Advertisement

A new metaheuristic for continuous structural optimization: water evaporation optimization

  • A. KavehEmail author
  • T. Bakhshpoori
RESEARCH PAPER

Abstract

The paper proposes a novel physically inspired population-based metaheuristic algorithm for continuous structural optimization called as Water Evaporation Optimization (WEO). WEO mimics the evaporation of a tiny amount of water molecules adhered on a solid surface with different wettability which can be studied by molecular dynamics simulations. A set of six truss design problems from the small to normal scale are considered for evaluating the WEO. The most effective available state-of-the-art metaheuristic optimization methods are used as basis of comparison. The optimization results demonstrate the efficiency and robustness of the WEO and its competitive performance to other algorithms for continuous structural optimization problems.

Keywords

Water evaporation optimization Molecular dynamics simulations Continuous structural optimization Global search Local search 

References

  1. Bond M, Struchtrup H (2004) Mean evaporation and condensation coefficients based on energy dependent condensation probability. Phys Rev E 70:061605CrossRefGoogle Scholar
  2. Camp CV (2007) Design of space trusses using big bang–big crunch optimization. J Struct Eng 133:999–1008. doi: 10.1061/(ASCE)0733-9445.(2007)133:7(999) CrossRefGoogle Scholar
  3. Camp CV, Bichon BJ (2004) Design of space trusses using ant colony optimization. J Struct Eng 130:741–751. doi: 10.1061/(ASCE)0733-9445.(2004)130:5(741) CrossRefGoogle Scholar
  4. Davarynejad M, Vrancken J, van den Berg J, Coello Coello C (2012) A fitness granulation approach for large-scale structural design optimization. In: Chiong R, Weise T, Michalewicz Z (eds) Variants of evolutionary algorithms for real-world applications. Springer, Berlin Heidelberg, pp 245–280. doi: 10.1007/978-3-642-23424-8_8 CrossRefGoogle Scholar
  5. Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss structures. Comput Struct 92–93:229–241. doi: 10.1016/j.compstruc.2011.10.022 CrossRefGoogle Scholar
  6. Degertekin SO, Hayalioglu MS (2013) Sizing truss structures using teaching-learning-based optimization. Comput Struct 119:177–188. doi: 10.1016/j.compstruc.2012.12.011 CrossRefGoogle Scholar
  7. Gandomi A, Yang X-S (2011) Benchmark problems in structural optimization. In: Koziel S, Yang X-S (eds) Computational optimization, methods and algorithms, vol 356, Studies in Computational Intelligence. Springer, Berlin Heidelberg, pp 259–281. doi: 10.1007/978-3-642-20859-1_12 CrossRefGoogle Scholar
  8. Gelderblom H, Marín ÁG, Nair H, van Houselt A, Lefferts L, Snoeijer JH, Lohse D (2011) How water droplets evaporate on a superhydrophobic substrate. Phys Rev E 83:026306CrossRefGoogle Scholar
  9. Hong-Kai G, Hai-Ping F (2005) Drop size dependence of the contact angle of nanodroplets. Chin Phys Lett 22:787CrossRefGoogle Scholar
  10. Kaveh A (1997) Optimal structural analysis. Research Studies PressGoogle Scholar
  11. Kaveh A, Bakhshpoori T (2013) Optimum design of space trusses using cuckoo search algorithm with levy flights. Iranian J Sci Tech Trans B- Eng 37:1–15Google Scholar
  12. Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70. doi: 10.1016/j.advengsoft.2013.03.004 CrossRefGoogle Scholar
  13. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112–113:283–294. doi: 10.1016/j.compstruc.2012.09.003 CrossRefGoogle Scholar
  14. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27. doi: 10.1016/j.compstruc.2014.04.005 CrossRefGoogle Scholar
  15. Kaveh A, Talatahari S (2009a) A particle swarm ant colony optimization for truss structures with discrete variables. J Constr Steel Res 65:1558–1568. doi: 10.1016/j.jcsr.2009.04.021 CrossRefGoogle Scholar
  16. Kaveh A, Talatahari S (2009b) Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283. doi: 10.1016/j.compstruc.2009.01.003 CrossRefGoogle Scholar
  17. Kaveh A, Talatahari S (2009c) Size optimization of space trusses using Big Bang–Big Crunch algorithm. Comput Struct 87:1129–1140. doi: 10.1016/j.compstruc.2009.04.011 CrossRefGoogle Scholar
  18. Kaveh A, Talatahari S (2010a) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289. doi: 10.1007/s00707-009-0270-4 CrossRefzbMATHGoogle Scholar
  19. Kaveh A, Talatahari S (2010b) Optimal design of skeletal structures via the charged system search algorithm. Struct Multidisc Optim 41:893–911. doi: 10.1007/s00158-009-0462-5 CrossRefGoogle Scholar
  20. Kaveh A, Talatahari S (2010c) Optimum design of skeletal structures using imperialist competitive algorithm. Comput Struct 88:1220–1229. doi: 10.1016/j.compstruc.2010.06.011 CrossRefzbMATHGoogle Scholar
  21. Kaveh A, Zolghadr A (2014) Comparison of nine meta-heuristic algorithms for optimal design of truss structures with frequency constraints. Adv Eng Softw 76:9–30. doi: 10.1016/j.advengsoft.2014.05.012 CrossRefGoogle Scholar
  22. Kaveh A, Bakhshpoori T, Afshari E (2014) An efficient hybrid particle swarm and swallow swarm optimization algorithm. Comput Struct 143:40–59. doi: 10.1016/j.compstruc.2014.07.012 CrossRefGoogle Scholar
  23. Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss structures. Comput Struct 86:1936–1953. doi: 10.1016/j.compstruc.2008.02.004 CrossRefGoogle Scholar
  24. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798. doi: 10.1016/j.compstruc.2004.01.002 CrossRefGoogle Scholar
  25. Manual of steel construction–allowable stress design (1989) American Institute of Steel Construction (AISC), ChicagoGoogle Scholar
  26. Rajeev SS, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng 118:1233–1250. doi: 10.1061/(ASCE)0733-9445(1992)118:5(1233) CrossRefGoogle Scholar
  27. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012) Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 102–103:49–63. doi: 10.1016/j.compstruc.2012.03.013 CrossRefGoogle Scholar
  28. Sonmez M (2011) Artificial bee colony algorithm for optimization of truss structures. Appl Soft Comput 11:2406–2418. doi: 10.1016/j.asoc.2010.09.003 CrossRefGoogle Scholar
  29. Talatahari S, Kheirollahi M, Farahmandpour C, Gandomi AH (2013) A multi-stage particle swarm for optimum design of truss structures. Neural Comput & Applic 23:1297–1309. doi: 10.1007/s00521-012-1072-5 CrossRefGoogle Scholar
  30. Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley PublishingGoogle Scholar
  31. Yang XS, Deb S (2010) Engineering optimisation by Cuckoo Search. Int J Math Model Numer Optim 1:330–343Google Scholar
  32. Wang S, Tu Y, Wan R, Fang H (2012) Evaporation of tiny water aggregation on solid surfaces with different wetting. J Phys Chem B 116:13863–13867. doi: 10.1021/jp302142s CrossRefGoogle Scholar
  33. Zarei G, Homaee M, Liaghat AM, Hoorfar AH (2010) A model for soil surface evaporation based on Campbell’s retention curve. J Hydrol 380:356–361. doi: 10.1016/j.jhydrol.2009.11.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre of Excellence for Fundamental Studies in Structural Engineering, School of Civil EngineeringIran University of Science and TechnologyNarmakIran

Personalised recommendations