Advertisement

Structural and Multidisciplinary Optimization

, Volume 49, Issue 2, pp 185–197 | Cite as

Numerical instabilities in level set topology optimization with the extended finite element method

  • David Makhija
  • Kurt Maute
Research Paper

Abstract

This paper studies level set topology optimization of structures predicting the structural response by the eXtended Finite Element Method (XFEM). In contrast to Ersatz material approaches, the XFEM represents the geometry in the mechanical model by crisp boundaries. The traditional XFEM approach augments the approximation of the state variable fields with a fixed set of enrichment functions. For complex material layouts with small geometric features, this strategy may result in interpolation errors and non-physical coupling between disconnected material domains. These defects can lead to numerical instabilities in the optimized material layout, similar to checker-board patterns found in density methods. In this paper, a generalized Heaviside enrichment strategy is presented that adapts the set of enrichment functions to the material layout and consistently interpolates the state variable fields, bypassing the limitations of the traditional approach. This XFEM formulation is embedded into a level set topology optimization framework and studied with “material-void” and “material-material” design problems, optimizing the compliance via a mathematical programming method. The numerical results suggest that the generalized formulation of the XFEM resolves numerical instabilities, but regularization techniques are still required to control the optimized geometry. It is observed that constraining the perimeter effectively eliminates the emergence of small geometric features. In contrast, smoothing the level set field does not provide a reliable geometry control but mainly improves the convergence rate of the optimization process.

Keywords

Topology optimization Level sets Extended finite element method Enrichment strategy Checker-boarding Regularization Perimeter constraint 

Notes

Acknowledgments

The author acknowledges the support of the National Science Foundation under grants EFRI–SEED–1038305 and CMMI–1201207. The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organization.

References

  1. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393CrossRefzbMATHMathSciNetGoogle Scholar
  2. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758CrossRefzbMATHGoogle Scholar
  3. Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202CrossRefGoogle Scholar
  4. Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefGoogle Scholar
  5. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. SpringerGoogle Scholar
  6. Burger M, Osher SJ (2005) A survey in mathematics for industry a survey on level set methods for inverse problems and optimal design. Eur J Appl Math 16:263–301CrossRefzbMATHMathSciNetGoogle Scholar
  7. de Ruiter M, van Keulen F (2000) Topology optimization: approaching the material distribution problem using a topological function description. In: Topping BHV (ed) Computational Techniques for Materials, Composites and Composite Structures, Edinburgh, pp 111–119Google Scholar
  8. de Ruiter MJ, van Keulen F (2004) Topology optimization using a topology description function. Struct Multidiscip Optim 26(6):406–416CrossRefGoogle Scholar
  9. Daux C, Moes N, Dolbow J, Sukumark N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Method Eng 48:1741–1760CrossRefzbMATHGoogle Scholar
  10. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Method Eng 78:229–252CrossRefzbMATHMathSciNetGoogle Scholar
  11. Duysinx P, Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using x-fem and level set methods. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Springer, pp 23–32Google Scholar
  12. Fish J (1992) The s-version of the finite element method. Comput Struct 43(3):539–547CrossRefzbMATHGoogle Scholar
  13. Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304zbMATHMathSciNetGoogle Scholar
  14. Fries TP (2008) A corrected xfem approximation without problems in blending elements. Int J Numer Methods Eng 75(5):503–532CrossRefzbMATHMathSciNetGoogle Scholar
  15. Fries TP (2009) The intrinsic xfem for two-fluid flows. Int J Numer Meth Fluids 60(4):437–471CrossRefzbMATHMathSciNetGoogle Scholar
  16. Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction. Comput Methods Appl Mech Eng 197:1699–1714CrossRefzbMATHMathSciNetGoogle Scholar
  17. Guest J (2009) Topology optimization with multiple phase projection. Comput Methods Appl Mech Eng 199(1-4):123–135CrossRefzbMATHMathSciNetGoogle Scholar
  18. Haber R, Bendsøe M (1998) Problem formulation, solution procedures and geometric modeling: key issues in variable-topology optimization. In: AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA, no. AIAA-1998-4948 in Collection of Technical Papers. Pt. 3Google Scholar
  19. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540CrossRefzbMATHMathSciNetGoogle Scholar
  20. Juntunen M, Stenberg R (2009) Nitsche’s method for general boundary conditions. Math Comput 78:1353–1374CrossRefzbMATHMathSciNetGoogle Scholar
  21. Kreissl S, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253zbMATHMathSciNetGoogle Scholar
  22. Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326CrossRefzbMATHMathSciNetGoogle Scholar
  23. Lang C, Makhija D, Doostan A, Maute K (2013) A simple and efficient projection scheme for heaviside enriched xfem. Submitted to Computational MechanicsGoogle Scholar
  24. Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705CrossRefzbMATHMathSciNetGoogle Scholar
  25. Maute K, Ramm E (1995) Adaptive topology optimization. Struct Multidiscip Optim 10(2):100–112CrossRefGoogle Scholar
  26. Maute K, Ramm E (1997) Adaptive topology optimization of shell structures. AIAA J 35(11):1767–1773CrossRefzbMATHGoogle Scholar
  27. Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Multidiscip Optim 15(2):81–91CrossRefGoogle Scholar
  28. Maute K, Kreissl S, Makhija D, Yang R (2011) Topology optimization of heat conduction in nano-composites. In: 9th World Congress on Structural and Multidisciplinary Optimization, ShizuokaGoogle Scholar
  29. Osher SJ, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49CrossRefzbMATHMathSciNetGoogle Scholar
  30. Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41(1):117–131CrossRefzbMATHMathSciNetGoogle Scholar
  31. Schleupen A, Maute K, Ramm E (2000) Adaptive fe-procedures in shape optimization. Struct Multidiscip Optim 19:282–302CrossRefGoogle Scholar
  32. Sethian J, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528CrossRefzbMATHMathSciNetGoogle Scholar
  33. Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica/Lixue Xuebao 25(2):227–239CrossRefzbMATHGoogle Scholar
  34. Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidiscip Optim:1–5Google Scholar
  35. Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Structural and Multidisciplinary Optimization SubmittedGoogle Scholar
  36. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscip Optim 16(1):168–75Google Scholar
  37. Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1–3):139–148CrossRefzbMATHMathSciNetGoogle Scholar
  38. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12:555–573CrossRefzbMATHMathSciNetGoogle Scholar
  39. Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346. doi: 10.1002/nme.820 CrossRefzbMATHGoogle Scholar
  40. van Dijk N, Langelaar M, van Keulen F (2012) Explicit level-set-based topology optimization using an exact heaviside function and consistent sensitivity analysis. Int J Numer Methods Eng 91(1):67–97CrossRefzbMATHMathSciNetGoogle Scholar
  41. van Dijk N, Maute K, Langelaar M, Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim pp 1–36Google Scholar
  42. van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-fem and level set description. Struct Multidiscip Optim 33(4–5):425–438CrossRefGoogle Scholar
  43. van Miegroet L, Moës N, Fleury C, Duysinx P (2005) Generalized shape optimization based on the level set method. In: 6th World Congress of Structural and Multidisciplinary OptimizationGoogle Scholar
  44. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefzbMATHGoogle Scholar
  45. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246. doi:10.1016/S0045-7825(02)00559-5CrossRefzbMATHGoogle Scholar
  46. Wang S, Wang MY (2006a) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090CrossRefzbMATHGoogle Scholar
  47. Wang S, Wang MY (2006b) A moving superimposed finite element method for structural topology optimization. Int J Numer Meth Eng 65:1892–1922CrossRefzbMATHGoogle Scholar
  48. Wei P, Wang M, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput-Aided Des 42(8):708–719CrossRefGoogle Scholar
  49. Wilke DN, Kok S, Groenwold AA (2006) A quadratically convergent unstructured remeshing strategy for shape optimization. Int J Numer Methods Eng 65(1):1–17CrossRefzbMATHGoogle Scholar
  50. Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90–91:55–64CrossRefGoogle Scholar
  51. Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891CrossRefzbMATHMathSciNetGoogle Scholar
  52. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversity of Colorado at BoulderBoulderUSA
  2. 2.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations