Structural and Multidisciplinary Optimization

, Volume 55, Issue 2, pp 569–581 | Cite as

Evolutionary topology optimization of elastoplastic structures

  • Liang XiaEmail author
  • Felix Fritzen
  • Piotr Breitkopf


We have recently proposed in (Fritzen et al., Int J Numer Methods Eng 106(6):430–453, 2016) an evolutionary topology optimization model for the design of multiscale elastoplastic structures, which is in general independent of the applied material law. Facing the variability of the final design for minor parameter changes when dealing with plastic structural designs, we further improve the robustness and the effectiveness of the BESO optimization procedure in this work by introducing a damping scheme on sensitivity numbers and by progressively reducing the sensitivity filtering radius. The damping scheme constraining the variance of the sensitivity numbers stabilizes the topological evolution process in particular for dissipative structural designs. By setting initially a large filter radius value and reducing it gradually, the emergence of the redundant structural branches, which are to be eliminated afterwards and are the main reasons deteriorating the design process, could be avoided. The robustness and the effectiveness of the improved model has been validated by means of benchmark numerical examples of conventional homogeneous structures.


Topology optimization BESO Sensitivity analysis Adjoint method Elastoplasticity 



This work was carried out in the framework of the Labex MS2T, which was funded by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02). The contribution of Felix Fritzen is supported by the German Research Foundation (DFG) under grant DFG-FR2702/6 in the contract of Emmy-Noether-Group EMMA - Efficient Methods for Mechanical Analysis at the University of Stuttgart.


  1. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bendsøe M, Sokolowsk J (1987) Sensitivity analysis and optimization of elastic-plastic structures. Eng Optim 11(1-2):31–38CrossRefGoogle Scholar
  3. Bendsøe M, Guedes J, Plaxton S, Taylor J (1996) Optimization of structure and material properties for solids composed of softening material. Int J Solids Struct 33(12):1799–1813MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRefGoogle Scholar
  5. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bendsøe MP, Sigmund O (2003) Topology optimization: theory methods and applications. Springer, BerlinzbMATHGoogle Scholar
  7. Bogomolny M, Amir O (2012) Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling. Int J Numer Methods Eng 90(13):1578– 1597CrossRefzbMATHGoogle Scholar
  8. Bruns T, Tortorelli D (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430CrossRefzbMATHGoogle Scholar
  9. Buhl T, Pedersen C, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRefGoogle Scholar
  10. Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362MathSciNetCrossRefzbMATHGoogle Scholar
  11. Challis VJ (2010) A discrete level-set topology optimization code written in matlab. Struct Multidiscip Optim 41(3):453–464MathSciNetCrossRefzbMATHGoogle Scholar
  12. Cho S, Jung HS (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192(22-23):2539–2553CrossRefzbMATHGoogle Scholar
  13. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRefGoogle Scholar
  14. Fritzen F, Hodapp M (2016) The finite element square reduced (FE 2R) method with gpu acceleration: towards three-dimensional two-scale simulations. Int J Numer Methods Eng. doi: 10.1002/nme.5188  10.1002/nme.5188
  15. Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154MathSciNetCrossRefzbMATHGoogle Scholar
  16. Fritzen F, Hodapp M, Leuschner M (2014) Gpu accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217MathSciNetCrossRefGoogle Scholar
  17. Fritzen F, Xia L, Leuschner M, Breitkopf P (2016) Topology optimization of multiscale elastoviscoplastic structures. Int J Numer Methods Eng 106:430–453MathSciNetCrossRefzbMATHGoogle Scholar
  18. Gea H, Luo J (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79(20-21):1977–1985CrossRefGoogle Scholar
  19. Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically-a new Moving Morphable Components based framework. J Appl Mech Trans ASME 81(8)Google Scholar
  20. Huang X, Xie Y (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049CrossRefGoogle Scholar
  21. Huang X, Xie Y (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30(7):2057–2068CrossRefGoogle Scholar
  22. Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43(3):393–401MathSciNetCrossRefzbMATHGoogle Scholar
  23. Huang X, Xie YM (2010a) Evolutionary topology optimization of continuum structures: methods and applications. Wiley, ChichesterCrossRefzbMATHGoogle Scholar
  24. Huang X, Xie YM (2010b) A further review of ESO type methods for topology optimization. Struct. Multidiscip. Optim. 41(5):671– 683CrossRefGoogle Scholar
  25. Huang X, Xie Y, Lu G (2007) Topology optimization of energy-absorbing structures. Int J Crashworthiness 12(6):663–675CrossRefGoogle Scholar
  26. Huang X, Zhou S, Sun G, Li G, Xie Y (2015) Topology optimization for microstructures of viscoelastic composite materials. Comput Methods Appl Mech Eng 283:503–516CrossRefGoogle Scholar
  27. Jung D, Gea H (2004) Topology optimization of nonlinear structures. Finite Elem Anal Des 40(11):1417–1427CrossRefGoogle Scholar
  28. Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim. doi: 10.1007/s00158-015-1246-8, article in Press
  29. Luo Y, Wang M, Kang Z (2015) Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Comput Methods Appl Mech Eng 286:422–441MathSciNetCrossRefGoogle Scholar
  30. Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91CrossRefGoogle Scholar
  31. Michaleris P, Tortorelli D A, Vidal C A (1994) Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37(14):2471–2499CrossRefzbMATHGoogle Scholar
  32. Pedersen C, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50(12):2683–2705CrossRefzbMATHGoogle Scholar
  33. Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15-17):2135–2155CrossRefzbMATHGoogle Scholar
  34. Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MathSciNetCrossRefzbMATHGoogle Scholar
  35. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21 (2):120–127MathSciNetCrossRefGoogle Scholar
  36. Sigmund O, Maute K (2013) Topology optimization approaches - a comparative review. Struct Multidiscip Optim 48(6):1031– 1055MathSciNetCrossRefGoogle Scholar
  37. Wang F, Lazarov B, Sigmund O, Jensen J (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472MathSciNetCrossRefGoogle Scholar
  38. Wang M Y, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246MathSciNetCrossRefzbMATHGoogle Scholar
  39. Wei P, Wang M, Xing X (2010) A study on x-FEM in continuum structural optimization using a level set model. CAD Comput Aided Des 42(8):708–719CrossRefGoogle Scholar
  40. Xia L, Breitkopf P (2014a) Concurrent topology optimization design of material and structure within FE 2 nonlinear multiscale analysis framework. Comput. Methods Appl. Mech. Eng. 278:524–542CrossRefGoogle Scholar
  41. Xia L, Breitkopf P (2014b) A reduced multiscale model for nonlinear structural topology optimization. Comput. Methods Appl. Mech. Eng. 280:117–134MathSciNetCrossRefGoogle Scholar
  42. Xia L, Breitkopf P (2015) Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng 286:147–167MathSciNetCrossRefGoogle Scholar
  43. Xia L, Breitkopf P (2016) Recent advances on topology optimization of multiscale nonlinear structures. Arch Comput Meth Eng. doi: 10.1007/s11831-016-9170-7
  44. Xia Q, Shi T (2015) Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization. Comput Methods Appl Mech Eng 295:525–542MathSciNetCrossRefGoogle Scholar
  45. Xia Q, Shi T, Liu S, Wang M (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90-91:55–64CrossRefGoogle Scholar
  46. Xia Q, Wang M, Shi T (2014) A level set method for shape and topology optimization of both structure and support of continuum structures. Comput Methods Appl Mech Eng 272:340–353MathSciNetCrossRefzbMATHGoogle Scholar
  47. Xia Q, Wang M, Shi T (2015) Topology optimization with pressure load through a level set method. Comput Methods Appl Mech Eng 283:177–195MathSciNetCrossRefGoogle Scholar
  48. Xie Y M, Steven G P (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRefGoogle Scholar
  49. Xie Y M, Steven GP (1997) Evolutionary structural optimization. Springer, LondonCrossRefzbMATHGoogle Scholar
  50. Yoon G, Kim Y (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009MathSciNetCrossRefzbMATHGoogle Scholar
  51. Yoon G, Kim Y (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Eng 69(10):2196–2218MathSciNetCrossRefzbMATHGoogle Scholar
  52. Yuge K, Kikuchi N (1995) Optimization of a frame structure subjected to a plastic deformation. Struct Optim 10(3-4):197–208CrossRefGoogle Scholar
  53. Yuge K, Iwai N, Kikuchi N (1999) Optimization of 2-D structures subjected to nonlinear deformations using the homogenization method. Struct Optim 17(4):286–299CrossRefGoogle Scholar
  54. Zhang W, Yuan J, Zhang J, Guo X (2015) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidiscip Optim. doi: 10.1007/s00158-015-1372-3, article in Press
  55. Zhang W, Zhang J, Guo X (2016) Lagrangian description based topology optimization - a revival of shape optimization. J Appl Mech Trans ASME 83(4)Google Scholar
  56. Zhou M, Rozvany GIN (1991) The COC algorithm, part ii: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1-3):309–336CrossRefGoogle Scholar
  57. Zhu J, Zhang W, Qiu K (2007) Bi-directional evolutionary topology optimization using element replaceable method. Comput Mech 40(1):97–109CrossRefzbMATHGoogle Scholar
  58. Zhu J, Zhang W, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Meth Eng. doi: 10.1007/s11831-015-9151-2

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire Roberval, UMR 7337 UTC-CNRS, Sorbonne Universites, Universite de Technologie de Compiegne, Centre de Recherches de RoyallieuCedexFrance
  2. 2.The State Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina
  3. 3.EMMA - Efficient Methods for Mechanical Analysis Group, Chair of Continuum Mechanics, Institute of Applied Mechanics (CE)University of StuttgartStuttgartGermany

Personalised recommendations