Structural and Multidisciplinary Optimization

, Volume 51, Issue 6, pp 1247–1265 | Cite as

Discrete thickness optimization via piecewise constraint penalization

RESEARCH PAPER

Abstract

Structural engineers are often constrained by cost or manufacturing considerations to select member thicknesses from a discrete set of values. Conventional, gradient-free techniques to solve these discrete problems cannot handle large problem sizes, while discrete material optimization (DMO) techniques may encounter difficulties, especially for bending-dominated problems. To resolve these issues, we propose an efficient gradient-based technique to obtain engineering solutions to the discrete thickness selection problem. The proposed technique uses a series of constraints to enforce an effective stiffness-to-mass and strength-to-mass penalty on intermediate designs. In conjunction with these constraints, we apply an exact penalty function which drives the solution towards a discrete design. We utilize a continuation approach to obtain approximate solutions to the discrete thickness selection problem by solving a sequence of relaxed continuous problems with increasing penalization. We also show how this approach can be applied to combined discrete thickness selection and topology optimization design problems. To demonstrate the effectiveness of the proposed technique, we present both compliance and stress-constrained results for in-plane and bending-dominated problems.

Keywords

Constraint penalization Discrete thickness Gradient-based optimization 

Notes

Acknowledgments

The author would like to thank the anonymous reviewers for their helpful recommendations that greatly improved the paper. The author gratefully acknowledges the financial support of the Georgia Institute of Technology.

References

  1. Akgun MA, Haftka RT, Wu KC, Walsh JL, Garcelon JH (2001) Efficient structural optimization for multiple load cases using adjoint sensitivities. AIAA J 39(3):511–516. doi:10.2514/2.1336 CrossRefGoogle Scholar
  2. Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383. doi:10.1002/nme.1620210213. ISSN 1097-0207MATHCrossRefGoogle Scholar
  3. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. SpringerGoogle Scholar
  4. Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190 (37–38):4911–4928. doi:10.1016/S0045-7825(00)00356-X. ISSN 0045-7825MATHMathSciNetCrossRefGoogle Scholar
  5. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190 (26–27):3443–3459. doi:10.1016/S0045-7825(00)00278-4. ISSN 0045-7825MATHCrossRefGoogle Scholar
  6. Bruyneel M (2011) SFP - A new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43:17–27. doi:10.1007/s00158-010-0548-0. ISSN 1615-147XCrossRefGoogle Scholar
  7. Bruyneel M, Duysinx P, Fleury C, Gao T (2011) Extensions of the shape functions with penalization parametrization for composite-ply optimization. AIAA J 49(10):2325–2329. doi:10.2514/1.J051225 CrossRefGoogle Scholar
  8. Chan C-M (1992) An optimality criteria algorithm for tall steel building design using commercial standard sections. Struct Optim 5 (1–2):26–29. doi:10.1007/BF01744692. ISSN 0934-4373CrossRefGoogle Scholar
  9. Cheng GD, Guo X (1997) 𝜖-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13:258–266. doi:10.1007/BF01197454. ISSN 1615-147XCrossRefGoogle Scholar
  10. Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114. doi:10.1002/nme.4270. ISSN 1097-0207MATHCrossRefGoogle Scholar
  11. Gill PE, Murray W, Saunders MA (2005) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131. doi:10.1137/S0036144504446096. ISSN 00361445MATHMathSciNetCrossRefGoogle Scholar
  12. Grierson DE, Lee WH (1984) Optimal synthesis of steel frameworks using standard sections. J Struct Mech 12(3):335–370. doi:10.1080/03601218408907476 CrossRefGoogle Scholar
  13. Herencia JE, Haftka RT, Balabanov V (2013) Structural optimization of composite structures with limited number of element properties. Struct Multidiscip Opt 47 (2):233–245. doi:10.1007/s00158-012-0821-5. ISSN 1615-147XMATHMathSciNetCrossRefGoogle Scholar
  14. Huang M-W, Arora J (1997) Optimal design of steel structures using standard sections. Struct Optim 14(1):24–35. doi:10.1007/BF01197555 10.1007/BF01197555. ISSN 0934-4373CrossRefGoogle Scholar
  15. Hvejsel C, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43:811–825. doi:10.1007/s00158-011-0625-z. ISSN 1615-147XMATHCrossRefGoogle Scholar
  16. Hvejsel C, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multidiscip Optimi 44:149–163. doi:10.1007/s00158-011-0648-5. ISSN 1615-147XCrossRefGoogle Scholar
  17. Jog CS, Haber R B (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226. doi:10.1016/0045-7825(95)00928-0. ISSN 0045-7825MATHMathSciNetCrossRefGoogle Scholar
  18. Kennedy GJ, Martins JR (2014) A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures. Finite Elem Anal Des 87(0):56–73. doi:10.1016/j.finel.2014.04.011. ISSN 0168-874XCrossRefGoogle Scholar
  19. Kennedy GJ, Martins JRRA (2010) Parallel solution methods for aerostructural analysis and design optimization. In: Proceedings of the 13th AIAA/ISSMO multidisciplinary analysis optimization conference, Fort Worth. AIAA 2010–9308Google Scholar
  20. Kennedy GJ, Martins J RRA (2013) A laminate parametrization technique for discrete ply-angle problems with manufacturing constraints. Struct Multidiscip Optim:1–15. doi:10.1007/s00158-013-0906-9. ISSN 1615-147X
  21. Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: International federation of active controls symposium on computer-aided design of control systems. Zurich, SwitzerlandGoogle Scholar
  22. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620. doi:10.1007/s00158-009-0440-y. ISSN 1615-147XCrossRefGoogle Scholar
  23. Le Riche R (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956. doi:10.2514/3.11710 MATHCrossRefGoogle Scholar
  24. Lee E, James KA, Martins JRRA (2012) Stress-constrained topology optimization with design-dependent loading. Struct Multidiscip Optim 46:647–661. doi:10.1007/s00158-012-0780-x MATHMathSciNetCrossRefGoogle Scholar
  25. Nocedal J, Wright SJ (2006) Numerical Optimization. Springer series in operations research and financial engineering. SpringerGoogle Scholar
  26. Perez RE, Jansen PW, Martins JRRA (2012) pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization. Struct Multidiscip Optim 45(1):101–118. doi:10.1007/s00158-011-0666-3 MATHMathSciNetCrossRefGoogle Scholar
  27. Poon N, Martins J R R A (2007) An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct Multidiscip Optim 34:61–73. doi:10.1007/s00158-006-0061-7. ISSN 1615-147XCrossRefGoogle Scholar
  28. Raspanti CG, Bandoni JA, Biegler LT (2000) New strategies for flexibility analysis and design under uncertainty. Comput Chem Eng 24:2193–2209CrossRefGoogle Scholar
  29. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45 (6):1037–1067. doi:10.1016/S0022-5096(96)00114-7. ISSN 0022-5096MathSciNetCrossRefGoogle Scholar
  30. Sørensen SN, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Struct Multidiscip Optim 48 (2):249–265. doi: doi:10.1007/s00158-013-0904-y. ISSN 1615-147XMathSciNetCrossRefGoogle Scholar
  31. Sørensen SN, Sørensen R, Lund E (2014) DMTO – a method for discrete material and thickness optimization of laminated composite structures. Struct Multidiscipl Optim 50(1):25–47. doi:10.1007/s00158-014-1047-5. ISSN 1615-147XCrossRefGoogle Scholar
  32. Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng:2009–2027. doi:10.1002/nme.1259. ISSN 1097-0207
  33. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22:116–124. doi:10.1007/s001580100129. ISSN 1615-147XCrossRefGoogle Scholar
  34. Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106 (1):25–57. doi:10.1007/s10107-004-0559-y. ISSN 0025-5610MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Georgia Institute of TechnologySchool of Aerospace EngineeringAtlantaGeorgia

Personalised recommendations