Structural and Multidisciplinary Optimization

, Volume 52, Issue 4, pp 695–715 | Cite as

Managing variable-dimension structural optimization problems using generative algorithms

  • Ashish Khetan
  • Danny J. Lohan
  • James T. Allison
RESEARCH PAPER

Abstract

This article introduces a novel design abstraction concept for efficient truss topology and geometry optimization. The core advancement introduced here is to represent truss topology and geometry using rules of generative algorithms, and to operate on generative algorithm rules using a genetic algorithm rather than directly on the design description. This indirect design representation supports efficient exploration of variable and high-dimension design topologies. Generative design strategies are also independent of any kind of ground structure, thus avoiding the inherent limitations of ground structure approaches that may hinder innovative design solutions by defining a priori what topologies may be considered. We present new generative algorithm strategies that automatically satisfy structural stability constraints, and that can produce truss topologies with a diversity of patterns within an individual truss design. Truss topology and geometry is optimized in an outer-loop by a genetic algorithm that operates on generative algorithm rules, and size optimization is performed in an inner-loop for each candidate topology using sequential linear programming. The proposed methodology supports concurrent optimization of truss topology, geometry, and size. The generative algorithm abstraction layer also supports the design of variable-dimension structures, which can be generated from the same fixed-dimension rule set. Finally, we demonstrate the effectiveness of the new methodology by examining archetypal two- and three-dimensional truss design optimization problems.

Keywords

Truss topology optimization Generative algorithms Structural optimization 

References

  1. Allison JT (2013) Truss design optimization based on generative algorithms. http://www.mathworks.com/matlabcentral/fileexchange/41780
  2. Balling RJ, Briggs RR, Gillman K (2006) Multiple optimum size/shape/topology designs for skeletal structures using a genetic algorithm. J Struct Eng 132(7):1158–1165. doi:10.1061/(ASCE)0733-9445(2006)132:7(1158)
  3. Bendsøe MP, Sigmund O (2003) Topology Optimization: Theory, Methods and Applications. Springer. doi:10.1007/978-3-662-05086-6
  4. Berlingerio M, Bonchi F, Bringmann B, Gionis A (2009) Mining Graph Evolution Rules. In: The Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML PKDD). 10.1007/978-3-642-04180-8_25. Springer, Bled, Slovenia
  5. Boden M, Edmonds E (2009) What is generative art? Digit Creat 20 (1-2):21–46. http://research.it.uts.edu.au/creative/eae/intart/pdfs/generative-art.pdf
  6. Bowyer A (1981) Computing dirichlet tessellations. Comput J 24(2):162–166. doi:10.1093/comjnl/24.2.162
  7. Brooks S (2006) Image–based stained glass. IEEE Trans Vis Comput Graph 12(6):1547–1558. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1703374
  8. Bush HG, Mikulas Jr MM, Heard WL Jr (1978) Some design considerations for large space structures. AIAA J 16(4):352–359. doi:10.2514/3.60897
  9. Chen TY (1993) Calculation of the move limits for the sequential linear programming method. Int J Numer. Methods Eng. 36(15):2661–2679. 10.1002/nme.1620361510
  10. Cheney N, MacCurdy R, Clune J, Lipson H (2013) Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding. In: The Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference. doi:10.1145/2463372.2463404. ACM, New York, USA, pp 167–174
  11. Coyne C (2013) Context Free. http://www.contextfreeart.org/
  12. Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem. Anal. Des. 37(5):447–465. doi:10.1016/S0168-874X(00)00057-3
  13. Del Moral P, Kallel L, Rowe J (2012) Modeling genetic algorithms with interacting particle systems. Revista de Mat: Teoría y Apl 8(2):19–77. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.7330&rep=rep1&type=pdf
  14. Devert A, Bredeche N, Schoenauer M (2011) Robustness and the halting problem for multicellular artificial ontogeny. evolutionary computation. IEEE Trans 15(3):387–404. doi:10.1109/TEVC.2011.2125969
  15. Dobbs M, Nelson R (1976) Application of optimality criteria to automated structural Design. AIAA J 14 (10):1436–1443 . doi:10.2514/3.7232
  16. Eiben A, Smith J (1999) Introduction to Evolutionary Computing. Springer. http://www.springer.com/us/book/9783540401841
  17. Fortune S (1986) A Sweepline Algorithm for Voronoi Diagrams. In: The Proceedings of the Second Annual Symposium on Computational Geometry. doi:10.1145/10515.10549. ACM, New York, USA
  18. Futuyma D (1997) Evolutionary Biology, 3rd edn. Sinauer Associates. http://www.sinauer.com/evolution-853.html
  19. Gellatly RA, Berke L (1971) Optimal Structural Design, Technical Report DTIC DocumentGoogle Scholar
  20. Giger M, Ermanni P (2006) Evolutionary truss topology optimization using a graph-based parameterization concept. Struct. Multidiscip. Optim. 32(4):313–326. doi:10.1007/s00158-006-0028-8
  21. Goldberg D, Samtni M (1991) Engineering optimization via the genetic algorithms. Comput Struct 40:1321–1327 . http://cedb.asce.org/cgi/WWWdisplay.cgi?47877
  22. Grivet S, Auber D, Domenger J, Melancon G (2006) Bubble tree drawing algorithm. Comput Vis Graph:633–641. doi:10.1007/1-4020-4179-9_91
  23. Hagishita T, Ohsaki M (2009) Topology optimization of trusses by growing ground structure method. Struct Multidiscip. Optim. 37(4):377–393. doi:10.1007/s00158-008-0237-4
  24. Hajela P, Lee E, Lin CY (1993) Genetic algorithms in structural topology optimization. In: Topology design of structures. doi:10.1007/978-94-011-1804-0. Springer, pp 117–133
  25. Hiller J, Lipson H (2010) Evolving Amorphous Robots. Artif Life XII:717–724. http://creativemachines.cornell.edu/sites/default/files/ALIFE10_Hiller.pdf
  26. Hornby G, Lipson H, Pollack J (2001) Evolution of Generative Design Systems for Modular Physical Robots. In: The Proceedings of the 2001 IEEE international conference on robotics and automation. doi:10.1109/ROBOT.2001.933266, vol 4, Seoul, South Korea, pp 4146–4151
  27. Hornby G, Lipson H, Pollack J (2003) Generative representations for the automated design of modular physical robots. IEEE Trans Robot Autom 19(4):703–719. doi:10.1109/TRA.2003.814502
  28. John K, Ramakrishnan C, Sharma K (1987) Minimum weight design of trusses using improved move limit method of sequential linear programming. Comput & Struct 27(5):583–591. doi:10.1016/0045-7949(87)90073-3
  29. Kaveh A, Laknejadi K (2013) A hybrid evolutionary graph-based multi-objective algorithm for layout optimization of truss structures. Acta Mech 224(2):343–364. doi:10.1007/s00707-012-0754-5
  30. Khan M, Willmert K, Thornton W (1979) An optimality criterion method for large-scale structures. AIAA J 17(7):753–761. doi:10.2514/3.61214
  31. Kicinger R, Arciszewski T, Jong KD (2005) Evolutionary computation and structural design: a survey of the state-of-the-art. Comput & Struct 83(23):1943–1978. doi:10.1016/j.compstruc.2005.03.002
  32. Krish S (2011) A practical generative design method. Comput-Aided Des 43 (1):88–100. doi:10.1016/j.cad.2010.09.009
  33. Lamberti L, Pappalettere C (2000) Comparison of the numerical efficiency of different sequential linear programming based algorithms for structural optimisation problems. Comput & Struct 76(6):713–728. doi:10.1016/S0045-7949(99)00185-6 CrossRefGoogle Scholar
  34. Lamberti L, Pappalettere C (2003) Move limits definition in structural optimization with sequential linear programming. part ii: numerical examples. Comput & Struct 81(4):215–238. doi:10.1016/S0045-7949(02)00443-1 MathSciNetCrossRefGoogle Scholar
  35. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput & Struct 82(9–10): 781–798. doi: 10.1016/j.compstruc.2004.01.002 CrossRefGoogle Scholar
  36. Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C (2005) Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. In: Jorge A, Torgo L, Brazdil P, Camacho R, Gama J (eds) Knowledge Discovery in Databases: PKDD 2005, Lecture Notes in Computer Science, vol 3721. doi:10.1007/11564126. Springer Berlin, Heidelberg, pp 133–145
  37. Levin G (2000) Segmentation and Symptom. http://www.flong.com/projects/zoo/
  38. Liggett T (2004) Interacting Particle Systems, Springer. doi:10.1007/b138374
  39. Maddox A (2011) Interaction Design + Digital Art. http://archive.anthonymattox.com/
  40. Nakamura A, Lindenmayer A, Aizawa K (1986) Some Systems for Map Generation. In: The Book of L. Springer, pp 323–332. doi:10.1007/978-3-642-95486-3
  41. Nemhauser G, Wolsey L (1999) Integer and Combinatorial Optimization. Wiley, Inc. http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471359432,subjectCd-MA40.html
  42. Pearson M (2011) Generative Art. Manning Publications. http://www.manning.com/pearson/
  43. Pedro H, Kobayashi M (2011) On a cellular division method for topology optimization. Int J Numer Methods Eng 88(11):1175–1197. doi:10.1002/nme.3218 MATHMathSciNetCrossRefGoogle Scholar
  44. Prusinkiewicz P, Lindenmayer A (1991) The Algorithmic Beauty of Plants. Springer. doi:10.1007/978-1-4613-8476-2
  45. Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369. doi:10.1016/j.engstruct.2008.01.012 CrossRefGoogle Scholar
  46. Rajan S (1995) Sizing, Shape, and topology design optimization of trusses using genetic algorithm. J Struct Eng 121(10):1480–1487. doi:10.1061/(ASCE)0733-9445(1995)121:10(1480) CrossRefGoogle Scholar
  47. Rajeev S, Krishnamoorthy C (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng 118(5):1233–1250. doi:10.1061/1992 CrossRefGoogle Scholar
  48. Reas C, Fry B (2006) Processing: programming for the media arts. AI & Soc 20:526–538. doi:10.1007/s00146-006-0050-9 CrossRefGoogle Scholar
  49. Reas C (2010) Process Compendium. http://reas.com/texts/processcompendium.html
  50. Rieffel J, Valero-Cuevas F, Lipson H (2009) Automated discovery and optimization of large irregular tensegrity structures. Comput & Struct 87(5):368–379. doi:10.1016/j.compstruc.2008.11.010 CrossRefGoogle Scholar
  51. Rizzi P (1976) Optimization of Multiconstrained Structures Based on Optimality Criteria. In: Proceedings AIAA/ASME/SAE 17th Structures, Structural Dynamics and Materials Conference, King of Prussia. http://ntrs.nasa.gov/search.jsp?R=19760047085, USA, pp 448–462
  52. Romero J, Machado P (2008) The Art of Artificial Evolution: a Handbook on Evolutionary Art and Music. Springer. doi:10.1007/978-3-540-72877-1
  53. Runions A, Fuhrer M, Lane B, Federl P, Rolland-Lagan A, Prusinkiewicz P (2005) Modeling and visualization of leaf venation patterns. ACM Trans Graph 24(3):702–711. doi:10.1145/1073204.1073251
  54. Schmit LA (1976) Approximation Concepts for Efficient Structural Synthesis, Technical Report, NASA. http://ntrs.nasa.gov/search.jsp?R=19760011449
  55. Schmit LA, Farshi B (1974) Some approximation concepts for structural synthesis. AIAA J 12(5):692–699. doi:10.2514/3.49321
  56. Shiffman D (2012) The Nature of Code. Self-published., http://natureofcode.com/
  57. Stander N, Snyman J, Coster J (1995) On the robustness and efficiency of the sam algorithm for structural optimization. Int J Numer Methods Eng 38(1):119–135. doi:10.1002/nme.1620380108
  58. Stanford B, Beran P (2013) Simultaneous topology optimization of membrane wings and their compliant flapping mechanisms. AIAA J 51(6). doi:10.2514/1.J052118
  59. Sunar M, Belegundu A (1991) Trust region methods for structural optimization using exact second order sensitivity. Int J Numer Methods Eng 32(2):275–293. doi:10.1002/nme.1620320204 MATHMathSciNetCrossRefGoogle Scholar
  60. Tang W, Tong L, Gu Y (2005) Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables. Int J Numer Methods Eng 62(13):1737–1762. doi:10.1002/nme.1244 MATHCrossRefGoogle Scholar
  61. Thorpe J (2013) Tree. growth., http://www.blprnt.com/treegrowth/
  62. Toropov VV, Alvarez LF (1998) Approximation Model Building for Design Optimization Using Genetic Programming Methodology. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. doi:10.2514/6.1998-4769, St. Louis, USA, pp 490–498
  63. Varinlioglu G, Ipek Y, Balaban O, Cagdas G (2012) Visualisation of Archaeological Data Using Voronoi Diagrams. In: The Proceedings of the 15th Generative Art Conference. http://www.generativeart.com/GA2012/guzden.pdf, Lucca, Italy
  64. Venkayya V (1971) Design of optimum structures. Comput & Struct 1(1):265–309. doi:10.1016/0045-7949(71)90013-7 CrossRefGoogle Scholar
  65. Wang H, Ohmori H (2010) Truss optimization using genetic algorithm, considering construction process. Int J Space Struct 25(4). doi:10.1260/0266-3511.25.4.205
  66. Watson D (1981) Computing the n-dimensional delaunay tessellation with application to voronoi polytopes. Comput J 24(2):167–172. doi:10.1093/comjnl/24.2.167
  67. Wujek B, Renaud J (1998) New adaptive move-limit management strategy for approximate optimization. Part 1. AIAA J 36(10):1911–1921. doi:10.2514/2.285 CrossRefGoogle Scholar
  68. Xu S, Grandhi RV (1998) Effective Two-Point Function Approximation for Design Optimization. AIAA J 36(12):2269–2275. doi:10.2514/2.337 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ashish Khetan
    • 1
  • Danny J. Lohan
    • 1
  • James T. Allison
    • 1
  1. 1.Department of Industrial and Enterprise Systems EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations