002/fld.1770 MathSciNetCrossRefMATHGoogle Scholar
  29. Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidiscip Optim 34(6):507–524. doi: 10.1007/s00158-007-0105-7 MathSciNetCrossRefMATHGoogle Scholar
  30. Pironneau O (1973) On optimum profiles in stokes flow. J Fluid Mech 59:117–128. doi: 10.1017/S002211207300145X MathSciNetCrossRefMATHGoogle Scholar
  31. Romero J, Silva E (2014) A topology optimization approach applied to laminar flow machine rotor design. Comput Methods Appl Mech Eng 279(0):268–300. doi: 10.1016/j.cma.2014.06.029 MathSciNetCrossRefGoogle Scholar
  32. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524. doi: 10.1080./08905459708945415
  33. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124. doi: 10.1007/s001580100129 CrossRefGoogle Scholar
  34. Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373. doi: 10.1002/nme.1620240207 MathSciNetCrossRefMATHGoogle Scholar
  35. Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784. doi: 10.1007/s00158-010-0602-y CrossRefMATHGoogle Scholar
  36. Yoon GH (2010a) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233. doi: 10.1007/s12206-010-0328-1 CrossRefGoogle Scholar
  37. Yoon GH (2010b) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82(5):591–616. doi: 10.1002/nme.2777 CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Section for Solid MechanicsTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations