Advertisement

Structural and Multidisciplinary Optimization

, Volume 55, Issue 3, pp 1063–1077 | Cite as

Topology optimization for heat conduction using generative design algorithms

  • Danny J. LohanEmail author
  • Ercan M. Dede
  • James T. Allison
RESEARCH PAPER

Abstract

In this article we present a new approach to topological design for steady-state heat conduction. The method capitalizes on the use of a generative algorithm to represent topology, resulting in a decrease in the number of variables in the design description. Using a generative algorithm as a design abstraction, the optimization technique is targeted to dendritic topologies that are known to perform well for heat conduction. Specifically, a traditional topology optimization technique (SIMP) is confirmed to produce branching characteristics in optimal designs. The Space Colonization Algorithm, which can generate similar topological patterns, is selected for in-depth investigation. A genetic algorithm drives generation of design candidates, providing a highly diversified search of the target design space. Finally, several synthesized optimal designs for steady-state heat conduction, derived using the described algorithms, are compared using commercial finite element software.

Keywords

Topology optimization Generative algorithms Conductive heat transfer 

Notes

Acknowledgments

The authors would like to acknowledge the Toyota Research Institute of North America for funding this work.

References

  1. Bejan A, Lorente S (2006) Constructal theory of generation of configuration in nature and engineering. J Appl Phys 100(4). doi: 10.1063/1.2221896
  2. Bejan A, Dincer I, Lorente S, Miguel AF, Reis AH (2004) Porous and complex flow structures in modern technology. Springer Science. doi: 10.1007/978-1-4757-4221-3
  3. Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202. doi: 10.1007/BF01650949 CrossRefGoogle Scholar
  4. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies for structural desing using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefzbMATHGoogle Scholar
  5. Bendsoe MP, Sigmund O (2004) Topology optimization - theory, methods, and application, 2nd edn. Springer. doi: 10.1007/978-3-662-05086-6
  6. Biabanaki S, Khoei A, Wriggers P (2014) Polygonal finite element methods for contact-impact problems on non-conformal meshes. Comput Methods Appl Mech Eng 269:198–221. doi: 10.1016/j.cma.2013.10.025 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Biabanaki SOR, Khoei AR (2012) A polygonal finite element method for modeling arbitrary interfaces in large deformation problems. Comput Mech 50(1):19–33. doi: 10.1007/s00466-011-0668-4 MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bowmick S, Shontz SM (2010) Towards high-quality, untangled meshes via a force-direct graph embedding approach. Procedia Comput Sci 1(1):357–366. doi: 10.1016/j.procs.2010.04.039 CrossRefGoogle Scholar
  9. Brackett D, Ashscroft I, Hague R (2011) Topology optimization for additive manufacturing. In: Proceedings of the 24th solid freeform fabrication symposium., pp 6–8. http://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-27-Brackett.pdf
  10. Bruns TH (2007) Topology optimization for convection-dominated, steady-state heat transfer problems. Int J Mass Heat Transfer 50(15–16):2859–2873. doi: 10.1016/j.ijheatmasstransfer.2007.01.039
  11. Burger FH, Dirker J, Meyer JP (2013) Three-dimensional conductive heat transfer topology optimization in a cubic domain for the volume-to-surface problem. Int J Heat Mass Transfer 67:214–224. doi: 10.1016/j.ijheatmasstransfer.2013.08.015
  12. Chan J, Fu K, Schunn C, Cagan J, Wood K, Kotovsky K (2011) On the benefits and pitfalls of analogies for innovative design: ideation performance based on analogical distance, commonness, and modality of examples. J Mech Des 133(8):081,004CrossRefGoogle Scholar
  13. Chen Y, Zhou S, Li Q (2010) Multiobjective topology optimization for finite periodic structures. Comput Struct 88:806–811. doi: 10.1016/j.compstruc.2009.10.003 CrossRefGoogle Scholar
  14. Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidiscip Optim 49(3):387–399. doi: 10.1007/s00158-013-0983-9 MathSciNetCrossRefGoogle Scholar
  15. Deaton J, RV G (2014) A survey of structural and multidsiplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. doi: 10.1007/s00158-013-0956-z MathSciNetCrossRefGoogle Scholar
  16. de Kruijf N, Zhou S, Li Q, Mai YW (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 44:7092–7109. doi: 10.1016/j.ijsolstr.2007.03.028 CrossRefzbMATHGoogle Scholar
  17. Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of COMSOL conferenceGoogle Scholar
  18. Dede EM, Joshi SN, Zhou F (2015) Topology optimization, additive layer manufacturing, and experimental testing of air-cooled heat sink. J Mech Des 137(11):1–9. doi: 10.1115/1.4030989 CrossRefGoogle Scholar
  19. Errera M, Bejan A (1998) Deterministic tree networks for river frainage basins. Fractals Complex Geometry, Patterns, and Scaling in Nature and Society 6(3):245–261. doi: 10.1142/S0218348X98000298 CrossRefGoogle Scholar
  20. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw-Pract Exper 21(11):1129–1164. doi: 10.1002/spe.4380211102 CrossRefGoogle Scholar
  21. Gersborg-Hansen A, Bendsoe MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidiscip Optim 31:251–259. doi: 10.1007/s00158-005-0584-3 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Heymann D, Pence D, Narayanan V (2012) Optimization of fractal-like branching microchannel heat sink for single-phase flows. Int J Therm Sci 49(8):1383–1393. doi: 10.1016/j.ijthermalsci.2010.01.015 CrossRefGoogle Scholar
  23. Iga A, Nishiwaki S, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Mass Heat Transf 52(11–12):2721–2732. doi: 10.1016/j.ijheatmasstransfer.2008.12.013 CrossRefzbMATHGoogle Scholar
  24. Khetan A, Lohan DJ, Allison JT (2015) Managing variable-dimension structural optimization problems using generative algorithms. Struct Multidiscip Optim 50(4):695–715. doi: 10.1007/s00158-015-1262-8 MathSciNetCrossRefGoogle Scholar
  25. Kicinger R, Arciszewski T, Jong KD (2005) Evolutionary computation and structural design: a survey of the state-of-the-art. Comput Struct 83(23):1943–1978. doi: 10.1016/j.compstruc.2005.03.002 CrossRefGoogle Scholar
  26. Li Q, Steven G, Xie Y, Querin O (2004) Evolutionary topology optimization for temperature reduction of heat conducting fields. Int J Heat Mass Transf 47:5071–5083. doi: 10.1016/j.ijheatmasstransfer.2004.06.010 CrossRefzbMATHGoogle Scholar
  27. Lindenmayer A (1975) Development algorithm for multicellular organisms: a survery of L-systems. J Theor Biol 54:3–22. doi: 10.1016/S0022-5193(75)80051-8 MathSciNetCrossRefGoogle Scholar
  28. Lindsey JS, Tseng I, Fu K, Cagan J (2010) A study of design fixation, its mitigation and perception in engineering design faculty. J Mech Des 132(4). doi: 10.1115/1.4001110
  29. Meinhardt M (1976) Morphogenesis of lines and nets. Models and hypothesis. Differentiation 6 6(2):117–123. http://www.eb.tuebingen.mpg.de/fileadmin/uploads/pdf/Emeriti/Hans_Meinhardt/Old_paper_pdf/76-lines-nets.pdf
  30. Nitin (2012) On untangled meshes via Fruchterman Reingold force directed graph embedding. In: 14th international conference on modelling and simulation, pp 39–45. doi: 10.1109/UKSim.2012.15
  31. Rodkaew Y, Siripant S, Lursinsap C, Chongstitvatana P (2002) An algorithm for generating vein images for realistic modeling of a leaf. In: Proceedings of the international conference on computational mathematics and modeling. http://www.cp.eng.chula.ac.th/piak/paper/2002/cmm2002.pdf
  32. Runions A, Fuhrer M, Lane B, Federl P, Rolland-Lagan AG, Prusinkiewicz P (2005) Modeling and visualization of leaf venation patterns. ACM Trans Graph 24:702–711. http://algorithmicbotany.org/papers/venation.sig2005.pdf
  33. Runions A, Lane B, Prusinkiewicz P (2007) Modeling trees with a space colonization algorithm. In: Eurographics workshop on national phenomena, pp 63–70. http://algorithmicbotany.org/papers/colonization.egwnp2007.large.pdf
  34. Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 6:152–262. http://algorithmicbotany.org/papers/canalisation.fsmp2004.pdf
  35. Salakij S, Liburdy JA, Pence DV, Apreotesi M (2013) Modeling in site vapor extraction during convective boiling in fractal-like branching microchannel networks. Int J Heat Mass Transf 60:700–712. doi: 10.1016/j.ijheatmasstransfer.2013.01.004
  36. Sarhangi Fard A, Hulsen MA, Meijer HEH, Famili NMH, Anderson PD (2012) Adaptive non-conformal mesh refinement and extended finite element method for viscous flow inside complex moving geometries. Int J Numer Methods Fluids 68(8):1031–1052. doi: 10.1002/fld.2595 MathSciNetCrossRefzbMATHGoogle Scholar
  37. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055. doi: 10.1007/s00158-013-0978-6
  38. Svanberg K (1987) The method of moving asymptotes – a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefzbMATHGoogle Scholar
  39. Svanberg K, Svard H (2013) Density filters for topology optimization based on the geometric harmonic means. In: 10th world congress on structural and multidisciplinary optimization. OrlandoGoogle Scholar
  40. Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) Polymesher: a general-purpose mesh generator for polygonal element written in Matlab. Struct Multidiscip Optim 45(3):309–328. doi: 10.1007/s00158-011-0706-z
  41. Yoon GH (2010) Topological design of heat dissipating structure with Froce convective heat transfer. J Mech Sci Technol 24(6):1225–1233. doi: 10.1007/s12206-010-0328-1 CrossRefGoogle Scholar
  42. Zhuang C, Xiong Z, Ding H (2007) A level set method for topology optimization of heat conduction problems under multiple loading cases. Comput Methods Appl Mech Eng 196:1074–1084. doi: 10.1016/j.cma.2006.08.005

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Danny J. Lohan
    • 1
    Email author
  • Ercan M. Dede
    • 2
  • James T. Allison
    • 1
  1. 1.Department of Industrial and Enterprise Systems EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Electronics Research DepartmentToyota Research Institute of North AmericaAnn ArborUSA

Personalised recommendations