Structural and Multidisciplinary Optimization

, Volume 55, Issue 3, pp 1063–1077 | Cite as

Topology optimization for heat conduction using generative design algorithms

  • Danny J. Lohan
  • Ercan M. Dede
  • James T. Allison


In this article we present a new approach to topological design for steady-state heat conduction. The method capitalizes on the use of a generative algorithm to represent topology, resulting in a decrease in the number of variables in the design description. Using a generative algorithm as a design abstraction, the optimization technique is targeted to dendritic topologies that are known to perform well for heat conduction. Specifically, a traditional topology optimization technique (SIMP) is confirmed to produce branching characteristics in optimal designs. The Space Colonization Algorithm, which can generate similar topological patterns, is selected for in-depth investigation. A genetic algorithm drives generation of design candidates, providing a highly diversified search of the target design space. Finally, several synthesized optimal designs for steady-state heat conduction, derived using the described algorithms, are compared using commercial finite element software.


Topology optimization Generative algorithms Conductive heat transfer 


  1. Bejan A, Lorente S (2006) Constructal theory of generation of configuration in nature and engineering. J Appl Phys 100(4). doi:10.1063/1.2221896
  2. Bejan A, Dincer I, Lorente S, Miguel AF, Reis AH (2004) Porous and complex flow structures in modern technology. Springer Science. doi:10.1007/978-1-4757-4221-3
  3. Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202. doi:10.1007/BF01650949 CrossRefGoogle Scholar
  4. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies for structural desing using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefMATHGoogle Scholar
  5. Bendsoe MP, Sigmund O (2004) Topology optimization - theory, methods, and application, 2nd edn. Springer. doi:10.1007/978-3-662-05086-6
  6. Biabanaki S, Khoei A, Wriggers P (2014) Polygonal finite element methods for contact-impact problems on non-conformal meshes. Comput Methods Appl Mech Eng 269:198–221. doi:10.1016/j.cma.2013.10.025 MathSciNetCrossRefMATHGoogle Scholar
  7. Biabanaki SOR, Khoei AR (2012) A polygonal finite element method for modeling arbitrary interfaces in large deformation problems. Comput Mech 50(1):19–33. doi:10.1007/s00466-011-0668-4 MathSciNetCrossRefMATHGoogle Scholar
  8. Bowmick S, Shontz SM (2010) Towards high-quality, untangled meshes via a force-direct graph embedding approach. Procedia Comput Sci 1(1):357–366. doi:10.1016/j.procs.2010.04.039 CrossRefGoogle Scholar
  9. Brackett D, Ashscroft I, Hague R (2011) Topology optimization for additive manufacturing. In: Proceedings of the 24th solid freeform fabrication symposium., pp 6–8.
  10. Bruns TH (2007) Topology optimization for convection-dominated, steady-state heat transfer problems. Int J Mass Heat Transfer 50(15–16):2859–2873. doi:10.1016/j.ijheatmasstransfer.2007.01.039
  11. Burger FH, Dirker J, Meyer JP (2013) Three-dimensional conductive heat transfer topology optimization in a cubic domain for the volume-to-surface problem. Int J Heat Mass Transfer 67:214–224. doi:10.1016/j.ijheatmasstransfer.2013.08.015
  12. Chan J, Fu K, Schunn C, Cagan J, Wood K, Kotovsky K (2011) On the benefits and pitfalls of analogies for innovative design: ideation performance based on analogical distance, commonness, and modality of examples. J Mech Des 133(8):081,004CrossRefGoogle Scholar
  13. Chen Y, Zhou S, Li Q (2010) Multiobjective topology optimization for finite periodic structures. Comput Struct 88:806–811. doi:10.1016/j.compstruc.2009.10.003 CrossRefGoogle Scholar
  14. Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidiscip Optim 49(3):387–399. doi:10.1007/s00158-013-0983-9 MathSciNetCrossRefGoogle Scholar
  15. Deaton J, RV G (2014) A survey of structural and multidsiplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. doi:10.1007/s00158-013-0956-z MathSciNetCrossRefGoogle Scholar
  16. de Kruijf N, Zhou S, Li Q, Mai YW (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 44:7092–7109. doi:10.1016/j.ijsolstr.2007.03.028 CrossRefMATHGoogle Scholar
  17. Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of COMSOL conferenceGoogle Scholar
  18. Dede EM, Joshi SN, Zhou F (2015) Topology optimization, additive layer manufacturing, and experimental testing of air-cooled heat sink. J Mech Des 137(11):1–9. doi:10.1115/1.4030989 CrossRefGoogle Scholar
  19. Errera M, Bejan A (1998) Deterministic tree networks for river frainage basins. Fractals Complex Geometry, Patterns, and Scaling in Nature and Society 6(3):245–261. doi:10.1142/S0218348X98000298 CrossRefGoogle Scholar
  20. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw-Pract Exper 21(11):1129–1164. doi:10.1002/spe.4380211102 CrossRefGoogle Scholar
  21. Gersborg-Hansen A, Bendsoe MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidiscip Optim 31:251–259. doi:10.1007/s00158-005-0584-3 MathSciNetCrossRefMATHGoogle Scholar
  22. Heymann D, Pence D, Narayanan V (2012) Optimization of fractal-like branching microchannel heat sink for single-phase flows. Int J Therm Sci 49(8):1383–1393. doi:10.1016/j.ijthermalsci.2010.01.015 CrossRefGoogle Scholar
  23. Iga A, Nishiwaki S, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Mass Heat Transf 52(11–12):2721–2732. doi:10.1016/j.ijheatmasstransfer.2008.12.013 CrossRefMATHGoogle Scholar
  24. Khetan A, Lohan DJ, Allison JT (2015) Managing variable-dimension structural optimization problems using generative algorithms. Struct Multidiscip Optim 50(4):695–715. doi:10.1007/s00158-015-1262-8 MathSciNetCrossRefGoogle Scholar
  25. Kicinger R, Arciszewski T, Jong KD (2005) Evolutionary computation and structural design: a survey of the state-of-the-art. Comput Struct 83(23):1943–1978. doi:10.1016/j.compstruc.2005.03.002 CrossRefGoogle Scholar
  26. Li Q, Steven G, Xie Y, Querin O (2004) Evolutionary topology optimization for temperature reduction of heat conducting fields. Int J Heat Mass Transf 47:5071–5083. doi:10.1016/j.ijheatmasstransfer.2004.06.010 CrossRefMATHGoogle Scholar
  27. Lindenmayer A (1975) Development algorithm for multicellular organisms: a survery of L-systems. J Theor Biol 54:3–22. doi:10.1016/S0022-5193(75)80051-8 MathSciNetCrossRefGoogle Scholar
  28. Lindsey JS, Tseng I, Fu K, Cagan J (2010) A study of design fixation, its mitigation and perception in engineering design faculty. J Mech Des 132(4). doi:10.1115/1.4001110
  29. Meinhardt M (1976) Morphogenesis of lines and nets. Models and hypothesis. Differentiation 6 6(2):117–123.
  30. Nitin (2012) On untangled meshes via Fruchterman Reingold force directed graph embedding. In: 14th international conference on modelling and simulation, pp 39–45. doi:10.1109/UKSim.2012.15
  31. Rodkaew Y, Siripant S, Lursinsap C, Chongstitvatana P (2002) An algorithm for generating vein images for realistic modeling of a leaf. In: Proceedings of the international conference on computational mathematics and modeling.
  32. Runions A, Fuhrer M, Lane B, Federl P, Rolland-Lagan AG, Prusinkiewicz P (2005) Modeling and visualization of leaf venation patterns. ACM Trans Graph 24:702–711.
  33. Runions A, Lane B, Prusinkiewicz P (2007) Modeling trees with a space colonization algorithm. In: Eurographics workshop on national phenomena, pp 63–70.
  34. Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 6:152–262.
  35. Salakij S, Liburdy JA, Pence DV, Apreotesi M (2013) Modeling in site vapor extraction during convective boiling in fractal-like branching microchannel networks. Int J Heat Mass Transf 60:700–712. doi:10.1016/j.ijheatmasstransfer.2013.01.004
  36. Sarhangi Fard A, Hulsen MA, Meijer HEH, Famili NMH, Anderson PD (2012) Adaptive non-conformal mesh refinement and extended finite element method for viscous flow inside complex moving geometries. Int J Numer Methods Fluids 68(8):1031–1052. doi:10.1002/fld.2595 MathSciNetCrossRefMATHGoogle Scholar
  37. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055. doi:10.1007/s00158-013-0978-6
  38. Svanberg K (1987) The method of moving asymptotes – a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATHGoogle Scholar
  39. Svanberg K, Svard H (2013) Density filters for topology optimization based on the geometric harmonic means. In: 10th world congress on structural and multidisciplinary optimization. OrlandoGoogle Scholar
  40. Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) Polymesher: a general-purpose mesh generator for polygonal element written in Matlab. Struct Multidiscip Optim 45(3):309–328. doi:10.1007/s00158-011-0706-z
  41. Yoon GH (2010) Topological design of heat dissipating structure with Froce convective heat transfer. J Mech Sci Technol 24(6):1225–1233. doi:10.1007/s12206-010-0328-1 CrossRefGoogle Scholar
  42. Zhuang C, Xiong Z, Ding H (2007) A level set method for topology optimization of heat conduction problems under multiple loading cases. Comput Methods Appl Mech Eng 196:1074–1084. doi:10.1016/j.cma.2006.08.005

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Danny J. Lohan
    • 1
  • Ercan M. Dede
    • 2
  • James T. Allison
    • 1
  1. 1.Department of Industrial and Enterprise Systems EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Electronics Research DepartmentToyota Research Institute of North AmericaAnn ArborUSA

Personalised recommendations