Structural and Multidisciplinary Optimization

, Volume 54, Issue 5, pp 1267–1281 | Cite as

Simultaneous material and structural optimization by multiscale topology optimization

  • Raghavendra Sivapuram
  • Peter D. Dunning
  • H. Alicia Kim


This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscale design optimization by linearizing and formulating a new way to decompose into macro and microscale design problems in such a way that solving the decomposed problems separately lead to an overall optimum solution. In addition, the macro and microstructural designs are coupled tightly through homogenization and inverse homogenization. This approach is generic in that it allows any number of unique microstructures and can be applied to a wide range of design problems. An advantage of decomposing the problem in this physical way is that it is potentially straight forward to specify additional design requirements at a specific scale or in specific regions of the design domain. The decomposition approach also allows an easy parallelization of the computational methodology and this enables the computational time to be maintained at a practical level. We demonstrate the proposed approach using the level-set topology optimization at both scales, i.e. macrostructural topological design and microstructural topology of architected material. A series of optimization problems, minimizing compliance and compliant mechanism are solved for verification and investigation of potential benefits.


Multiscale Topology optimization Level-set method Decomposition Architected material 



The authors acknowledge the support from Engineering and Physical Sciences Research Council, grant number EP/M002322/1. The authors would also like to thank Numerical Analysis Group at the Rutherford Appleton Laboratory for their FORTRAN HSL packages (HSL, a collection of Fortran codes for large-scale scientific computation. See


  1. Allaire G (1993) Two-scale convergence and homogenization of periodic structures, School on homogenization. ICTP, TriesteGoogle Scholar
  2. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393. doi: 10.1016/ MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bendsoe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, GermanyCrossRefzbMATHGoogle Scholar
  5. Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35:107–115. doi: 10.1007/S00158-007-0141-3 CrossRefGoogle Scholar
  6. De Leon DM, de Souza CE, Fonseca JSO, da Silva RGA (2012) Aeroelastic tailoring using fiber orientation and topology optimization. Struct Multidiscip Optim 46:663–677. doi: 10.1007/s00158-012-0790-8 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38MathSciNetCrossRefGoogle Scholar
  8. Deng JD, Yan J, Cheng GD (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47:583–597. doi: 10.1007/S00158-012-0849-6 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Dunning PD, Brampton CJ, Kim HA (2015) Simultaneous optimisation of structural topology and material grading using level set method. Mater Sci Technol 31:884–894. doi: 10.1179/1743284715y.0000000022 CrossRefGoogle Scholar
  10. Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198MathSciNetCrossRefzbMATHGoogle Scholar
  11. Jog C, Haber RB, Bendsfe MP (1994) Topology design with optimized, self-adaptive material. Int J Numer Methods Eng 37(8):1323–1350. doi: 10.1002/nme.1620370805 CrossRefzbMATHGoogle Scholar
  12. Johnson SG (2014) The NLopt nonlinear-optimization package.
  13. Liu L, Yan J, Cheng GD (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86:1417–1425. doi: 10.1016/J.Compstruc.2007.04.030 CrossRefGoogle Scholar
  14. Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91:158–167. doi: 10.1016/J.Compstruct.2009.04.046 CrossRefGoogle Scholar
  15. Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39:115–132. doi: 10.1007/s00158-008-0334-4 CrossRefGoogle Scholar
  16. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49. doi: 10.1016/0021-9991(88)90002-2 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Peeters D, Baalen Dv, Abdalla M (2014) Combining topology and lamination parameter optimisation. In: 55th AIAA/ASMe/ASCE/AHS/SC structures, structural dynamics, and materials conference. AIAA SciTech. Am Inst Aeronaut Astronaut. doi: 10.2514/6.2014-1372
  18. Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24:1–10. doi: 10.1007/s00158-002-0209-z CrossRefGoogle Scholar
  19. Sanchez-Palencia (1980) Non homogeneous media and vibration theory, lecture notes in physics. Springer, BerlinzbMATHGoogle Scholar
  20. Schury F, Stingl M, Wein F (2012) Efficient two-scale optimization of manufacturable graded structures siam. J Sci Comput 34:B711–B733. doi: 10.1137/110850335 MathSciNetzbMATHGoogle Scholar
  21. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:493–524CrossRefGoogle Scholar
  22. Sigmund O (2001) Design of multiphysics actuators using topology optimization - part II: two-material structures. Comput Methods Appl Mech Eng 190:6605–6627. doi: 10.1016/S0045-7825(01)00252-3 CrossRefzbMATHGoogle Scholar
  23. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45:1037–1067. doi: 10.1016/S0022-5096(96)00114-7 MathSciNetCrossRefGoogle Scholar
  24. Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193:469–496. doi: 10.1016/j.cma.2003.10.008 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefzbMATHGoogle Scholar
  26. Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542. doi: 10.1016/j.cma.2014.05.022 MathSciNetCrossRefGoogle Scholar
  27. Yan X, Huang X, Zha Y, Xie YM (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110. doi: 10.1016/J.Compstruc.2013.12.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Raghavendra Sivapuram
    • 1
  • Peter D. Dunning
    • 2
  • H. Alicia Kim
    • 1
    • 3
  1. 1.Structural EngineeringUniversity of California, San DiegoSan DiegoUSA
  2. 2.School of EngineeringUniversity of AberdeenAberdeenUK
  3. 3.School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations