Structural and Multidisciplinary Optimization

, Volume 53, Issue 3, pp 545–566 | Cite as

Structural design using multi-objective metaheuristics. Comparative study and application to a real-world problem

  • Gustavo Zavala
  • Antonio J. Nebro
  • Francisco Luna
  • Carlos A. Coello Coello
RESEARCH PAPER

Abstract

Many structural design problems in the field of civil engineering are naturally multi-criteria, i.e., they have several conflicting objectives that have to be optimized simultaneously. An example is when we aim to reduce the weight of a structure while enhancing its robustness. There is no a single solution to these types of problems, but rather a set of designs representing trade-offs among the conflicting objectives. This paper focuses on the application of multi-objective metaheuristics to solve two variants of a real-world structural design problem. The goal is to compare a representative set of state-of-the-art multi-objective metaheuristic algorithms aiming to provide civil engineers with hints as to what optimization techniques to use when facing similar problems as those selected in the study presented in this paper. Accordingly, our study reveals that MOCell, a cellular genetic algorithm, provides the best overall performance, while NSGA-II, the de facto standard multi-objective metaheuristic technique, also demonstrates a competitive behavior.

Keywords

Multi-objective optimization Metaheuristics Structural optimization Real-world problems 

References

  1. Asafuddoula M, Ray T, Sarker R, Alam K (2012) An adaptive constraint handling approach embedded moea/d. In: 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 1–8Google Scholar
  2. Bäck T, Fogel D, Michalewicz Z (eds) (1997) Handbook of evolutionary computation. Oxford University PressGoogle Scholar
  3. Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Tech. Rep. CMU-CS-94-163, Carnegie-Mellon University, Pittsburgh, PhiladelphiaGoogle Scholar
  4. Beume N, Naujoks B, Emmerich M (2007) Sms-emoa: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669CrossRefMATHGoogle Scholar
  5. Clerc M, Kennedy J (2002) The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73CrossRefGoogle Scholar
  6. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  7. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATHGoogle Scholar
  8. Durillo JJ, Nebro AJ (2011) jmetal: a java framework for multi-objective optimization. Adv Eng Softw 42 (10):760–771CrossRefGoogle Scholar
  9. Glover F, Kochenberger GA (2003) Handbook of metaheuristics. SpringerGoogle Scholar
  10. Kaveh A, Laknejadi K (2011) A hybrid multi-objective optimization and decision making procedure for optimal design of truss structures. Iranian Journal of Science and Technology–Transactions of Civil Engineering 35 (C2):137–154Google Scholar
  11. Kelesoglu O (2007) Fuzzy multiobjective optimization of truss-structures using genetic algorithm. Adv Eng Softw 38(10):717–721CrossRefGoogle Scholar
  12. Knowles J, Corne D (2003) Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L (eds) Evolutionary multicriterion optimization. Second international conference, EMO 2003. Lecture Notes in Computer Science, vol 2632. Springer, Portugal, pp 295–310Google Scholar
  13. Knowles J, Corne D (2003) Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca C, Fleming P, Zitzler E, Deb K, Thiele L (eds) Proceedings of the LNCS 2nd International conference on Evolutionary multi-criterion optimization, EMO 2003, Faro, April 2003, no 2632. Springer, pp 295–310Google Scholar
  14. Knowles J, Thiele L, Zitzler E (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers. Tech. Rep. 214, Computer engineering and networks laboratory (TIK). ETH ZurichGoogle Scholar
  15. Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archived evolution strategy. Evol Comput 8(2):149–172CrossRefGoogle Scholar
  16. Kukkonen S, Lampinen J (2005) GDE3: the 3rd evolution step of generalized differential evolution. In: IEEE Congress on Evolutionary Computation (CEC’2005), pp 443–450Google Scholar
  17. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. IEEE Trans Evol Comput 12(2):284–302CrossRefGoogle Scholar
  18. Luna F, Zavala GR, Nebro AJ, Durillo JJ, Coello CA (2015) Distributed multi-objective metaheuristics for real-world structural optimization problems. The Computer JournalGoogle Scholar
  19. Lust T, Teghem J (2010) The multiobjective traveling salesman problem: a survey and a new approach. In: Coello Coello C, Dhaenens C, Jourdan L (eds) Advances in multi-objective nature inspired computing, studies in computational intelligence, vol 272. Springer, Berlin, pp 119–141Google Scholar
  20. Nebro A, Durillo J, Luna F, Dorronsoro B, Alba E (2006) A cellular genetic algorithm for multiobjective optimization. In: Pelta D A, Krasnogor N (eds) Proceedings of the Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO 2006), Granada, pp 25–36Google Scholar
  21. Nebro A, Durillo J, Luna F, Dorronsoro B, Alba E (2007) Design issues in a multiobjective cellular genetic algorithm. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) 4th International conference evolutionary multi-criterion optimization, EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, pp 126–140Google Scholar
  22. Nebro AJ, Durillo JJ, Garca-Nieto JM, Coello CAC, Luna F, Alba E (2009) SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: 2009 IEEE symposium on computational intelligence in multicriteria decision-making, pp 66– 73Google Scholar
  23. Przemieniecki J (1968) Theory of matrix structural analysis. Dover, New YorkMATHGoogle Scholar
  24. Turner M, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structuures. J Aeronaut Sci 23(9):805–823Google Scholar
  25. Yang Y, McGuire W (1986) Stiffness matrix for geometrix nonlinear analysis. J Struct Eng ACE 112(4):879CrossRefGoogle Scholar
  26. Zapotecas Martínez S, Coello Coello CA (2014) A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization. In: 2014 IEEE Congress on Evolutionary Computation (CEC’2014). IEEE Press, Beijing, pp 429–436. iSBN 978-1-4799-1488-3Google Scholar
  27. Zavala G, Nebro A, Durillo J, Luna F (2014a) Integrating a multiobjective optimization framework into a structural design software. Adv Eng Softw 76:161–170Google Scholar
  28. Zavala G, Nebro A, Luna F, Coello Coello C (2014b) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49(4):1–22Google Scholar
  29. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731Google Scholar
  30. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271CrossRefGoogle Scholar
  31. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gustavo Zavala
    • 1
  • Antonio J. Nebro
    • 2
  • Francisco Luna
    • 3
  • Carlos A. Coello Coello
    • 4
  1. 1.Khaos Research GroupUniversity of MálagaMálagaSpain
  2. 2.Departamento de Lenguajes y Ciencias de la Computación, Edificio de Investigación Ada ByronUniversidad de MálagaMálagaSpain
  3. 3.Departamento de Sistemas Informáticos y TelemáticosCentro Universitario de Mérida, Universidad de ExtremaduraMeridaSpain
  4. 4.CINVESTAV-IPN, Departamento de ComputaciónMéxico CityMéxico

Personalised recommendations