Structural and Multidisciplinary Optimization

, Volume 49, Issue 4, pp 537–558 | Cite as

A survey of multi-objective metaheuristics applied to structural optimization

  • Gustavo R. Zavala
  • Antonio J. Nebro
  • Francisco Luna
  • Carlos A. Coello Coello
REVIEW ARTICLE

Abstract

In civil and industrial engineering, structural design optimization problems are usually characterized by the presence of multiple conflicting objectives, as to get the minimum investment cost and the maximum safety of the final design. This issue makes these problems to have not only one single solution, but a set them. Such solutions represent the possible trade-offs among the different objectives to be optimized. This paper reviews the latest developments in the field of multi-objective metaheuristics for solving design problems focusing on the optimization of the topology, shape, and sizing of civil engineering structures. We review both the algorithms and the applications, and the most relevant features of the solvers and the design optimization problems are analyzed. The paper ends by addressing a number of relevant and open issues that can be the subject of further research.

Keywords

Multi-objective optimization Metaheuristics Structural optimization Survey 

Notes

Acknowledgments

The authors thank the anonymous reviewers for their valuable comments which greatly helped them to improve the contents of this paper.

The last author acknowledges support from CONACyT project no. 103570.

References

  1. Aittokoski T, Miettinen K (2010) Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, ups-emoa. Optim Methods Softw 25(6):841–858MATHMathSciNetCrossRefGoogle Scholar
  2. Andersson J (2000) A survey of multiobjective optimization in engineering design. Tech. Rep. LiTH-IKP-R-1097, Department of Mechanical Engineering, Linköping University, Linköping, SwedenGoogle Scholar
  3. Beausoleil PR (2006) MOSS: multiobjective scatter search applied to non-linear multiple criteria optimization. Eur J Oper Res 169(2):426–449MATHMathSciNetCrossRefGoogle Scholar
  4. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76CrossRefGoogle Scholar
  5. Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans Evol Comput 12(3):269–283CrossRefGoogle Scholar
  6. Barbosa HJC (1997) A coevolutionary genetic algorithm for a game approach to structural optimization. In: Bäck T (ed) Proceedings of the seventh international conference on genetic algorithms, michigan state university. Morgan Kaufmann Publishers, San Mateo, pp 545–552Google Scholar
  7. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669MATHCrossRefGoogle Scholar
  8. Bin X, Nan C, Huajun C (2010) An integrated method of multi-objective optimization for complex mechanical structure. Advances in Engineering Software 41(2):277–285MATHCrossRefGoogle Scholar
  9. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308CrossRefGoogle Scholar
  10. Büche D, Dornberger R (2001) New evolutionary algorithm for multi-objective optimization and its application to engineering design problems. In: Fourth world congress of structural and multidisciplinary optimizationGoogle Scholar
  11. Byrne J, Jonathan F, Fenton M, Hemberg E, McDermott J, O’Neill M, Shotton E, Nally C (2011) Combining structural analysis and multi-objective criteria for evolutionary architectural design. In: Proceedings of the 2011 international conference on applications of evolutionary computation - Volume Part II, Springer-Verlag, Berlin, Heidelberg, EvoApplications’11, pp 204–213Google Scholar
  12. Chapman C (1994) Structural topology optimization via the genetic algorithm. Massachusetts Institute of Technology, Department of Mechanical EngineeringGoogle Scholar
  13. Coello CA, Toscano G (2005) Multiobjective Structural Optimization using a Micro-Genetic Algorithm. Struct Multidiscip Optim 30(5):388–403CrossRefGoogle Scholar
  14. Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems. SpringerGoogle Scholar
  15. Coello CAC, Christiansen AD (2000) Multiobjective optimization of trusses using genetic algorithms. Comput Struct 75(6):647–660CrossRefGoogle Scholar
  16. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Spector L, Goodman ED, Wu A, Langdon W, Voigt HM, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference (GECCO’2001). Morgan Kaufmann Publishers, San Francisco, pp 283–290Google Scholar
  17. Das I (1999) A preference ordering among various Pareto optimal alternatives. Struct Optim 18(1):30–35CrossRefGoogle Scholar
  18. Das I, Dennis J (1997) A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct Optim 14(1):63–69CrossRefGoogle Scholar
  19. Das I, Dennis J (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657. doi: 10.1137/S1052623496307510 MATHMathSciNetCrossRefGoogle Scholar
  20. Deb K (2001) Multi-objective optimization using evolutionary algorithms. WileyGoogle Scholar
  21. Deb K, Goel T (2000) Multi-objective evolutionary algorithms for engineering shape design. KanGAL report 200003, Indian Institute of Technology, Kanpur, IndiaGoogle Scholar
  22. Deb K, Patrap A, Moitra S (2000) Mechanical component design for multi-objective using elitist non-dominated sorting GA. KanGAL report 200002, Indian Institute of Technology, Kanpur, IndiaGoogle Scholar
  23. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  24. Descamps B, Coelho RF, Ney L, Bouillard P (2011) Multicriteria optimization of lightweight bridge structures with a constrained force density method. Comput Struct 89(3–4):277–284CrossRefGoogle Scholar
  25. di Pierro F, Khu ST, Savic DA (2007) An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans Evol Comput 11(1):17–45CrossRefGoogle Scholar
  26. El Semelawy M, Nassef A, El Damatty A (2012) Design of prestressed concrete flat slab using modern heuristic optimization techniques. Expert Syst Appl 39(5):5758–5766CrossRefGoogle Scholar
  27. Ghanmi S, Guedri M, Bouazizi ML, Bouhaddi N (2011) Robust multi-objective and multi-level optimization of complex mechanical structures. Mechanical Systems and Signal Processing 25(7):2444–2461CrossRefGoogle Scholar
  28. Gobbi M, Guarneri P, Scala L, Scotti L (2013) A local approximation based multi-objective optimization algorithm with applications. Optim Eng: 1–23. doi: 10.1007/s11081-012-9211-5
  29. Goldberg D, Samtani M (1986) Engineering optimization via genetic algorithm. In: Proceedings of the ninth conference on electronic computation, pp 471–482Google Scholar
  30. Gong Y, Xue Y, Xu L, Grierson D (2012) Energy-based design optimization of steel building frameworks using nonlinear response history analysis. J Constr Steel Res 68(1):43–50CrossRefGoogle Scholar
  31. Greiner D, Winter G, Emperador JM, Galván B (2005) Gray coding in evolutionary multicriteria optimization: application in frame structural optimum design. In: Coello Coello CA, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization. Third international conference, EMO 2005, Springer. Lecture notes in computer science, vol 3410. Guanajuato, pp 576–591Google Scholar
  32. Greiner D, Emperador JM, Winter G, Galván B (2007) Improving computational mechanics optimum design using helper objectives: an application in frame bar structures. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) Evolutionary multi-criterion optimization, 4th international conference, EMO 2007, Springer. Lecture notes in computer science, vol 4403. Matshushima, pp 575–589Google Scholar
  33. Greiner D, Galván B, Emperador J, Méndez M, Winter G (2011) Introducing reference point using g-dominance in optimum design considering uncertainties: an application in structural engineering. In: Takahashi R, Deb K, Wanner E, Greco S (eds) Evolutionary multi-criterion optimization, lecture notes in computer science, vol 6576. Springer, Berlin/Heidelberg, pp 389–403Google Scholar
  34. Guedri M, Ghanmi S, Majed R, Bouhaddi N (2009) Robust tools for prediction of variability and optimization in structural dynamics. Mech Syst Signal Process 23(4):1123–1133CrossRefGoogle Scholar
  35. Hajela P (1990) Genetic search—an approach to the nonconvex optimization problem. AIAA J 26:1205–1212CrossRefGoogle Scholar
  36. Hajela P, Lin C (1992) Genetic search strategies in multicriterion optimal design. Struct Multidiscip Optim 4(2):99–107CrossRefGoogle Scholar
  37. Hamda H, Roudenko O, Schoenauer M (2002) Application of a multi-objective evolutionary algorithm to topological optimum design. In: Parmee I (ed) Fifth international conference on adaptive computing in design and manufacture. Springer-VerlagGoogle Scholar
  38. Herrero J, Martínez M, Sanchis J, Blasco X (2007) Well-distributed Pareto front by using the \(\epsilon \)-moga evolutionary algorithm. In: Proceedings of the 9th international work conference on artificial neural networks, IWANN’07. Springer-Verlag, Berlin, Heidelberg, pp 292–299Google Scholar
  39. Huang VL, Zhao SZ, Mallipeddi R, Suganthan PN (2009) Multi-objective optimization using self-adaptive differential evolution algorithm. In: IEEE congress on evolutionary optimization (CEC), pp 190–194Google Scholar
  40. Institution of Civil Engineers (2012) About civil engineering. http://www.ice.org.uk/About-civil-engineering
  41. Izui K, Nishiwaki S, Yoshimura M, Nakamura M, Renaud J (2008) Enhanced multiobjective particle swarm optimization in combination with adaptive weighted gradient-based searching. Eng Optim 40(9):789–804MathSciNetCrossRefGoogle Scholar
  42. Kaveh A, Laknejadi K (2011) A hybrid multi-objective optimization and decision making procedure for optimal design of truss structures. IJST Trans Civ Eng 35(C2):137–154Google Scholar
  43. Kelesoglu O (2007) Fuzzy multiobjective optimization of truss-structures using genetic algorithm. Adv Eng Softw 38:712–721. ElsevierCrossRefGoogle Scholar
  44. Kicinger R, Arciszewski T (2004) Multiobjective evolutionary design of steel structures in tall buildings. American institute of aeronautics and astronautics press reston, VA, AIAA 2004-6438, AIAA 1st intelligent systems technical conference chicago, ILGoogle Scholar
  45. Kicinger R, Arciszewski T, De Jong K (2005) Evolutionary computation and structural design: a survey of the state-of-the-art. Comput Struct 83:1943–1978CrossRefGoogle Scholar
  46. Kicinger R, Obayashi S, Arciszewski T (2007) Evolutionary multiobjective optimization of steel structural systems in tall buildings. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) Evolutionary multi-criterion optimization, 4th international conference, EMO 2007, Springer. Lecture notes in computer science, vol 4403. Matshushima, pp 604–618Google Scholar
  47. Knowles J, Corne D (1999) The Pareto archived evolution strategy: a new baseline algorithm for multiobjective optimization. In: Proceedings of the 1999 congress on evolutionary computation. IEEE Press, Piscataway, pp 98–105Google Scholar
  48. Kukkonen S, Lampinen J (2005) GDE3: the third evolution step of generalized differential evolution. In: IEEE congress on evolutionary computation (CEC’2005), pp 443–450Google Scholar
  49. Kunakote T, Bureerat S (2011) Multi-objective topology optimization using evolutionary algorithms. Eng Optim 43(5):541–557MathSciNetCrossRefGoogle Scholar
  50. Lagaros N, Papadrakakis M, Plevris V (2005) Multiobjective optimization of space structures under static and seismic loading conditions. In: Abraham A, Jain L, Goldberg R (eds) Evolutionary multiobjective optimization, Advanced information and knowledge processing. Springer, London, ISBN 978-1-85233-787-2, pp 273-300CrossRefGoogle Scholar
  51. Landa-Becerra R, Santana-Quintero LV, Coello Coello CA (2008) Knowledge incorporation in multi-objective evolutionary algorithms. In: Ghosh A, Dehuri S, Ghosh S (eds) Multi-objective evolutionary algorithms for knowledge discovery from data bases. Springer, Berlin, pp 23–46CrossRefGoogle Scholar
  52. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 2(12):284–302CrossRefGoogle Scholar
  53. Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210–224MathSciNetCrossRefGoogle Scholar
  54. Liu M, Burns S, Wen Y (2003) Optimal seismic design of steel frame buildings based on life cycle cost considerations. Earthq Eng Struct Dyn 32(9):1313–1332CrossRefGoogle Scholar
  55. Liu M, Burns S, Wen Y (2005) Multiobjective optimization for performance-based seismic design of steel moment frame structures. Earthq Eng Struct Dyn 34(3):289–306CrossRefGoogle Scholar
  56. Lobo FG, Lima CF, Michalewicz Z (eds) (2007) Parameter setting in evolutionary algorithms. Springer, BerlinMATHGoogle Scholar
  57. Luh G, Chueh C (2004) Multi-objective optimal design of truss structure with immune algorithm. Comput Struct 82(11–12):829–844MathSciNetCrossRefGoogle Scholar
  58. Madeira JA, Rodrigues H, Pina H (2004) Multi-objective optimization of structures topology by genetic algorithms. Civil-Comp Ltd Elsevier Ltd 1(36):21–28Google Scholar
  59. Marler R, Arora J (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395MATHMathSciNetCrossRefGoogle Scholar
  60. Miettinen KM (1999) Nonlinear multiobjective optimization. Kluwer Academic, BostonMATHGoogle Scholar
  61. Nafchi A, Moradi A, Ghanbarzadeh A, Rezazadeh A, Soodmand E (2011) Solving engineering optimization problems using the bees algorithm. In: 2011 IEEE colloquium on humanities, science and engineering (CHUSER), pp 162–166Google Scholar
  62. Nebro A, Luna F, Talbi EG, Alba E (2005) Parallel multiobjective optimization. In: Alba E (ed) Parallel metaheuristics. Wiley-Interscience, New Jersey, pp 371–394CrossRefGoogle Scholar
  63. Nebro A, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008a) AbYSS: adapting scatter search to multiobjective optimization. IEEE Trans Evol Comput 12(4):439–457CrossRefGoogle Scholar
  64. Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008b) AbYSS: adapting scatter search to multiobjective optimization. IEEE Trans Evol Comput 12(4):439–457CrossRefGoogle Scholar
  65. Nebro A, Durillo J, Garcia-Nieto J, Coello Coello C, Luna F, Alba E (2009a) Smpso: a new pso-based metaheuristic for multi-objective optimization. In: IEEE symposium on computational intelligence in miulti-criteria decision-making, 2009. MCDM ’09, pp 66–73Google Scholar
  66. Nebro A, Durillo J, Luna F, Dorronsoro B, Alba E (2009b) Mocell: a cellular genetic algorithm for multiobjective optimization. Int J Intell Syst 24(7):726–746MATHCrossRefGoogle Scholar
  67. Noilublao C, Bureerat S (2009) Simultaneous topology, shape and sizing optimisation of skeletal structures using multiobjective evolutionary algorithms. In: dos Santos WP (ed) Evolutionary Computation, ISBN: 978-953-307-008-7, InTech, pp 487–508Google Scholar
  68. Noilublao N, Bureerat S (2011) Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms. Comput Struct 89(23–24):2531–2538CrossRefGoogle Scholar
  69. Ohsaki M, Swan CC (2003) Topology and geometry optimization of trusses and frames. In: SAB (ed) Recent advances in optimal structural design, amer society of civil engineers, pp 107–133Google Scholar
  70. Ohsaki M, Kinoshita T, Pan P (2007) Simulated annealing for multiobjective control system design. Earthq Eng Struct Dyn 36(11):1481–1495CrossRefGoogle Scholar
  71. Paya I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of concrete frames by simulated annealing. Comput Aided Civ Infrastruct Eng 23(8):596–610CrossRefGoogle Scholar
  72. Payá-Zaforteza I, Yepes V, González-Vidosa F, Hospitaler A (2008) Cost versus sustainability of reinforced concrete building frames by multiobjective optimization. In: First international symposium on life cycle civil engineering (IALCCE08), pp 953–958Google Scholar
  73. Perera R, Ruiz A (2008) A multistage fe updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization. Mech Syst Signal Process 22(4):970–991CrossRefGoogle Scholar
  74. Perera R, Ruiz A, Manzano C (2007) An evolutionary multiobjective framework for structural damage localization and quantification. Eng Struct 29(10):2540–2550CrossRefGoogle Scholar
  75. Ray T, Liew K (2002) A swarm metaphor for multiobjective design optimization. Eng Optim 34(2):141–153CrossRefGoogle Scholar
  76. Ray T, Smith W (2006) A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design. Eng Optim 38(8):997–1011CrossRefGoogle Scholar
  77. Ray T, Tai K, Seow K (2001) Multiobjective design optimization by an evolutionary algorithm. Eng Optim 33(4):399–424CrossRefGoogle Scholar
  78. Ray T, Isaacs A, Smith W (2009) Surrogate assisted evolutionary algorithm for multi-objective optimization. In: Pandu RG (ed) Multi-objective optimization techniques and applications in chemical engineering, chap 5. World Scientific, Singapore, pp 131–152Google Scholar
  79. Reyes M, Coello Coello C (2005) Improving PSO-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Coello C, Hernández A, Zitler E (eds) Third international conference on evolutionary multicriterion optimization, EMO 2005, Springer, LNCS, vol 3410, pp 509–519Google Scholar
  80. Reyes Sierra M, Coello Coello CA (2005) A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization. In: 2005 IEEE congress on evolutionary computation (CEC’2005), vol 1. IEEE Service Center, Edinburgh, pp 65–72Google Scholar
  81. Saitou K, Izui K, Nishiwaki S, Papalambros P (2005) A survey of structural optimization in mechanical product development. Comput Inf Sci Eng ASME 5:214–226CrossRefGoogle Scholar
  82. Sanchis J, Martinez M, Blasco X (2008) Multi-objective engineering design using preferences. Eng Optim 40(3):253–269CrossRefGoogle Scholar
  83. Sharma D, Deb K, Kishore N (2008) Towards generating diverse topologies of path tracing compliant mechanisms using a local search based multi-objective genetic algorithm procedure. In: 2008 congress on evolutionary computation (CEC’2008). IEEE Service Center, Hong Kong, pp 2004–2011Google Scholar
  84. Sharma D, Deb K, Kishore N (2009) Developing multiple topologies of path generating compliant mechanism (pgcm) using evolutionary optimization. Tech. rep., Kangal Report No. 2009002Google Scholar
  85. Sharma D, Deb K, Kishore N (2011) Domain-specific initial population strategy for compliant mechanisms using customized genetic algorithm. Struct Multidiscip Optim 43:541–554CrossRefGoogle Scholar
  86. Shih CJ, Kuan TL (2008) Immune based hybrid evolutionary algorithm for Pareto engineering optimization. Tamkang J Sci Eng 11(4):395–402Google Scholar
  87. Sim KB, Kim JY (2004) Solution of multiobjective optimization problems: coevolutionary algorithm based on evolutionary game theory. Artif Life Robot 8(2):174–185CrossRefGoogle Scholar
  88. Stankovic T, Ziha K, Marjanovic D (2011) Tracing engineering evolution with evolutionary algorithms. In: Kita E (ed) Evolutionary algorithms, ISBN: 978-953-307-171-8, InTech, pp 247–268Google Scholar
  89. Stanović T, Storga M, Marjanović D (2012) Synthesis of truss structure designs by NSGA-II and NodeSort algorithm. J Mech Eng 58(3):203–212CrossRefGoogle Scholar
  90. Su R, Wang X, Gui L, Fan Z (2010) Multi-objective topology and sizing optimization of truss structures based on adaptive multi-island search strategy. Struct Multidiscip Optim 43(2):275–286CrossRefGoogle Scholar
  91. Tai K, Prasad J (2005) Multiobjective topology optimization using a genetic algorithm and a morphological representation of geometry. In: 6th world congress of structural and multidisciplinary optimizationGoogle Scholar
  92. Tan TG, Teo J (2009) Improving the performance of multiobjective evolutionary optimization algorithms using coevolutionary learning. In: Chiong R (ed) Nature-inspired algorithms for optimisation. Springer, Berlin, pp 457–487CrossRefGoogle Scholar
  93. Tang X, Bassir D, Zhang W (2011) Shape, sizing optimization and material selection based on mixed variables and genetic algorithm. Optim Eng 12:111–128MATHMathSciNetCrossRefGoogle Scholar
  94. Thiele L, Pekka J, Korhonen KM, Molina J (2009) A preference-based evolutionary algorithm for multi-objective optimization. Evol Comput 17(3):411–436CrossRefGoogle Scholar
  95. Thrall A, Adriaenssens S, Paya-Zaforteza I, Zoli T (2012) Linkage-based movable bridges: design methodology and three novel forms. Eng Struct 37:214–223CrossRefGoogle Scholar
  96. Valdez Peña S, Botello Rionda S, Hernández Aguirre A (2005) Multiobjective shape optimization using estimation distribution algorithms and correlated information. In: Coello Coello CA, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization. Third international conference, EMO 2005, Springer. Lecture notes in computer science, vol 3410. Guanajuato, pp 664–676Google Scholar
  97. Wang N, Yang Y, Tai K (2008) Hybrid genetic algorithm for designing structures subjected to uncertainty. In: IEEE international conference on systems, man and cybernetics, 2008. SMC 2008, pp 565–570Google Scholar
  98. Winslow P, Pellegrino S, Sharma S (2010) Multi-objective optimization of free-form grid structures. Struct Multidiscip Optim 40:257–269CrossRefGoogle Scholar
  99. Zhang Q, Li H (2008) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 8(11):712–731Google Scholar
  100. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Proceedings 8th international conference on parallel problem solving from nature (PPSN VIII). Springer, pp 832–842Google Scholar
  101. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. Tech. Rep. 103, Computer engineering and networks laboratory (TIK), Swiss federal institute of technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, SwitzerlandGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gustavo R. Zavala
    • 1
  • Antonio J. Nebro
    • 2
  • Francisco Luna
    • 3
  • Carlos A. Coello Coello
    • 4
  1. 1.Universidad Nacional del NordesteCorrientesArgentina
  2. 2.Departamento de Lenguajes y Ciencias de la ComputaciónUniversidad de MálagaMálagaSpain
  3. 3.Departamento de InformáticaUniversidad Carlos III de MadridLeganésSpain
  4. 4.CINVESTAV-IPN Departamento de ComputaciónMexico CityMéxico

Personalised recommendations