Advertisement

Structural and Multidisciplinary Optimization

, Volume 50, Issue 2, pp 207–219 | Cite as

Fatigue constrained topology optimization

  • Erik HolmbergEmail author
  • Bo Torstenfelt
  • Anders Klarbring
RESEARCH PAPER

Abstract

We present a contribution to a relatively unexplored application of topology optimization: structural topology optimization with fatigue constraints. A probability based high-cycle fatigue analysis is combined with principal stress calculations in order to find the topology with minimum mass that can withstand prescribed variable-amplitude loading conditions for a specific life time. This allows us to generate optimal conceptual designs of structural components where fatigue life is the dimensioning factor. We describe the fatigue analysis and present ideas that make it possible to separate the fatigue analysis from the topology optimization. The number of constraints is kept low as they are applied to stress clusters, which are created such that they give adequate representations of the local stresses. Optimized designs constrained by fatigue and static stresses are shown and a comparison is also made between stress constraints based on the von Mises criterion and the highest tensile principal stresses. The paper is written with focus on structural parts in the avionic industry, but the method applies to any load carrying structure, made of linear elastic isotropic material, subjected to repeated loading conditions.

Keywords

Topology optimization Fatigue constraints Stress constraints Principal stress Eigenvalues Clusters 

References

  1. Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32(11):909–918CrossRefzbMATHGoogle Scholar
  2. Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRefGoogle Scholar
  3. Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141CrossRefzbMATHMathSciNetGoogle Scholar
  4. Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefzbMATHGoogle Scholar
  5. Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13(4):258–266CrossRefGoogle Scholar
  6. Christensen P, Klarbring A (2008) An introduction to structural optimization, vol 153. Springer VerlagGoogle Scholar
  7. Dahlberg T, Ekberg A (2002) Failure, fracture, fatigue: an introduction. StudentlitteraturGoogle Scholar
  8. Desmorat B, Desmorat R (2008) Topology optimization in damage governed low cycle fatigue. Comptes Rendus Mecanique 336(5):448–453CrossRefzbMATHGoogle Scholar
  9. Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478CrossRefzbMATHGoogle Scholar
  10. Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary design optimization, AIAA Paper 98-4906, pp 1501–1509Google Scholar
  11. Gruen F, Eichlseder W, Puchner K (2003) Shape- and topology optimization regarding fatigue analysis. Cumulative Fatigue Damage, Seville (Spain)Google Scholar
  12. Guo X, Cheng G, Yamazaki K (2001) A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints. Struct Multidiscip Optim 22(5):364–373CrossRefGoogle Scholar
  13. Haftka R, Gürdal Z, Kamat M (1990) Elements of structural optimization. Kluwer Academic PublishersGoogle Scholar
  14. Holmberg E, Torstenfelt B, Klarbring A (2013a) Stress constrained topology optimization. Structural and Multidisciplinary Optimization, 1–15. doi: 10.1007/s00158-012-0880-7
  15. Holmberg E, Torstenfelt B, Klarbring A (2013b) Global and clustered approaches for stress constrained topology optimization and deactivation of design variables. In: 10th World congress on structural and multidisciplinary optimizationGoogle Scholar
  16. Kaya N, Karen İ, Öztürk F (2010) Re-design of a failed clutch fork using topology and shape optimisation by the response surface method. Mater Des 31(6):3008–3014CrossRefGoogle Scholar
  17. Kirsch U (1990) On singular topologies in optimum structural design. Struct Multidiscip Optim 2(3):133–142CrossRefGoogle Scholar
  18. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620CrossRefGoogle Scholar
  19. Mrzyglod M, Zielinski A (2006) Numerical implementation of multiaxial high-cycle fatigue criterion to structural optimization. J Theor Appl Mech 44(3):691–712Google Scholar
  20. Mrzyglod M, Zielinski A (2007a) Multiaxial high-cycle fatigue constraints in structural optimization. Int J Fatigue 29(9):1920–1926CrossRefzbMATHGoogle Scholar
  21. Mrzyglod M, Zielinski A (2007b) Parametric structural optimization with respect to the multiaxial high-cycle fatigue criterion. Struct Multidiscip Optim 33(2):161–171CrossRefGoogle Scholar
  22. MSC Software: MSC Fatigue (2013). http://www.mscsoftware.com
  23. Optistruct (2012) 11.0, users manual. Altair engineering. Inc., Troy, MIGoogle Scholar
  24. París J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39(4):419–437CrossRefMathSciNetGoogle Scholar
  25. París J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441CrossRefzbMATHGoogle Scholar
  26. Pedersen N (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11CrossRefGoogle Scholar
  27. Pedersen N, Nielsen A (2003) Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct Multidiscip Optim 25(5):436–445CrossRefGoogle Scholar
  28. Rozvany G, Birker T (1994) On singular topologies in exact layout optimization. Struct Multidiscip Optim 8(4):228–235CrossRefGoogle Scholar
  29. Seyranian A, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Multidiscip Optim 8(4):207–227CrossRefGoogle Scholar
  30. Suresh S (1998) Fatigue of materials. Cambridge University PressGoogle Scholar
  31. Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int Journal Numer Methods Eng 24(2):359–373CrossRefzbMATHMathSciNetGoogle Scholar
  32. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573CrossRefzbMATHMathSciNetGoogle Scholar
  33. Torstenfelt B (2013) The TRINITAS project. http://www.solid.iei.liu.se/Offered_services/Trinitas
  34. Wang MY, Luo Y (2013) An enhanced aggregation method for stress-constrained topology optimization problems. In: 10th World congress on structural and multidisciplinary optimizationGoogle Scholar
  35. Zhang WS, Guo X, Wang MY, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Methods Eng 93(9):942–959CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Erik Holmberg
    • 1
    Email author
  • Bo Torstenfelt
    • 2
  • Anders Klarbring
    • 1
  1. 1.Division of MechanicsDepartment of Management and Engineering, Institute of Technology, Linköping UniversityLinköpingSweden
  2. 2.Division of Solid MechanicsDepartment of Management and Engineering, Institute of Technology, Linköping UniversityLinköpingSweden

Personalised recommendations