Structural and Multidisciplinary Optimization

, Volume 54, Issue 2, pp 349–359 | Cite as

On optimization of interference fit assembly



Assembly of shaft and hub by an interference fit is a classical connection with known advantages and disadvantages. The advantage being the level of possible torque transfer while the disadvantage is a possible fretting fatigue failure at the points of stress concentration. To improve the assembly the present paper discusses different optimized designs that improve the contact pressure distribution. The pressure distribution in the contact is the source responsible for the fatigue failure. The distribution can be improved by design modification done directly on the contacting surfaces which however requires a very high production precision. Alternatively it is shown, how hub side shape optimization can improve the pressure distribution significantly. The latter design change has no influence on the remaining shaft-hub design i.e. the attachment of other parts. The analysis is performed either by a traditional contact analysis, or by a super element contact analysis where no iterations are needed for the contact evaluation.


Interference fit Contact Shape optimization Stress concentration FE 



For discussions and suggestions I wish to thank Prof. Peder Klit and Prof. Pauli Pedersen.


  1. Alfredsson B (2009) Fretting fatigue of a shrink-fit pin subjected to rotating bending: experiments and simulations. Int J Fatigue 31(10):1559–1570. doi: 10.1016/j.ijfatigue.2009.04.019 CrossRefGoogle Scholar
  2. Biron G, Vadean A, Tudose L (2013) Optimal design of interference fit assemblies subjected to fatigue loads. Struct Multidiscip Optim 47(3):441–451. doi: 10.1007/s00158-012-0836-y MathSciNetCrossRefMATHGoogle Scholar
  3. COMSOL AB (1998-2009) Stockholm,
  4. Fujiwara H, Kawase T (2007) Logarithmic profiles of rollers in roller bearings and optimization of the profiles (reprint from the original paper (in Japanese) carried in the proceedings of the Japan society of mechanical engineers part c, vol 72 (2006),3022-2029). NTN Tech Rev 70:140–148Google Scholar
  5. Gamer U, Lance RH (1983) Residual stress in shrink fits. Int J Mech Sci 25(7):465–470CrossRefMATHGoogle Scholar
  6. Gutkin R, Alfredsson B (2008) Growth of fretting fatigue cracks in a shrink-fitted joint subjected to rotating bending. Eng Fail Anal 15(5):582–596. doi: 10.1016/j.engfailanal.2007.04.003 CrossRefGoogle Scholar
  7. Hattori T, Kawai S, Okamoto N, Sonobe T (1981) Torsional fatigue strength of a shrink fitted shaft. Bulletin of the JSME 24(197):1893–1900CrossRefGoogle Scholar
  8. Juuma T (2000) Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub. Tribol Int 33 (8):537–543. doi: 10.1016/s0301-679x(00)00102-x CrossRefGoogle Scholar
  9. Kataoka S, Sakae C, Kubota M, Kondo Y (2007) Effect of stress relief groove shape on fretting fatigue strength. Key Eng Mater 353-358(PART 2):856–859CrossRefGoogle Scholar
  10. Kubota M, Kataoka S, Kondo Y (2009) Effect of stress relief groove on fretting fatigue strength and index for the selection of optimal groove shape. Int J Fatigue 31(3):439–446. doi: 10.1016/j.ijfatigue.2008.07.007 CrossRefGoogle Scholar
  11. Lee DH, Kwon SJ, Seo JW, You WH (2010) Effects of hub contact shape on contact pressure and fatigue life in a press-fitted shaft. Mater Sci Forum 654-656:1638–1641. doi: 10.4028/ CrossRefGoogle Scholar
  12. Lee DH, Choi HY, Song CY, Lee BG (2013) Design of stress relief groove on a press-fitted assembly. Materials Processing and Manufacturing iii, pts 1-4 753-755(753-755):1339–1342. doi: 10.4028/ Google Scholar
  13. Nishioka K, Komatsu H (1967) Researches on increasing the fatigue strength of press-fitted shaft assembly. Bulletin of the Japan Society of Mechanical Engineers 10(42):880–889CrossRefGoogle Scholar
  14. Pedersen NL (2010) Improving bending stress in spur gears using asymmetric gears and shape optimization. Mech Mach Theory 45(11):1707–1720CrossRefMATHGoogle Scholar
  15. Pedersen NL, Pedersen P (2009) Bolt-plate contact assemblies with prestress and external loads: solved with super element technique. Comput Struct 87(21-22):1374–1383. doi: 10.1016/j.compstruc.2009.07.004 CrossRefGoogle Scholar
  16. Pedersen P (2006a) A direct analysis of elastic contact using super elements. Comput Mech 37(3):221–231. doi: 10.1007/s00466-005-0707-0 CrossRefMATHGoogle Scholar
  17. Pedersen P (2006b) On shrink fit analysis and design. Comput Mech 37(2):121–130CrossRefMATHGoogle Scholar
  18. Poutiainen I, Tanskanen P, Marquis G (2004) Finite element methods for structural hot spot stress determination—a comparison of procedures. Int J Fatigue 26(11):1147–1157CrossRefMATHGoogle Scholar
  19. Reusner H (1987) The logarithmic roller profile—the key to superior performance of cylindrical and taper roller bearings. Ball Bearing Journal 230:2–10Google Scholar
  20. Truman CE, Booker JD (2007) Analysis of a shrink-fit failure on a gear hub/shaft assembly. Eng Fail Anal 14(4):557–572. doi: 10.1016/j.engfailanal.2006.03.008 CrossRefGoogle Scholar
  21. White DJ, Humpherson J (1969) Finite-element analysis of stresses in shafts due to interference-fit hubs. J Strain Anal Eng Des 4(2):105–114. doi: 10.1243/03093247V042105 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Solid MechanicsTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations