Structural and Multidisciplinary Optimization

, Volume 49, Issue 2, pp 281–297 | Cite as

Design methodology of piezoelectric energy-harvesting skin using topology optimization

  • A. Takezawa
  • M. Kitamura
  • S.L. Vatanabe
  • E. C. N. Silva
Research Paper


This paper describes a design methodology for piezoelectric energy harvesters that thinly encapsulate the mechanical devices and exploit resonances from higher-order vibrational modes. The direction of polarization determines the sign of the piezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Combining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direction. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequential linear programming on the early stage of the optimization, and the phase field method on the latter stage of the optimization to obtain clear optimal shapes without intermediate density. Numerical examples are provided that illustrate the validity and utility of the proposed method.


Energy-harvesting Piezoelectric Topology optimization Non-linear finite element method Sensitivity analysis 


  1. Allaire G (2001) Shape optimization by the homogenization method. Springer, New YorkGoogle Scholar
  2. Allaire G (2007) Conception optimale de structures. Springer, BerlinMATHGoogle Scholar
  3. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1): 363–393CrossRefMATHMathSciNetGoogle Scholar
  4. Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1CrossRefGoogle Scholar
  5. Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175CrossRefGoogle Scholar
  6. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, ChichesterMATHGoogle Scholar
  7. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRefGoogle Scholar
  8. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefGoogle Scholar
  9. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654Google Scholar
  10. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinGoogle Scholar
  11. Berlincourt DA, Curran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason WP (ed) Physical acoustics, principle and methods, vol 1, Part A. Academic, New York, pp 169–270Google Scholar
  12. Bourisli RI, Al-Ajmi MA (2010) Optimization of smart beams for maximum modal electromechanical coupling using genetic algorithms. J Intell Mater Syst Struct 21(9):907–914CrossRefGoogle Scholar
  13. Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Meth Eng 55(10):1215–1237CrossRefMATHGoogle Scholar
  14. Chen S, Gonella S, Chen W, Liu WK (2010) A level set approach for optimal design of smart energy harvesters. Comput Meth Appl Mech Eng 199(37–40):2532–2543CrossRefMATHMathSciNetGoogle Scholar
  15. Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering mems portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001CrossRefGoogle Scholar
  16. duToit NE, Wardle BL, Kim SG (2005) Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71:121–160CrossRefGoogle Scholar
  17. Erturk A, Inman DJ (2008a) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002CrossRefGoogle Scholar
  18. Erturk A, Inman DJ (2008b) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325CrossRefGoogle Scholar
  19. Erturk A, Tarazaga PA, Farmer JR, Inman DJ (2009) Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J Vib Acoust 131:011010CrossRefGoogle Scholar
  20. Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solid 57(3):621–633CrossRefMATHGoogle Scholar
  21. Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Methods Appl Mech Eng 199(49–52):3153–3168CrossRefMATHMathSciNetGoogle Scholar
  22. Kim S, Clark WW, Wang QM (2005a) Piezoelectric energy harvesting with a clamped circular plate: analysis. J Intell Mater Syst Struct 16(10):847–854CrossRefGoogle Scholar
  23. Kim S, Clark WW, Wang QM (2005b) Piezoelectric energy harvesting with a clamped circular plate: experimental study. J Intell Mater Syst Struct 16(10):855–863CrossRefGoogle Scholar
  24. Kögl M, Silva ECN (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14:387–399CrossRefGoogle Scholar
  25. Landau LD, Pitaevskii LP, Lifshitz EM (1984) Electrodynamics of continuous media, 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  26. Lee C, Xie J (2009) Design and optimization of wafer bonding packaged microelectromechanical systems thermoelectric power generators with heat dissipation path. J Vac Sci Technol B 27:1267–1271CrossRefGoogle Scholar
  27. Lee S, Youn BD (2011) A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin. IEEE Trans Ultrason Ferroelectr Freq Control 58(3):629–645CrossRefGoogle Scholar
  28. Lee S, Youn BD, Jung BC (2009) Robust segment-type energy harvester and its application to a wireless sensor. Smart Mater Struct 18:095021CrossRefGoogle Scholar
  29. Makihara K, Onoda J, Miyakawa T (2006) Low energy dissipation electric circuit for energy harvesting. Smart Mater Struct 15:1493CrossRefGoogle Scholar
  30. Nakasone PH, Silva ECN (2010) Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. J Intell Mater Syst Struct 21(16):1627–1652CrossRefGoogle Scholar
  31. Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19(1):167–184CrossRefMathSciNetGoogle Scholar
  32. Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Comm 26(11):1131–1144CrossRefGoogle Scholar
  33. Rupp CJ, Evgrafov A, Maute K, Dunn ML (2009) Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J Intell Mater Syst Struct 20(16):1923–1939CrossRefGoogle Scholar
  34. Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206CrossRefGoogle Scholar
  35. Sun KH, Kim YY (2010) Layout design optimization for magneto-electro-elastic laminate composites for maximized energy conversion under mechanical loading. Smart Mater Struct 19:055008CrossRefGoogle Scholar
  36. Tadesse Y, Zhang S, Priya S (2009) Multimodal energy harvesting system: piezoelectric and electromagnetic. J Intell Mater Syst Struct 20(5):625–623CrossRefGoogle Scholar
  37. Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phasefield method and sensitivity analysis. J Comput Phys 229(7):2697–2718CrossRefMATHMathSciNetGoogle Scholar
  38. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246CrossRefMATHGoogle Scholar
  39. Warren JA, Kobayashi R, Lobkovsky AE, Craig Carter W (2003) Extending phase field models of solidification to polycrystalline materials. Acta Mater 51(20):6035–6058CrossRefGoogle Scholar
  40. Zheng B, Chang CJ, Gea HC (2009) Topology optimization of energy harvesting devices using piezoelectric materials. Struct Multidiscip Optim 38(1):17–23CrossRefGoogle Scholar
  41. Zhou M, Rozvany GIN (1991) The coc algorithm. II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Takezawa
    • 1
  • M. Kitamura
    • 1
  • S.L. Vatanabe
    • 2
  • E. C. N. Silva
    • 2
  1. 1.Division of Mechanical Systems and Applied Mechanics, Institute of EngineeringHiroshima UniversityHiroshimaJapan
  2. 2.Department of Mechatronics and Mechanical, Systems EngineeringEscola Politécnica da Universidade de São PauloSão PauloBrazil

Personalised recommendations