Structural and Multidisciplinary Optimization

, Volume 50, Issue 6, pp 1079–1101 | Cite as

A parallel aerostructural optimization framework for aircraft design studies

  • Graeme J. KennedyEmail author
  • Joaquim R. R. A. Martins


Preliminary aircraft design studies use structural weight models that are calibrated with data from existing aircraft. Computing weights with these models is a fast procedure that provides reliable weight estimates when the candidate designs lie within the domain of the data used for calibration. However, this limitation is too restrictive when we wish to assess the relative benefits of new structural technologies and new aircraft configurations early in the design process. To address this limitation, we present a computationally efficient aerostructural design framework for initial aircraft design studies that uses a full finite-element model of key structural components to better assess the potential benefits of new technologies. We use a three-dimensional panel method to predict the aerodynamic forces and couple the lifting surface deflections to compute the deformed aerodynamic flying shape. To be used early in the design cycle, the aerostructural computations must be fast, robust, and allow for significant design flexibility. To address these requirements, we develop a geometry parametrization technique that enables large geometric modifications, we implement a parallel Newton–Krylov approach that is robust and computationally efficient to solve the aeroelastic system, and we develop an adjoint-based derivative evaluation method to compute the derivatives of functions of interest for design optimization. To demonstrate the capabilities of the framework, we present a design optimization of a large transport aircraft wing that includes a detailed structural design parametrization. The results demonstrate that the proposed framework can be used to make detailed structural design decisions to meet overall aircraft mission requirements.


Aerostructural optimization Parallel computing Wing design Coupled adjoint method Geometry parametrization 



This work was partially funded by NASA under grant number NNX11AI19A. The authors would like to acknowledge Gaetan Kenway for his assistance with the verification cases presented in this paper.


  1. Akgun MA, Haftka RT, Wu KC, Walsh JL, Garcelon JH (2001) Efficient structural optimization for multiple load cases using adjoint sensitivities. AIAA J 39(3):511–516. doi: 10.2514/2.1336 CrossRefGoogle Scholar
  2. Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2004) PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National LaboratoryGoogle Scholar
  3. Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset A M, Langtangen H P (eds) Modern Software Tools in Scientific Computing. Birkhäuser Press, pp 163– 202Google Scholar
  4. Barcelos M, Bavestrello H, Maute K (2006) A Schur-Newton-Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis. Comput Methods Appl Mech Eng 195(17-18):2050–2069. doi: 10.1016/j.cma.2004.09.013 CrossRefzbMATHGoogle Scholar
  5. Barcelos M, Maute K (2008) Aeroelastic design optimization for laminar and turbulent flows. Comput Methods Appl Mech Eng 197(19-20):1813–1832. doi: 10.1016/j.cma.2007.03.009 CrossRefzbMATHGoogle Scholar
  6. Brown S A (1997) Displacement extrapolation for CFD+CSM aeroelastic analysis. AIAA Paper: 97–1090Google Scholar
  7. Bucalem ML, Bathe K-J (1993) Higher-order MITC general shell elements. Int J Numer Methods Eng 36:3729–3754. doi: 10.1002/nme.1620362109 CrossRefzbMATHMathSciNetGoogle Scholar
  8. Eisenstat S, Walker H (1996) Choosing the forcing terms in an inexact newton method. SIAM J Sci Comput 17(1):16–32. doi: 10.1137/0917003 CrossRefzbMATHMathSciNetGoogle Scholar
  9. Erickson LL (1990) Panel methods:An introduction. Technical Report NASA TP-2995, NASA Ames Research Center. Moffett Field, CaliforniaGoogle Scholar
  10. Farhat C, Lesoinne M, Tallec PL (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces:Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157(1–2):95–114. doi: 10.1016/S0045-7825(97)00216-8 CrossRefzbMATHGoogle Scholar
  11. Gill PE, Murray W, MA Saunders. (2005) SNOPT:An SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131. doi: 10.1137/S0036144504446096 CrossRefzbMATHMathSciNetGoogle Scholar
  12. Grossman B, Gurdal Z, Haftka RT, Strauch GJ, Eppard WM (1988) Integrated aerodynamic/structural design of a sailplane wing. J Aircr 25(9):855–860. doi: 10.2514/3.45980. 2013/09/28CrossRefGoogle Scholar
  13. Grossman B, Haftka RT, Sobieszczanski-Sobieski J, Kao PJ, Polen DM, Rais-Rohani M (1990) Integrated aerodynamic-structural design of a transport wing. J Aircr 27(12):1050–1056. doi: 10.2514/3.45980 CrossRefGoogle Scholar
  14. Haftka RT (1977) Optimization of flexible wing structures subject to strength and induced drag constraints. AIAA J 15(8):1101–1106. doi: 10.2514/3.7400 CrossRefGoogle Scholar
  15. Hajela P, Chen JL (1988) Preliminary weight estimation of conventional and joined wings using equivalent beam models. J Aircr 25(6):574–576. doi: 10.2514/3.45625 CrossRefGoogle Scholar
  16. Hess J, Smith A (1967) Calculation of potential flow about arbitrary bodies. Prog Aerosp Sci 8:1–138CrossRefzbMATHGoogle Scholar
  17. Hughes PC (2004) Spacecraft attitude dynamics. Dover books on engineering. Dover PublicationsGoogle Scholar
  18. Jansen P, Perez R (2011) Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach. Comput Struct 89(14):1352–1366. doi: 10.1016/j.compstruc.2011.03.011 CrossRefGoogle Scholar
  19. Jansen P, Perez RE, Martins JRRA (2010) Aerostructural optimization of nonplanar lifting surfaces. J Aircr 47(5):1491–1503. doi: 10.2514/1.44727 CrossRefGoogle Scholar
  20. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392CrossRefMathSciNetGoogle Scholar
  21. Katz J, Plotkin A (1991) Low–Speed Aerodynamics. McGraw–Hill Inc.Google Scholar
  22. Kelley CT, Keyes DE (1997) Convergence analysis of pseudo-transient continuation. SIAM J Num Anal 35:508–523CrossRefMathSciNetGoogle Scholar
  23. Kennedy GJ, Kenway GKW, Martins JRRA (2014) High aspect ratio wing design: Optimal aerostructural tradeoffs for the next generation of materials. In 52nd Aerospace Sciences Meeting, National Harbor, Maryland. AIAA 2014-0596Google Scholar
  24. Kennedy GJ, Martins JRRA (2012) A comparison of metallic and composite aircraft wings using aerostructural design optimization. In 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, INGoogle Scholar
  25. Kennedy GJ, Martins JRRA (2014) A parallel finite element framework for large-scale gradient-based design optimization of high-performance structures. Finite Elem Anal Des. doi: 10.1016/j.finel.2014.04.011. In press
  26. Kenway GKW, Kennedy GJ, Martins JRRA (2014) A scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA Journal 52(5):935–951. doi: 10.2514/1.J052255
  27. Kenway GKW, Martins JRRA (2014) Multi-point high-fidelity aerostructural optimization of a transport aircraft configuration. J Aircr 51(1):144–160. doi: 10.2514/1.C032150 CrossRefGoogle Scholar
  28. Knoll D, Keyes D (2004) Jacobian-free Newton–Krylov methods:a survey of approaches and applications. J Comput Phys 193(2):357–397. doi: 10.1016/ CrossRefzbMATHMathSciNetGoogle Scholar
  29. Kroo I (2013) Aircraft design:Synthesis and analysis.
  30. Liem RP, Kenway GKW, Martins JRRA (2014) Multi-mission aircraft fuel burn minimization via multi-point aerostructural optimization. AIAA J. (Accepted)Google Scholar
  31. Mader CA, Martins JRRA, Alonso JJ, van der Weide E (2008) ADjoint:An approach for the rapid development of discrete adjoint solvers. AIAA J 46(4):863–873. doi: 10.2514/1.29123 CrossRefGoogle Scholar
  32. Maman N, Farhat C (1995) Matching fluid and structure meshes for aeroelastic computations:A parallel approach. Comput Struct 54(4):779–785. doi: 10.1016/0045-7949(94)00359-B CrossRefGoogle Scholar
  33. Martins JRRA, Alonso JJ, Reuther JJ (2001) Aero-structural wing design optimization using high-fidelity sensitivity analysis. In Proceedings of the CEAS Conference on Multidisciplinary Aircraft Design and OptimizationGoogle Scholar
  34. Martins JRRA, Alonso JJ, Reuther JJ (2004) High-fidelity aerostructural design optimization of a supersonic business jet. J Aircr 41(3):523–530. doi: 10.2514/1.11478 CrossRefGoogle Scholar
  35. Martins JRRA, Alonso JJ, Reuther JJ (2005) A coupled–adjoint sensitivity analysis method for high–fidelity aero–structural design. Optim Eng 6:33–62. doi: 10.1023/B:OPTE.0000048536.47956.62 CrossRefzbMATHGoogle Scholar
  36. Martins JRRA, Hwang JT (2013) Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J 51(11):2582–2599. doi: 10.2514/1.J052184 CrossRefGoogle Scholar
  37. Martins JRRA, Sturdza P, Alonso JJ (2003) The complex-step derivative approximationx. AIAA J 29(3):245–262. doi: 10.1145/838250.838251 zbMATHMathSciNetGoogle Scholar
  38. Maute K, Nikbay M, Farhat C (2001) Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems. AIAA J 39(11):2051–2061. doi: 10.2514/2.1227 CrossRefGoogle Scholar
  39. Maute K, Nikbay M, Farhat C (2003) Sensitivity analysis and design optimization of three-dimensional non-linear aeroelastic systems by the adjoint method. Int J Numer Methods Eng 56(6):911–933. doi: 10.1002/nme.599 CrossRefzbMATHGoogle Scholar
  40. Ning SA, Kroo I (2010) Multidisciplinary considerations in the design of wings and wing tip devices. J Aircr 47(2):534–543. doi: 10.2514/1.41833 CrossRefGoogle Scholar
  41. Perez RE, Jansen PW, Martins JRRA (2012) pyOpt:a Python-based object-oriented framework for nonlinear constrained optimization. Struct Multidiscip Optim 45(1):101–118. doi: 10.1007/s00158-011-0666-3 CrossRefzbMATHMathSciNetGoogle Scholar
  42. Poon N, Martins JRRA (2007) An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct Multidiscip Optim 34:61–73. doi: 10.1007/s00158-006-0061-7 CrossRefGoogle Scholar
  43. Saad Y (1993) A fexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput 14(2):461–469. doi: 10.1137/0914028 CrossRefzbMATHMathSciNetGoogle Scholar
  44. Saad Y (2003) Iterative Methods for Sparse Linear Systems. PWS Pub. Co. 2nd ednGoogle Scholar
  45. Saad Y, Schultz MH (1986) GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869. doi: 10.1137/0907058 CrossRefzbMATHMathSciNetGoogle Scholar
  46. Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. SIGGRAPH Comput Graph 20(4):151–160. CrossRefGoogle Scholar
  47. Shevell RS (1989) Fundamentals of Flight. Prentice Hall PTRGoogle Scholar
  48. Smith MJ, Hodges DH, Cesnik CES (2000) Evaluation of computational algorithms suitable for fluid-structure interactions. J Aircr 37(2):282–294. doi: 10.2514/2.2592 CrossRefGoogle Scholar
  49. Smith S (1996) A computational and experimental study of nonlinear aspects of induced drag. Tech. Rep. NASA TP 3598, National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CAGoogle Scholar
  50. Squire W, Trapp G (1998) Using complex variables to estimate derivatives of real functions. SIAM Rev 40(1):110–112. doi: 10.1137/S003614459631241X CrossRefzbMATHMathSciNetGoogle Scholar
  51. Stroud WJ, Agranoff N (1976) Minimum mass design of filamentary composite panels under combined loads. Design procedure based on simplified buckling equations. Technical report, NASA Langley Research Center, Hampton, VAGoogle Scholar
  52. van der Weide E, Kalitzin G, Schluter J, Alonso JJ (2006) Unsteady turbomachinery computations using massively parallel platforms. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. AIAA 2006-0421Google Scholar
  53. Vassberg J, DeHaan M, Rivers S, Wahls R (2008) Development of a common research model for applied CFD validation studies. AIAA 2008-6919Google Scholar
  54. Vassberg JC (2011) A unified baseline grid about the Common Research Model wing-body for the fifth AIAA CFD drag prediction workshop. In 29th Applied Aerodynamics Conference, Honolulu, Hawaii. AIAA 2011-3508Google Scholar
  55. Wakayama S, Kroo I (1995) Subsonic wing planform design using multidisciplinary optimization 32(4):746–753. doi: 10.2514/3.46786

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Graeme J. Kennedy
    • 1
    Email author
  • Joaquim R. R. A. Martins
    • 2
  1. 1.School of Aerospace EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations