Truss layout optimization within a continuum

  • Tomás Zegard
  • Glaucio H. Paulino
Research Paper


The present work extends truss layout optimization by considering the case when it is embedded in a continuum. Structural models often combine discrete and continuum members and current requirements for efficiency and extreme structures push research in the field of optimization. Examples of varied complexity and dimensional space are analyzed and compared, highlighting the advantages of the proposed method. The goal of this work is to provide a simple formulation for the discrete component of the structure, more specifically the truss, to be optimized in presence of a continuum.


Truss layout optimization Topology optimization Michell truss Truss geometry optimization Discrete-continuum optimization Embedded formulation 


  1. ACI Committee (2002) SP-208: Examples for the Design of Structural Concrete with Strut-and-Tie ModelsGoogle Scholar
  2. Allahdadian S, Boroomand B, Barekatein A (2012) Towards optimal design of bracing system of multi-story structures under harmonic base excitation through a topology optimization scheme. Finite Elem Anal Des 61:60–74MathSciNetCrossRefGoogle Scholar
  3. Amir O, Sigmund O (2013) Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct Multidiscipl Optim 47(2):157–174Google Scholar
  4. Barzegar F, Maddipudi S (1994) Generating reinforcement in FE modeling of concrete structures. J Struct Eng 120(5):1656–1662CrossRefGoogle Scholar
  5. Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. In: Engineering online library. Springer, Berlin, GermanyGoogle Scholar
  6. Dorn W, Gomory R, Greenberg H (1964) Atomatic design of optimal structures. J Mech 3:25–52Google Scholar
  7. Elwi A, Hrudey T (1989) Finite element model for curved embedded reinforcement. J Eng Mech 115(4):740–754CrossRefGoogle Scholar
  8. Felix J, Vanderplaats GN (1987) Configuration optimization of trusses subject to strength, displacement and frequency constraints. J Mech Des 109:233–241Google Scholar
  9. Hansen SR, Vanderplaats GN (1988) An approximation method for configuration optimization of trusses. AAIA J 28(1):161–168CrossRefGoogle Scholar
  10. Haslinger J, Mäkinen RAE (2003) Introduction to shape optimization: theory, approximation, and computation. In: Advances in design and control. Society for Industrial and Applied Mathematics, Philadelphia, PA, USAGoogle Scholar
  11. Hemp WS (1973) Optimum structures. In: Oxford engineering science series. Clarendon Press, Oxford, UKGoogle Scholar
  12. Imran I, Pantazopoulou SJ (1996) Experimental study of plain concrete under triaxial stress. ACI Mater J 93(6):589–601Google Scholar
  13. Kato J, Ramm E (2010) Optimization of fiber geometry for fiber reinforced composites considering damage. Finite Elem Anal Des 46(5):401–415CrossRefGoogle Scholar
  14. Liang Q (2007) Performance-based optimization of structures: theory and Applications. Wiley, Ltd, Chichester, UKGoogle Scholar
  15. Liang Q, Xie Y, Steven G (2000) Optimal topology design of bracing systems for multistory steel frames. J Struct Eng 127(7):823–829CrossRefGoogle Scholar
  16. Lipson S, Gwin L (1977) The complex method applied to optimal truss configuration. Comput Struct 7(6):461–468CrossRefGoogle Scholar
  17. Michell AGM (1904) The limits of economy of material in frame-structures. Phil Mag Ser 6 8(47):589–597zbMATHCrossRefGoogle Scholar
  18. Mijar AR, Swan CC, Arora JS, Kosaka I (1998) Continuum topology optimization for concept design of frame bracing systems. J Struct Eng 124(5):541–550CrossRefGoogle Scholar
  19. Ohsaki M (2010) Optimization of finite dimensional structures. Taylor & Francis, Boca Raton, FL, USA CrossRefGoogle Scholar
  20. Rozvany G (1996) Some shortcomings in Michell’s truss theory. Struct Multidisc Optim 12(4):244–250CrossRefGoogle Scholar
  21. Rozvany G (1997) Some shortcomings in Michell’s truss theory. Struct Multidisc Optim 13(2–3):203–204Google Scholar
  22. Sokół T (2010) A 99 line code for discretized Michell truss optimization written in Mathematica. Struct Multidisc Optim 43(2):181–190Google Scholar
  23. Stromberg L, Beghini A, Baker W, Paulino G (2012) Topology optimization for braced frames: combining continuum and beam/column elements. Eng Struct 37:106–124CrossRefGoogle Scholar
  24. Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering, Newmark LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations